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Abstract

Human gaze reveals valuable insights to attention and cognitive processes.
A person looking for an object in a scene or an image, which is referred to as
visual search, compares the visual input from his eyes with an abstraction of
this object in his mind. If these representations coincide, the person consid-
ers the object as found. However, the way the brain abstracts visual data, to
be able to perform such a search-target mapping, is difficult to reconstruct.
As convolutional neural networks get trained to extract task relevant fea-
tures from visual data, this work introduces and analyzes the possibilities
to use a pre-trained network to encode human gaze data for search target
inference.

The general goal is to exploit the high information concentration of these
encodings in order to reveal relations between human gaze behavior during
visual search and features of the searched objects. Therefore, different strate-
gies to process gaze encodings as well as the application to an existing target
inference approach get presented and evaluated. Further, with the involve-
ment of an intelligent image segmentation procedure, the beneficial impacts
of respecting semantical relations between objects in the search space get
shown.

The findings of this work are not only relevant for intelligent gaze-based
human computer interaction systems, but can also be applied to other user
attention inference approaches.

Vi



Chapter 1

Introduction

The human visual system performs sophisticated and important tasks in al-
most every situation. With more than one million nerve fibers, visual signals
get carried from one eye over a part of the brain called lateral geniculate
nucleus to the visual cortex . The strong evolved linkage of the visual
system to the human brain, underlines its general importance. For humans,
the distinction of colors, brightness, moving and stationary objects, as well
as three dimensional behaviors played an important role due to the high
variability of life circumstances, already in the early years of mankind.
During waking hours, our eyes are almost constantly active performing dif-
ferent tasks to perceive, often unconsciously, information about the environ-
ment. One of these tasks, in which eyes and the neural system strongly work
together, is the visual search. During the process of analyzing the percepti-
ble surrounding, in order to find a certain object, the attention is driven by
the motivation of finding.

Early studies showed, that regions, which have been focused during search,
are not random . Figure showing an overview of multiple car
images gives an example for the occurrence and effect of visual search. For
the task "Find the image with a red Smart!", a user usually does not require
to look at each displayed thumbnail separately but finds the target image
after a few moments. This is possible because the attention gets automati-
cally attracted by red objects and later by features defining the significant
shape of a Smart model which reduce the search time enormously. From 2009
to 2012, Microsoft’s search engine Bing made use of the benefits of visual
search by displaying query results of an image search in an overview mode
as showed in to improve search time performance and user experience.
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Figure 1.1: Screenshot of Bing’s "Visual Search" option (2009-2012) that al-
lowed users to get an overview of multiple images. Due to the task driven gaze
behavior, finding a "red Smart" for example is possible without considering
each image individually.

The locations that attract the cognitive system during the seeking pro-
cess seem to relate in a certain way to the searched target object .
General search target inference, tries to identify such relations by analyz-
ing the search process in order to gain information about the target object.
This can be helpful e.g. to make intelligent systems follow and understand a
user’s intentions in order to support him in his tasks. To find a relation be-
tween gaze behavior and target, visual features at the considered locations
in the image and at the searched object have to get considered. Because
visual features appear in different forms like color, shape, pattern, etc., it is
challenging to find a proper way to encode them.

This work presents and analyzes two major approaches that use human gaze
data recorded during a visual search in order to predict the searched target
objects. Facing the problem of accounting visual features, these methods use
trained artificial neural networks for extracting information from visual data.

Using data from eye tracking devices that captured a person’s gaze, prior
studies performed search target inference using different methods for fea-
ture extraction. Considering color histograms , SIFT features |5 or Bag
of visual Word encodings already delivered promising results.

The approaches presented in this work extract visual features with convo-
lutional neural networks, that have actually been trained for object classi-
fication on images. Considering two datasets, multiple experiments test the
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possibilities and performances of these systems as beneficial alternative to
existing methods.

Usually, convolutional neural networks (short: CNNs) get trained to ex-
tract relevant features from input data, find existing correlations and finally
apply a certain task on them. Exploiting the network’s ability to highlight
important image features might open new doors for search target inference.
Therefore, this work introduces the two target inference concepts of Spatial
Target Inference and an adaption of the popular Bag of Words encoding,
both using CNN features.

For Spatial Inference, the general representation of the extracted feature
data in their corresponding vector space gets studied under several aspects.
Investigating the spatial structures of encoded gaze and target representa-
tions clarifies existing correlations which can be used to setup useful predic-
tion models.

The Bag of Words approach is aligned to the work of Sattar et al. who
performed search target inference on a finite set of target alternatives. This
idea gets extended by using CNN features. Further, an additional neural
network gets involved which delivers a semantic segmentation of the search
image in order to increase the applicability of the presented algorithm. More-
over, this approach clarifies the general impact of the semantic context of a
search image.

For a better understanding, basic concepts of the human visual system as
well as a brief introduction to machine learning and neural networks are
provided in the subsequent sections. After presenting prior research related
to search target inference and CNN features, the main part of this work is
structured into three parts: The first section explains the general feature
extraction process with convolutional neural networks, which gets used for
all subsequent approaches. Afterwards, feature encodings from gaze data of
two different datasets get extracted to study structures and relations in the
CNN feature space. These relations will then be used to setup target infer-
ence models, that consider distance measures of feature vectors. The Bag of
Words approach by Sattar et al. gets explained in detail subsequently,
to compare it with the novel methods using CNN features and semantic
segmentation.
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1.1 Human Gaze and Attention

When intercepting information from the sense organs the cognitive system
decides within milliseconds whether a stimulus is important and has to be
further observed or can be ignored. This procedure is strongly required as
otherwise the brain would have to process an overload of data. However,
even if one does not seem to be concentrated on a certain task, general dis-
turbing information, that are not necessarily needed, get blurred out by the

brain .

The perception of visual stimuli while performing a specific task differs sig-
nificantly from the behavior in situations without the need for explicit at-
tention. This difference can be measured by analyzing the movements of the
eyes, which are mostly controlled by the cognitive system. For this reason,
eye behavior during an attention driven situation may reveal information

about the ongoing task .

For target inference, it is essential that visual search is highly attention
and task driven. In the following, basic concepts of the human visual system
as well as findings of gaze-attention relations get introduced.

1.1.1 The Human Eye

The human eye consists of several components that are required to perform
different actions in order to deliver important visual information about the
current environment. With individual adaptions of these components, the
visual system captures stimuli that get processed by the neural system to
objects, relation understandings, three dimensional vision, etc.

A visual stimulus, which initially is nothing different than incoming light
from the pupil through the lens, gets absorbed by the light sensitive coat
at the inner side of the eye ball, called retina (see figure[1.2). It consists of
cells called rods and cones which convert light into an actual stimulus signal.
Rods, the more sensitive receptors that can already be triggered by single
photons, are responsible for vision in low light situations but only deliver
blurry and weak colored information. In contrast, visual perceptions of well
lighted conditions are the product of cones. Therefore, a higher amount of
photons is needed for activation but a more detailed color vision results .
The approximately 120 million rods and 6 million cones are not equally dis-
tributed on the retina . The point located almost directly opposite the
lens, called fovea centralis (short: fovea), does not contain any single rod
but has the highest concentration of cones. For this reason, the best visual
acuity is reached at this spot.
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Figure 1.2: Simplified model of a human eye. The pupil and the lens regulate
the incoming light that gets projected onto the retina. The fovea is the most
sensitive spot on which stimuli of focused objects get projected.

Summarized, sharp vision for almost all human tasks is related to the
correct projection of incoming light onto the fovea (see figure [1.2)). Correct
angle, light absorption and refraction, unconsciously controlled by flexible
components of the eye, lead to unblurred visual perceptions of selected ob-
jects. Stimuli that reach this point are associated to lie in the visual and
cognitive focus of an observer [25].

Usually, the attention is not restricted to one single object or spot, but
it assembles from information of multiple impacts. In order to process all
relevant information, the human eye is able to perform various movements
for different requirements.

As introduced before, visual and cognitive focus is achieved by directing eye
components to a state, so that the light coming from the desired object gets
sharply projected onto the fovea. When the projection is in place, it seems
that the eyes stay in a static position for a very short moment. These situ-
ations are called fixations (figure left).

Analyzing one single location does not deliver sufficient information about
the surrounding environment. Fixating multiple objects successively requires
to change the point of focus. This happens with a ballistic @ and simul-
taneous [4] eye movement, which is called saccade (figure left). Due to
the high velocity, the eyes do not deliver a sharp but blurry image, called
saccadic suppression. A saccade only lasts for a very short time and ends up
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saccade

(b)

Figure 1.3: (a) A saccade is the eye movement between two fixations when
considering motionless objects. (b) The behavior of tracking a moving object
is called "smooth pursuit".

with a fixation when the eyes stop at a certain point @ﬂ

Often, nature also requires to focus on moving objects. The human visual
system evolved the so called pursuit shift movement (also called smooth
pursuit movement), where the eyes are constantly fixated to an object while
it is moving @]] (figure right). This type of eye movement is important
for attention measurement in moving scenes but less for static images. For
these, the analysis of fixations delivers information about locations which
attracted the observer and therefore where his attention has been paid.

The process of capturing a person’s gaze, is called eye tracking, and is nowa-
days usually performed with eye tracking devices. Out of the resulting data,
fixations reveal the objects or regions a person has been focused. Analyzing
these, might disclose interesting information about the person’s attention
and intention.

1.1.2 Modeling Visual Attention

Much effort has already been spent on the research of human behavior in
various situations. Regarding to the observation of a test person’s eye move-
ments during a certain task, the important fact came up, that eyes behave
more or less predictably and follow a non-random choice of fixations
. Eye movements are highly related to the activities a person is currently
performing. These gaze impacts are condition depending and usually get
specified as "top-down". In contrast, visual features that attract the human
focus naturally without the influence of any specific task are called "bottom
up' features.

Richard Gregory (8] explains bottom-up processing as stimulus driven con-
sideration of visual input. Specific sensory information reaching the eye can
affect the attention automatically. Bottom-up investigations consider the
general probability of an image part to be fixated by the human gaze. This
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Estimate material circumstances
of the family
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Give the ages of the people. Surmise what the tkmily had 4 Remember the clothes 5
been doing before the arrival worn by the people.
of the unexpected visitor.

Figure 1.4: Yarbus showed that people observe same images differently,
depending on the task. The fixated locations reveal the most attracting image
regions.

type of saliency does not depend on a certain task the viewer tries to achieve
but on low-level image features and natural interests in certain objects. Hu-
man faces and written letters often provide concentrations of informational
load which makes them more attractive to consider than objects that seem
to be uninteresting. A person considering a natural scene without any tasks
or presumptions (free viewing task) recognizes or at least perceives objects
containing bottom-up features first .

When, in contrast, an observer looks at an image with a certain preset-
ting, the points of consideration relate to the intention of the person and
one speaks of top-down processing. In 1967, Yarbus used eye track-
ing techniques to analyze scan paths of test persons which had to perform
different tasks that have been related to shown images (figure . In the
experiments, the characterization of the asked information for every task
was different. Image spots that seem to reveal the highest gain on informa-
tion for the currently intended task, are very likely to get fixated. One says
that these locations contain top-down features that unnoticeably attract a

test person’s gaze .

Summed up, in most cases, the human attention is task driven. Attention
directs eye movements by fixating the locations that seem to provide impor-
tant information for the task. This work analyzes and makes use of these
theoretical relations for visual search as task option which get further de-
scribed in the following section.
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(a) (b

Figure 1.5: (a) Finding the red circle is very easy as the color is an out-
standing feature the gaze directly gets attracted by. (b) For finding the only
triangle in the image, considering the color feature does not bring any benefit
but the consideration of shapes.

1.1.3 Visual search and Search Target Inference

The process of finding a certain object by analyzing visual data is designated
as visual search task and underlies, like almost all tasks, an effective amount
of attention and therefore describes a top-down process By only consid-
ering data captured during the search process, search target inference aims
to reconstruct information about the target object. As stated in the previous
section, fixations during top-down processing do follow specific rules and in
this case are likely to relate to the task-defining and attention-shaping target
object.

The assumption, that locations at fixated regions and at the target object
contain related or even similar visual features, gets also reflected in the
discussed "red smart" example where one common feature of fixations and
target may be the red color (see figure .

The main problem of feature consideration and comparison is, that the fea-
ture type can not be generally specified. Searching for a red circle among
green distracor items, the feature of color directly leads the gaze to the
target (see figure a). In contrast, when searching for a triangle among
different colored and shaped objects, the color feature does not support the
search at all unlike concentrating on the objects’ contours (see figure b).
Obviously, gaze and target features depend on the task but also on further
impacts like the target itself and its semantical context. Depending on the
type of the target object, the relevance for various areas in the search im-
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(b)

Figure 1.6: (a) Google Street View screenshot. About half of the image
shows sky and the other half displays road. (b) Searching for an airplane
restricts the search space to the semantically more attractive region (blue)
as airplanes are used to be located in the sky. The red area of the image
illustrates the less interesting part where less fixations during the search will
oceur.

age might decrease, so that the search space can actually be restricted. For
example, as airplanes usually are located in the sky, for the task of finding
an airplane in a photography, non-sky segments in the search image get less
relevant (see figure . Therefore, also the impact of semantic information
can be exploited to gain information about the search target which gets fur-
ther analyzed in section

Persons conducting the search tasks might apply different strategies or get
attracted by diverse features due to various experiences or relations to the
target. Therefore, it is likely that an inference strategy cannot be applied to
all persons in the same way. For this reason, it makes sense to consider the
fixation behavior of observers separately (within-user inference) [17].

One additional factor, which is especially important for planning and con-
ducting experiments on visual search, is the search target representation
in the observer’s mind. Showing an image of the target before the search,
highlights almost all features relating to the reference image (figure a).
The search is then highly influenced by the appearance of the shown object.
This can be an advantage, when the target really resembles the reference.
Otherwise, the clue image can lead to erroneous assumptions of the target
and can complicate the search. For this work this "image driven" approach
contrasts with the so called "cue driven" visual search task, where observers
are instructed to look for an object for which a certain keyword was given
like in figure b). Unlike the "image driven" task, the "cue driven" search
allows some room for interpretation, fantasy and experience of the observer.

The presented diversity of visual features leads to the general problem to
find an appropriate and representative encoding. Search target inference as
described in the following approaches, necessarily requires persistent feature
encodings. Because simple feature definitions for inference are neither clear
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Find: "bush"

Figure 1.7: (a) In image driven search, the observing person has seen the
target and so also recognized its visual features which can be compared to
occurring features in the search image. (a) In cue driven search, a person only
gets an idea of the target object. Visual features that relate to this target
are constructed by the person.

nor sufficient, using machine generated feature encodings might deliver use-
ful results. Deep Learning models (so called Neural Networks) are able to
learn recognizing features of given data that are relevant .

1.2 Machine Learning Background

Machine learning is one important field of artificial intelligence and data sci-
ence. Many applications rely on structures and relations in data collections
which are usually hard for humans to recognize. Machine learning models
learn these relations to later apply them on unseen data and predict certain
properties. In general, data X relates to a certain property (often called
label) y so that f(X) =y, where f describes the relation between data and
property. Machine learning tries to find a good approximation f' for f by
minimizing the difference y — f () numerically over multiple iterations.
The interest of this work lies in the consideration of the relation between
fixation of human gaze data and a searched target object.

This section provides a basic background of relevant the machine learn-
ing fields for this work. The general pipeline to train a predictive model,
the concept of classification and the idea of neural networks get explained
briefly.
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1.2.1 The Learning Process

Training and applying models to data collections requires to process a pipeline
of multiple steps, which partially also have been conducted for this work.

First of all, the considered data have to be created or collected. The re-
sulting information get stored to simple collections. Afterwards, the data
have to be adapted to the considered problem. Missing, not needed or erro-
neous data samples get handled and if needed, additional information can
be included. Data that describe a single object instance are called "sam-
ples" while the actual data values of a sample are called "components" or
"features"'. In general, an additional property belongs to each data sample,
called label. Usually, the task of a machine learning model is to predict a
label y for a given data sample z.

Training a model happens by optimizing a hypothesis function f . Therefore,
the data samples with known label values get distributed to two distinct sets
- one for training and one for testing. Samples from the training set get used
to adapt the hypothesis function f so that the cost value ¢ = f (Ttrain) —Ytrain
gets minimized. After training, f should imitate the relation between data
samples and labels well.

To test, whether the approximation generalizes, labels of samples from the
test set get predicted. The accuracy of these predictions describe the gen-
eral performance of the model. Labels, that do not correlate to data samples,
cannot be predicted as there exists no relation f. In these cases, the model
accuracy is close to the probability of predicting the labels by chance. De-
pending on the test performance, the resulting model can be used to predict
label values for new data.

The data for this work preliminarily consist of annotated images and eye
tracking captures which have been already collected in previous studies (see
. The later introduced methods aim to map information of the search
target or the target itself to the representation of the corresponding gaze
fixations.

1.2.2 Neural Networks

Neural networks are architectures that belong to a sub topic of machine
learning called deep learning. Neural networks are inspired by the setup of
a natural brain consisting of connected neurons that process electric stim-
uli. Implementations of artificial neural networks reach outstanding perfor-
mances for machine learning tasks.

Neural networks are organized in layers. One layer can be seen as matrix
or tensor containing numerical values called units. Each unit of one layer
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neuron

input layer
hidden layer

Figure 1.8: A visualization of a two layer fully connected neural network.
Each layer consists of several units while each unit is connected to all neurons
of the subsequent layer. The network processes three dimensional input data
through a hidden layer with four neurons and returns a two dimensional
result vector in the output layer.

is connected to units of the neighboring layer. There are mainly three layer
types to be distinguished: input layer, hidden layers and output layer (see
figure .

Actually, neural networks are nothing different than multiple function ap-
plications to the values of the vector in the input layer. Processing the data
from one to the subsequent layer, is performed by conducting a matrix mul-
tiplication of the input vector with a layer specific weight matrix 6;. After
applying a so called activation function a; to the result, the process gets
repeated with the weight matrix of the next layer until the last layer is
reached. During training a neural network, the values of the weight matrices
get adapted so that the network returns the wished outputs after a certain
training time.

Simplified, general neural networks are machine learning models approxi-
mating data relations with a hypothesis function f so that:

(@) = ap(ar(agla - 0y) - 61), ) - 6,) =y = f(x)

with input data z, activation functions a; and weight matrices 6;.
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original sharpen

Figure 1.9: Resulting outputs of an image convolved with different filter
functions. Depending on the filter, different visual features get highlighted.

1.2.3 Convolutional Neural Networks

There are different types of neural networks that get distinguished by the
way of processing data. The neural network which was described in the pre-
vious sections is called "Fully Connected" because all units are linked to
their neighbors in each layer. For image data, it makes sense, to highlight
visual components, that are important for the learning task first. This can
be accomplished by applying a convolution with a specific filter.

In general, a convolution is an operator which takes two functions f and
g as input and returns the function f * g of the following form:

(Fg)@)i= [ " )ge - ) dr

In image processing convolutions are often performed with f as function
that represents the pixel color values at a certain position of an image and
g as a so called kernel or filter. Intuitively, the filter, which is actually a
n-dimensional weight matrix, gets laid over each image pixel. Accumulating
the products of the pixel values of the neighbor pixels and their respective
weightings delivers the pixel values of the resulting convolved image. De-
pending on the weights in the filter, specific image features like edges, color
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Figure 1.10: CNNs extract visual features by applying multiple convolu-
tions in the first layers. Afterwards, relations of the resulting features get
learned by fully connected layers for classification. \\

segments etc. can be extracted and highlighted as demonstrated in figure[1.9]

In a convolutional neural network, image data matrices get processed through
the layer structure, while multiple convolutions get applied to the data as
activation functions. The weights of the filters get learned during the train-
ing process, so the network gets optimized to extract image features, that
are relevant for the objective. Usually, early layers of a trained CNN per-
form data convolutions to first extract important visual features that get
processed afterwards through fully connected layers to optimize the outputs

(see figure [1.10).

Summary

Eye movements are not processed randomly but get highly influenced by
subconscious cognitive processes which result from the ongoing, concentra-
tion demanding task. In visual search, fixations reveal the positions in the
visual field, that disclosed the highest attraction and therefore are likely to
contain features that relate to the search target. Gaining enough informa-
tion about the target, may allow to infer the position or even the object
itself. To reveal these information, the relevant visual features need to be
extracted. This work analyzes the utility and useful involvement of image
representations created by a convolutional neural network which has already
learned how to extract relevant features but for a different purpose.
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Analyzing data correlations and measuring the performances of predic-
tion models, give insights, in which form CNN features are able to extract
and represent target related features. Findings of this work can be applied to
various fields like machine learning, computer vision but also human com-
puter interaction. The ability of machines to "understand" what a user is
looking for or interested in could improve intelligent user interfaces but also
user supporting and interacting systems.



Chapter 2

Related Work

Search target inference with eye tracking data as well as the concept of
extracting visual features with convolutional neural networks have already
been considered before. The most relevant studies on which this thesis is
aligned get introduced in this chapter.

2.1 Visual Search Target Inference

As mentioned in the introduction, Wolfe showed that data of eye move-
ments during a visual search on images is influenced by the target repre-
sentation in the observer’s mind. Zelinsky et al. has proved, that this
impact can be used to extract information about the target. In their work,
the concept of "behavioral encoding" describes the ability of inferring hu-
man intentions out of observed conducts like gaze traces. With eye tracking
hardware, several participants were instructed to find a specific object out of
various distractors in a shown image. Only by considering the search trace, a
human and also a machine learning model should predict the target object,
assuming that the observer fixated target similar objects. The trained model
considered extracted SIFT features and local color histograms around
fixated image regions and could preform above chance results. This revealed
the general possibility of search target inference using gaze information.
The opportunity to decode gaze-target correlations is essential for this the-
sis. Unlike Zelinsky et al., this work considers the limits and benefits of CNN
encodings as alternative to SIF'T vectorization and color histograms.

The object consideration of Zelinsky et al. was restricted on a predefined
set of data. Borji et al. went a step further by considering unclassified
local patterns during visual search on binary QR-code like images (see figure
a). Participants had to find a specific 3 x 3 block pattern in a generated
search image. With an introduced similarity ranking algorithm called "pat-
tern voting", structures in the search image, that provided a certain degree

16
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of similarity to the fixated patterns, got selected as potential search target.
Due to the simplicity of the binary image patterns, no additional feature ex-
traction method besides the pattern voting similarity measure was needed.
The resulting off-chance performance shows that fixated features, in this
case pattern structures, relate to the search target and also are suitable for
target inference.

This work adapts the idea of considering a similarity measure between fixa-
tions and search target. Therefore, the spatial inference concept gets intro-
duced, which considers methods that infer target information from feature
space structures. Aside from new approaches using CNN features, an adap-
tion of Borji’s pattern voting algorithm gets introduced in section

In the work of Sattar et al., human search behavior got analyzed on
aligned collages showing multiple images. The goal for participants was to
find one specific image, while fixations during the search were recorded. Us-
ing RGB data for setting up a Bag of Words vectorization, fixation sequences
got encoded and utilized to train a prediction model. Out of a limited set of
target candidates, the resulting model stated which image was most likely
the searched target for a considered fixation sequence.

Further, Sattar et al. introduced the concepts of "closed world" and "open
world" for target inference. The settings distinguish from the data used for
training the predicting models. Closed world means, that during the model
training, samples with all possible labels get considered. For an open world
setting, only samples with labels of a subset get used for training, while the
performance gets tested on data with the unconsidered labels. This more
challenging approach focuses on the general applicability of the model. The
experiments of the closed world setting delivered promising results, while
for the more difficult open world setting, models predicted significantly off-
chance only for feature rich images.

In chapter [6] the implementation of Sattar et al’s approach gets described
in detail, as this work adapts the idea of using a Bag of Words vectoriza-
tion for target inference. With a re-implementation, prediction performances
of models using the RGB based Bag of Words encoding get directly com-
pared to the novel approach processing CNN features. Parts of the publicly
available collage dataset (see section get used for these and other per-
formance measures.

In a follow-up work, Sattar et al. combined the idea of using gaze in-
formation and CNN-based features to infer the category of a user’s search
target in collages (see: figure containing images of the DeepFashion
dataset . CNN activations of entire images combined with fixation den-
sity maps got applied to a global pooling operation which delivered encod-
ings that got fed to a machine learning model. Finally, this model was able
to categorize the search behavior to trained classes like "floral", "knit", etc.
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(b)

Figure 2.1: (a) Binary pattern search image as used by Borji et al. in
with human gaze scan path seeking for the displayed 3x3 pattern. (b) Visual
scan path conducted on a collage containing images of the fashion data set
for the target attribute "floral .

Using pre-trained neural networks as feature extractor to analyze gaze be-
havior, is generally also the concept of this work. To handle the large amount
extracted of CNN features, some introduced methods for spatial inference
also apply global average pooling. In contrast to ,in this work, CNN fea-
tures always get extracted around fixated spots in the search image. This
allows to apply the methods on all kinds of images and does not require to
manage visual objects individually.

2.2 CNN Features for the Representation of
Visual Data

In , Sharif et al. consider image representations that result from hidden
layers of a pre-trained CNN called OverFeat [19]. Using these for training
machine learning models to perform different tasks like scene recognition
and object detection delivered promising performances.

As the high information concentration in CNN features allows the appli-
cation to different purposes, the intention of this work is to combine CNN
features with gaze information and setup target inference models.

Using a similar network architecture, Donahue et al. @ visualizes image
data in the feature space of the hidden layer activations. The usually high
dimensionality of image representations from CNNs get reduced to two di-
mensions. Plotting the images, using the reduced features as position mea-
sure, visualizes how the CNN arranges the data semantically. Images with
similar content get placed closer together than samples showing semantically
different objects. (see figure [2.2).
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Figure 2.2: (a) Two dimensional visualization of image representations from
the 6th hidden layer of the DeCaf neural network. Semantically similar im-
ages from the same class are located closely and setup clusters @ ) CNN
feature reduction as position coordinates. Original images from two dlfferent
data domains (green and blue) have been processed through a CNN. The
feature vector of the 6th hidden layer has been reduced to two dimension,
which setup x and y coordinates of an image’s position @

The clustering ability of layer activations for visualization purposes was
also used by Jiang et al. . For an interactive machine learning and fine
tuning framework, several feature representations from hidden layers got
concatenated and clustered. The purity of class occurrences in clusters indi-
cated the ability of a prediction model to separate data correctly.

The cluster formations resulting from the CNN encoding process are es-
sential for spatial target inference. Considering vector differences as simi-
larity measure for visual features, could allow to derive feature analogies in
fixations that might also appear in the searched target.
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Summary

Several studies have shown that during a visual search, humans fixate lo-
cations with visual features that correlate to the searched target object.
Different extraction methods, are able to encode these feature relations and
allow an automatic search target inference.

The feature extraction ability of CNNs can be exploited for multiple pur-
poses. The arrangement of image feature representations in the vector space
respect semantically similarities of the data. Analyzing and using these spa-
tial relations for similarity measuring and finally for target inference are the
intension of chapter 5| Extending the idea of Sattar et al. by introducing
a CNN based Bag of Words approach gets covered in chapter [6]



Chapter 3

Datasets

The proposed methods in the subsequent chapters rely on eye tracking
data of test participants conducting various visual search tasks. Therefore,
Koehler et al’s VIU dataset and data samples of the already introduced
work by Sattar et al. got adapted to the needs of the implementations.
A general description of the data as well as statistics and differences get
introduced in the following.

3.1 VIU Dataset

For a collection of 800 images a 450 x 450 pixels, Koehler at al. cap-
tured eye movement data from 100 test persons. The images, which display
a variety of in- and outdoor photographies (see figure a) got presented
to the participants on a LCD monitor for two seconds. During that time, a
tower-mounted Eyelink 1000 system recored the gaze behavior of the current
test person.

To perform different investigations, the participants got distributed into
three groups, each instructed to perform another task. Considering the im-
ages without any further instruction was the task for 22 test persons. In
such free viewing situations, the gaze gets attracted by bottom-up features
that reveal information about the saliency of images. The second group,
consisting of 20 test persons, got instructed to allocate the object with the
highest saliency in an image. Participants had to state, whether the most
salient object, which in their eyes stood out for any reason, was on the left or
on the right half of the image. Similar to the free viewing task, bottom-up
features dominated the fixation attractions, but this time, the result gets
more or less annotated.

The last task stated as "cued object search" was conducted by 38 participants
and produced data which are relevant for this work. In each test iteration,
a written word (see ﬁgure b) got displayed for 1000ms. Within the sub-
sequent 2000ms, in which the actual image was shown, the test person had

21
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light flowers

(b)

Figure 3.1: (a) Four sample images with natural scenes of the VIU dataset
by Koehler et al. with the gaze scan path of one user and the ground
truth region (red rectangles). (b) Search target terms that were shown to
participants for the cued object search.

to find the cued object. By pressing a button afterwards, the participant
stated, whether he was able to find the target. The asked object was present
in only 400 of the 800 images. Due to timing constraints each test person
only observed 400 images while half of them contained the searched target.
The later introduced models aim to predict the location of the target or the
target as object. Samples not containing the seared object are not usable for
this task. Therefore, the finally considered data consists of 400 images, each
observed by 19 participants.

The fixed search time of 2000ms leads to a general problem, as it may hap-
pen, that the target gets found earlier. The fixations created afterwards are
therefore not driven by the task anymore and consequently do not belong
to the search sequence. Hence fixations that got captured inside the target
area as well as fixations appearing after the target finding do not belong to
the search process and therefore get ignored (see figure .

Averagely, each user considers a single image with 7.9 fixations, whereby 4.3
(maximally 15) belong to the search process which indicates that the search
tasks are generally easy to accomplish.

For this work, each image got manually annotated with bounding boxes
around the target objects which get denoted as ground truth. The probabil-
ity of predicting the correct search target region by chance depends on the
size of the ground truth area which differs for each image. Averagely, this
area covers 17.43% of an image in the VIU dataset.
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Figure 3.2: (a) Search sequence of fixations for the target "guitar'. (b)
Fixations from a) annotated depending on the stage of the visual search
they appeared. For the search target inference models, only search fixations
get used.

As explained in figure[1.7] the visual search conducted in these experiments
is obviously cue driven. Reading the target describing word highlights an
imaginary representation of the target object which guides the observer’s
gaze to related visual features (see figure b). Further, images of the VIU
dataset, displaying natural situations, provide semantic relations between
the visible objects which also influence the search behavior like in figure

3.2 Amazon Book Cover Dataset

In the inference approach already mentioned in 2| Sattar et al. created
Bag of Words encodings to train classification models to predict the targets.
Therefore, visual search got conducted on collages that displayed multiple
images aligned in a grid pattern with a small margin in between (See figure

530

Fixation data from different images types have been collected during the
experiments. 78 similar designed O’Reilly book covers, 84 book covers from
Amazon with various colored illustrations and 78 greyscaled mugshots show-
ing the faces of different persons setup three distinct collage datasets.

In each iteration, participants were instructed to find one specific image
in the current shown and randomly generated collage, while their gaze got
tracked with a stationary Tobii TX300 eye tracking device. Before the search,
for a maximum of 10s the target image got displayed which should be found
within maximally 20s in each of the subsequent shown collages. By pressing
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Figure 3.3: (a) Example of one generated image collage showing various
book covers. Observers were asked to find one specific cover. (b) The five
target cover alternatives. The prediction models had to state which of these
five covers got actually searched by a participant.

a key, the test person indicted that he found the search target.

This work concentrates on the dataset containing the Amazon book covers,
as it seems to provide a higher variety of visual features in each single image.
100 collages displaying 6 x 14 book covers got inspected by six test persons.
Each collage got mapped to one of five target book covers (see figure b)
which was instructed to get found, resulting 20 collages for each target.

Because all book covers got displayed equally sized, the ground truth area of
each collage takes the same proportion of 1.22%. Participants fixated a sin-
gle collage averagely 14.47 (maximally 91) times. Due to the high amount of
distractors, the large search space and missing semantical context between
objects, this high amount of fixations can be explained with the difficulty of
this search task.

In contrast to the VIU dataset, the search of this dataset is "image driven",
as fixations are guided by the feature memorization of the shown target im-
ages. Therefore, the focused locations might reveal target features that are
less biased by further impacts.
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VIU Amazon Book Covers
images 400 100
observers 19 6
type scene photographies  book cover collages
prediction chance ~ 17.43% 1.22%
avg fixations/image 4.3 14.47

Table 3.1: Direct comparison of the used datasets VIU by Koehler et al.
and Amazon book covers by Sattar et al.

Summary

The two introduced datasets are suitable to analyze performance and ap-
plicability of the introduced methods. Covering different aspects of visual
search, benefits and detriments can be revealed. Table summarizes the
most important characteristics of the datasets.



Chapter 4

CNN Feature Extraction

This chapter describes the procedure of visual feature extraction using a
CNN, which gets studied in the subsequent experiments. The motivation
behind this approach lies in the ability of neural networks to optimize the
feature extraction process for a concrete task. The application of these ex-
tractions to other tasks, like introduced in chapter|2] may offers remarkable
opportunities.

Defining the vector spaces Il containing image data and IF' holding visual
feature representation. A general feature extractor is a function @ : I — IF
transforming visual inputs to feature encodings. Studies mentioned in chap-
ter [2| introduced multiple implementations of ®. In this work, the method
® vy extracts visual features by processing image data through a trained
CNN and returning the activation of a selected network layer.

The CNN architecture used in this thesis was developed by Krizhevsky et
al. and is often called AlexNet. Input images get processed through five
convolution- and three fully connected stages. The result of the network pre-
dicts the visible content of the input image (see figure .

Input class
convl norml  pooll conv2  norm2 pool2 conv5  pool5
7x27 probabilities

1000

IMage | ooussxss  ooxsoxss  ooxzmzr | 2s6x7xzr  256x27x27 25613513
3x227x 227

Figure 4.1: Simplified visualization of the AlexNet architecture. For each
layer, channels x height x width state the shape of the image representations.
Layers with a star get considered for feature extraction in this work.

26
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AlexNet was adapted and trained on the popular ImageNet dataset con-
taining about 14 million images. The output layer of the network holds
probability values of 1000 selected object classes, describing how likely the
corresponding object is visible in the input image. Deeper layers are higher
biased by the classification task while early layers perform more general
feature extractions (see figure . In the following experiments, features
extracted from the layers convl, pooll, pool2, conv4, poolb, fc6 and fc8,
representing different stages of abstraction, get used and analyzed.

The general RGB encoding of images describes the color intensity of red,
green and blue for each pixel in a range between 0 and 255. This three-
channel layout gets reflected in the image data vector space, wherefore it
holds that T = IthwX?’, with h and w as the height and width of images.
The convolutional layers of AlexNet produce multi-channel representations
of the input image, which do not separate colors but various extracted fea-
tures. Depending on the application, the resulting tensors, get either flat-
tened to one dimensional array or processed by a so called global average
pooling.

The one-dimensional flattening rearranges the feature components so that
IF = R" with n = ¢-w - h while h and w state width and height of a
channel window and ¢ denotes the amount of produced channels. For most
of the considered layers, the resulting feature space is extremely high di-
mensional. Feature vectors from the conv2 layer for example, consist of
256 - 27 - 27 = 186624 components. Processing features for many fixation
data would require enormous disc space and further alters the training time
of prediction models.

Global average pooling (short: GAP), also used in overcomes this prob-
lem by only considering the average value of each channel (see figure .
Conv2 representation then only contain 256 components. To avoid misun-

derstandings, encodings of this type will be denoted with Qgﬁ,.
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Figure 4.2: Differences between flattening and global average pooling for
handling multi channel outputs from hidden CNN layers.



Chapter 5

Feature Space Analysis &
Spatial Target Inference

This chapter describes the concept of spatial inference and analyzes the
vector spaces of different CNN features. Spatial relations between fixations
and target as well as methods to encode entire search sequences, so called
aggregations, get presented and studied. Finally, the findings will be applied
to two approaches that use vector distances as similarity measurements to
predict targets from search fixations.

5.1 Spatial Feature Relations

During visual search, gaze attracting visual features are likely to be related
to features defining the target. So called fixation patches, which are squared
rectangles with a fixation in the center, get disjointed from the search images
like in figure and processed through a feature extractor ®onpy. The
arrangements of the resulting encodings get analyzed in their vector spaces
IF to study relations among fixations, between single fixations and their
target and finally between entire fixation sequences and the target.

5.1.1 Fixation Cluster Analysis

Two vectors located close to each other in their vector space are likely to
provide certain similarities. Data samples appearing in a concentrated struc-
ture hold low distances to each other and form so called clusters. Cluster
distributions allow predictive models to classify data samples based on their
feature space position. Data concentrations need to provide a certain degree
of density to be significantly distinguishable from samples of random distri-
butions. (see figure[5.2).

In order to analyze how search fixation features relate to each other, the
idea is to measure the cluster densities of fixation patch encodings. Assum-

29
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.

Figure 5.1: Creation of fixation patches by copping out squared boxes from
the search image around each fixation point.

ing that specific visual features attract the participant’s gaze during search,
fixations should provide particular similarities. Depending on the encoding,
these similarities get reflected in the density measurement p € IR of the
clusters.

As control scale, fixations at randomly generated locations in the search im-
ages, get further taken into account. Because the generated "fake" fixations
do not rely on any attraction pattern, the resulting clusters should provide
a less dense structure than concentrations consisting of human fixations.

Experiment

For each search image I, squared patches p{ € I with a fixed size (VIU: 45px,
Amazon Book Covers: 80px) get cropped around each fixation. Using differ-
ent network layers as extractor, visual features of these fixation patches get
encoded by @y (pf ). Afterwards, the pairwise vector distance between all
fixation encodings from the same image I get averaged. As density measure,
the expected averaged distances using the euclidean as well as the cosine
distance, get computed and compared:

p= EI[EPZ_I#,; (dist(@onn (p)), q’CNN(PJI')))] (5.1)

Assuming that similar feature vectors provide low variances, the average
component-vise variance of fixation patch encodings gets considered as third
density measure. Therefore, for all encodings related to the same image, the
variances of all vector components ¢ get computed separately. The values of
the resulting variance vector get averaged to a scalar. The expected scalar
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Figure 5.2: Assuming that yellow points are considered data while blue
points represent noise in the feature space. (a) Dense concentrations of data
differ from random noise and therefore contain characteristic features. (b)
If the data does not form any concentration, its distribution is hard distin-
guishable from noise.

value from all images form the final component-wise variance density mea-
sure.

The relative differences between the cluster densities p; of human fixation
features and p, for generated fixation clusters get indicated by the ratio

ng*iph_ When human fixation clusters provide a high density in contrast to
generated fixations, this values is high. For a ratio of low magnitude, human
and random fixations are almost equally distributed like in figure (b).

Results

Figure[5.3|summarizes the density ratios for all dataset, extraction layer and
density measure approach combinations.

For the VIU dataset, the pairwise cosine distance delivered for all network
features positive ratios. Except for layer fc8, the euclidean and the compo-
nent variance quantify human fixation clusters almost equally or even less
dense than faked fixation representation clusters. The highest human fix-
ation data concentrations got achieved by layer pooll with a 22.6% ratio
and by layer fc8 with a 33.5% ratio, both using cosine distance. For fc8, the
euclidean distance with 13% and and the component variance with 22.5%
delivered the highest non-cosine measurements.

The density comparisons for the Amazon book cover dataset generally are
lower. All euclidean distance and component variance measurements indi-
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Figure 5.3: Relative differences of density measurements between human
and random generated fixation encodings using different layers as feature ex-
tractor for the VIU and the Amazon book cover dataset. The values state how
much lower (denser) the human fixation encodings are in contrast to clusters
of randomly generated fixations. Positive values state a higher density of the
gaze cluster.

cate a higher density for randomly generated fixations. Conv1 with euclidean
distance reaches the lowest ratio of -5%. Of all positive cosine distance mea-
surements, pooll achieves with 2.7% the most dense human fixation repre-
sentations.
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Interpretation

The general lower ratio values for the Amazon book cover dataset are likely
to result from the difficulty of the search task. The large image collages
might need to be explored with less target related features. Further, VIU
images generally provide less variety, which alters the probability of random
generated fixations to lie on target similar features.

The euclidean distance and the component variance measurements delivered
similar weak results. The high dimensionality of the feature representations
lead to high absolute distances in the vector space. Considering vector angles
with the cosine distance instead seems to be a more appropriate similarity
measure.

The cosine distance approves the hypothesis that CNN encodings of gaze
fixations provide certain characteristics which get reflected in the density of
their spatial arrangement. This makes them distinguishable from random
distributions and underlines the existence of a mutual relation. Despite the
layers pooll, pool2 and fc8 seem to provide the most promising feature ex-
tractions, results of the other layers will still get taken into consideration for
the following experiments.

5.1.2 Direct Relation between Fixations & Target

The previous section revealed, that CNN encodings of search target fixations
provide certain spatial similarities to each other which can be measured by
the cosine distance. This section analyzes dependencies between extracted
features around single fixations and at the corresponding target object.
The comparison of human and randomly generated fixations discloses the
actual gain of information by the CNN feature encodings. Assuming that
target similar features attracted the participant’s gaze during search, faked
fixations should provide generally higher distances to the target encodings
than recorded ones.

Experiment

Visual features at the target object get extracted, by computing @y n(t7),

with t; € I as the disjoint ground truth area of the search image I. For each
(I

image I, the feature similarity between an fixation patch p;

gets computed by:

and its target

dist(®cyn(tr), Doy (py) (5.2)

Considering different layers as feature extractor, (5.2) gets applied to to
all recored search fixations as well as to randomly generated fixations on
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Figure 5.4: Histogram visualizations of distances between single fixation
encodings and the encoding of their corresponding targets for the VIU and
the Amazon book cover dataset. Solid lines show the data resulting from
human fixations and dashed lines represent randomly generated fixations.

each search image. The squared fixation patches have fixed sizes of 45px for
VIU images and 80px for Amazon book cover collages.

Results

Dependent on the extraction layer, different shaped normal distributions of
fixation-target distances result as stated in figure The distance distri-
butions of human and randomly generated fixations are almost not distin-
guishable, regardless of the dataset and network layer. For VIU images as
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well as for the book cover collages, layer fc8 provides generally the lowest
target distances for captured and faked fixations.

Interpretation

The various distance distributions with different mean and variance values,
dependent on the feature extractor, result from the different layer-specific
output dimensionalities. Among all considered layers, fc8 extracts features
with the lowest amount of components (1000) and therefore provides a higher
probability of lower distances between encodings.

The almost identical distance distributions of human fixations and the not
target-related, generated fixations indicate that CNN encodings, regardless
on the considered layer, do not represent target similar features from search
fixations well. Consequently, the spatial similarity consideration of a single
fixation is not sufficient to infer useful information about the search target.

5.1.3 Temporal Relation between Fixations & Target

Besides considering visual features, search fixations can be further catego-
rized depending on their appearance time in the search sequence. To get an
overview of the image, more general and less target related locations might
get fixated in the beginning of the search, which could even be bottom-
up driven. Assuming that the gaze behavior adapts over time, the feature
similarity between fixations and the target would increase with the search
progress.

Section showed, that the equally consideration of single fixations does
not lead to useful fixation feature representations. To analyze the timing
impact in visual search sequences, this section computes the average fixa-
tion target distances with respect to the search stage in which fixations got
recorded.

Experiment

For each fixation, the index of occurrence o € IN gets determined and
mapped in a reversed order. For the last fixation, before the user found
the target object, it holds o = 1. Dependent on the sequence length, fix-
ations captured at the beginning of the search provide higher occurrence
indices. This notation allows to consider different sized fixation paths.

The target feature similarity gets computed by the distance[5.2] with squared
patches (VIU: 45px, Amazon Book Covers: 80px) of each single fixation like
in section Afterwards, the measured distances of fixations with the
same index o get averaged.
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Figure 5.5: Distances of fixation encodings to their target dependent on the
moment of appearance during the search for the VIU and the Amazon book
cover dataset.

Results

Similar to different feature extraction layers deliver generally different
measuring value ranges but with similar behavioral patterns. The distance
progress for fixations of both datasets get summarized in figure
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For the VIU dataset, target feature cosine distances continuously decrease
for a about 1% over the fixations of the search sequence. The gaze data of
the Amazon book cover does not show any remarkable development of the
distances over the search time but generally provides more fluctuations.

Interpretation

The presented results show that there is only a very light decrease in distance
the closer a fixation was recorded to the moment before finding the target
object. Nevertheless, this development of maximally 1% is very slight. It
seems, that the type of gaze attracting features does not change over the
search sequence and the top-down processing remains almost constant from
the beginning. Therefore, CNN encodings of fixations captured in different
stages of the search can be weighted with equal importance.

Fluctuations of the distance measures for the Amazon Book Cover dataset,
can be explained by the variety of search fixation sequence lengths.

5.2 Spatial Inference

The previous experiments showed that CNN features of single fixations do
not provide spatial relations to features around the target. The existence of a
certain spatial relation between multiple fixation encodings got indicated in
section [5.1.1] Concluding from the timing considerations in section all
fixation encodings of a search sequence provide a similar relevance regarding
the target relation. To respect all visual features fixated during a search
sequence, this section introduces three aggregation methods that encode
entire search sequences to single representations in IF' using CNN features.
After analyzing the distance relations between feature aggregations and the
search target, the sequence encodings get used for two different spatial target
inference approaches.

5.2.1 Fixation Aggregation Methods

In general visual search, after fixating a certain amount of gaze attract-
ing spots in the search image, the participant finds the target object. The
features around a single fixation which get extracted with the function
Ponyny T — IF are not sufficient to infer a similarity relation to target
features in the vector space.

The idea of feature aggregation is to combine multiple fixation encodings
with a function ®, : 1" — IF in order to respect all fixated features of
a search sequence. The output space IF of @, and ® are equivalent which
allows to analyze spatial relations between feature aggregations of fixation
sequences and encodings of the search targets.
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Figure 5.6: The three different aggregation methods visualized in a simpli-
fied feature space. (a) Representation Mean: The mean cluster center of the
fixation patch encodings defines the aggregation (= green star). (b) Image
Mean: First in image space the average of all fixation patches gets computed.
Afterwards, its representation in feature space defines the aggregation. (c)
An adapted version of Borji’s pattern voting counts fixation encodings
around target alternatives. The candidate with the highest voting, repre-
sents the aggregation.

In the following, the aggregation methods 'representation mean", "image
mean"' and "adapted pattern voting" which process CNN encodings of vi-
sual input data with different strategies, get introduced. Further, specifying
a benchmark method "mean RGB histogram"' which renounces the use of
CNN encodings, allows to investigate benefits of CNN feature aggregations
against classical approaches. All methods are based on extracting features
from fixation patches as described in chapter

Representation Mean

For each fixation patch g; € I resulting from a visual search trial, CNN
features get extracted and simply averaged component-wise to a single en-
coding:

1 n
P, (9150 9n) = n Z(I)CNN(QZ‘) (5.3)
i=1

Spatially, the resulting feature aggregation vector is located in the cen-
ter of the cluster consisting of the fixation feature encodings as visualized in
figure (a). Due to the mean computation, visual features that attracted
the gaze more often have a higher impact on the aggregation. Fixation se-
quences with many differing features might lead to blurred and distorted
representations that do not relate to the image space any more.
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Image Mean

First, the mean RGB values for each pixel of all fixation patches get com-
puted in image space. Extracting the visual features of the resulting patch
with @ delivers the image mean feature aggregation.

~ 1 &
(I)n(glu ey gn) = (I)C'NN(E ’ Zgz)
i=1
The averaging step in image space combines visual features differently.
In contrast to the representation mean aggregation, the locality of the vector
resulting from the image mean method is not known (see figure b)

Adapted Pattern Voting

As already mentioned in chapter [2| Borji et al. presented a voting based
algorithm for target inference on simple image patterns. Adapting this ap-
proach to visual features in IF' does not provide a direct aggregation represen-
tation, but rather a discrete similarity measure between fixation sequences
and single elements from a limited set of alternatives C' C 1II.

With &y, feature encodings of each fixation patch g; and of the prelimi-
nary defined target alternatives ¢, € C get computed first. For each fixation,
the target candidates whose encoding have a distance to the fixation encod-
ing lower than a predefined threshold ¢, receive a +1-vote. After distributing
votes for all n fixations of a search sequence, the candidate with the major-
ity of votes ¢* € C intends to contain the highest amount of fixation similar
features among the alternatives. As this candidate can be seen as visual
representation of the sequence, the final resulting feature vector is the CNN
encoding of ¢ :

1, ifz<t
ve(x) = (5.4)
0, else
¢ = arg Héin > v (dist(Ponn(9:), Ponnl(cs))) (5.5)
|
E’g(gh s n) = Ponn(ch) (5.6)

Visualized in figure[5.6] this approach counts fixation samples lying inside
the high dimensional balls with radius ¢ around the candidate encodings. The
encoding with the highest count finally represents the resulting value. Due to
the restriction on elements from C, the adapted pattern voting aggregation
provides encodings that are comprehensible in image as well as in feature
space.
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Mean RGB Histogram

In , Borji et al. introduced search target inference on binary patterns
(see chapter [2) as well as for virtual generated scenes. For these, fixation
sequences got vectorized with concatenated red, green and blue color his-
tograms of pixels in fixation patches. In the following, this approach gets
considered as benchmark aggregation method not using CNN features.
Similar to the representation mean aggregation, fixation patch vectors sim-
ply get averaged but instead of using CNN encodings from ®opp the 3 X
256 = 768- dimensional RGB color histograms of the fixation patches get
used as feature representations:

1 n
q)n(gh 7971) = E ’ Z (I)hist(gi)
i=1

5.2.2 Aggregation Target Relation

With distance measurements between fixation- and target representations,
section[5.1.2]indicated that CNN feature encodings of single fixations do not
reveal any significant benefit.

In this section, this consideration gets repeated by analyzing the distances
between aggregation encodings of search fixation sequences and the feature
encoding of the target. Assuming that fixation aggregations encode target
related features of the whole search sequence, the measured distance dis-
tributions of human fixations should be distinguishable from distributions
resulting from random generated data.

Experiment

Initially, squared fixation patches around each fixation g; get cropped out
with a fixed size (VIU: 45px, Amazon Book Covers: 80px). Afterwards,
the distances between the feature aggregation of each search sequence S =
91, -5 gp, and the simple CNN encoding of the corresponding target tg € I
get computed:

dZ’St(éCNN(tS)a(I)n(S) (57)

With different feature extraction layers for the introduced aggregation

methods and for the target encoding process, (5.7) gets applied to to all
recorded search sequences and further to randomly generated fixations.
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Figure 5.7: Distances of fixation aggregations to the respective target en-
coding for the VIU and the Amazon book cover dataset using layer fc8 as
feature extractor.

Results

Generally, the differences between the distance distributions of human fix-
ations and randomly generated fixations are very small, regardless of the
extraction layer and the aggregation method. The distributions themselves
differ in mean and variance, depending on layer and aggregation methods
for both datasets similar to section Representative for all applied lay-
ers, figure displays the average distances between aggregations and their
target encodings using layer fc8.
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Figure 5.8: General pipeline of the spatial target inference algorithm. Fea-
ture encodings of all patches p; in the image get compared to the fixation

. . . * . .
sequence aggregation. The most similar patch p” is selected as target predic-
tion.

Interpretation

Against the hypothesis, aggregations of human fixations which should con-
tain target relating characteristics provide the same spatial similarity de-
pendence as generated and unrelated fixations. Consequently, CNN feature
aggregations do not generate fixation sequence representations that resem-
ble the target features in the corresponding vector space.

Either, in all presented aggregation encodings, spatial relevant visual fea-
tures get distorted or, CNN feature encodings of fixation sequences gener-
ally do not provide any direct spatial relation to features around the target
object.

5.2.3 Search Target Inference by Vector Similarity

Section concluded that search fixation aggregations do not relate di-
rectly to target feature encodings when using CNN features. Nevertheless,
this section introduces and analyzes the spatial search target inference ap-
proach which uses the cosine vector distance as feature similarity measure
between aggregation and target encoding. Goal of this approach is to locate
the region in the search image which provides the highest of visual feature
similarity to gaze attracting image spots.

Assuming that the target object is present in a search image I € I, tar-
get specific visual features fyq,4e; € IF are located in the respective ground
truth area. Let IP C II be the set containing all image patches that can
be gained by cropping I. For a search sequence of n fixations, the fixation
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patches g; € IP,0 < ¢ < n are intended to contain features similar to these
of a not fixated patch py4,ge¢ € IP showing the target object.

Considering the cosine distance of two feature encodings as similarity mea-
sure, the the feature aggregation resulting from ®,,(¢y,...,g,) might be lo-
cated closely to the target patch feature encoding ® oy (Prarget) SO that:

(I>n(gl, '--7gn) ~ <I>(ptow“get) = ftarget

As IP is an infinite set containing all possible image croppings of I,
finding an appropriate p;,,qe; Would be infeasible. Therefore, IP gets reduced
to a subset C' C IP containing image patches that result from subdividing
the considered search image into non overlapping squared patches of fixed
size. CNN encodings for all target candidate patches p € C' get computed
and compared to the fixation sequence aggregation of the search trial by
measuring the cosine distance between the encodings. The patch p* € C
whose feature representation ®(p”) is closest to the aggregated sequence
encoding is finally selected as target:

p" = arg min (dist(@n(gl, s On),s <I)(p))) (5.8)
peC
Considering the distance measurements of all candidate patches, yields a
discrete mapping function over the whole search image describing the feature
similarity between each patch and the fixation sequence features.
The presented spatial inference approach, summarized in figure[5.8 does not
require any learning process as it is based on the assumption that fixation-
target feature similarities can be evaluated by distance in vector space.

Interactive Visualization Tool

In the context of this thesis, an interactive visualization tool has been de-
veloped which allows the user to understand the impacts of fixations to the
patch prediction process.

By mouse clicks, gaze fixations and search sequences can be simulated on
any selected search image. Choosing between different neural networks, ex-
traction layers, patch sizes and aggregation methods provides the possibil-
ity to test and compare different prediction approaches. Figure shows
a screenshot of the application. The tool visualizes the image patch encod-
ing similarities to the aggregation encoding of the user generated fixations
by displaying a heatmap (see figure , which gets updated after each
new added fixation. Green colored regions indicate a high similarity to the
fixation sequence aggregation while red does the opposite.
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Figure 5.9: Annotated screenshot of the interaction tool. Users first chose an
image, a CNN, feature extraction layer, aggergation method and set a wished
size for fixation and image patches. Afterwards, by clicking on the search
image, fixations can be simulated while the spatial inference gets conducted
and visualized in real time as similarity heatmap.

Various resulting heatmaps approve the functionality of the low distance
similarity concept as green marked regions often resemble fixated image
spots (see figure . However, considering images from the annotated
datasets, in the most cases, the target patches do not provide high feature
similarities to fixated points which correlates with the findings of section

5.2.2]
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Figure 5.10: Feature similarity heatmaps with corresponding fixation
patches in the second row. Green regions indicate a high feature similar-
ity between the image patches and the aggregation encoding of the fixation
features.

Nevertheless, the visualization tool offers insights into the inference idea
and allows a UI supported and responsive parameter adaption. Further,
practical investigations can be easily conducted without the need of eye
tracking hardware or dataset adaptions. For example tasks like, finding fix-
ations that would lead to a correct prediction or testing the limits of certain
approaches, benefit from the interactive real-time interface.

Spatial Search Target Inference Experiment

For different aggregation methods and extraction layers, the introduced spa-
tial target inference approach gets conducted on the VIU and the Amazon
book cover dataset. The image patch with the encoding providing the low-
est distance to the fixation aggregation, gets selected as prediction. If the
predicted patch overlaps the respective ground truth of the search image,
the result is seen as correct.

To indicate the actual performances, all model accuracies get compared
against two random measures. First, the statistical chance of predicting a
patch in the ground truth has to be respected. When subdividing a search
image into n patches, the statistical probability of selecting a target patch is
t- % with the amount t of patches that overlap the ground truth area. This
chance level depends on the selected patch size as well as on the average size
of the ground truth area in all images.

Further, the prediction performance of randomly generated fixations con-
trasts the benefit of target relating features for the prediction process. Fix-
ations, that should not relate to any target features might still lead to a
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Figure 5.11: Target region prediction accuracies for the VIU dataset consid-
ering different patch sizes and CNN layers. Randomly generated and human
fixations from the eye tracking get compared as well as the average chance
probability.

correct target prediction. However, performances in this cases do not result
from a good prediction model but from an adverse visual feature distribution
in the search image. Therefore this chance measure indicates the required
quality of fixated features. High random fixation performances identify that
many image spots provide target related features while low values indicate
the need of fixating specific locations for a correct inference.

Results

Almost all prediction accuracies resulting from human fixations exceed the
measurements of random generated fixations. Highest accuracies got always
achieved for the largest considered patch size.

Considering the VIU dataset first, prediction results among different network
layer extractors do just differ slightly. For the representation mean approach,
all performances fall below the statistical chance level while the difference
between prediction performance and random probability decreases with in-
creasing patch size. The best prediction accuracy of 23% which is equivalent
the the statistical chance probability got achieved with patch size 80 and
poolb as feature extractor.

In contrast, approaches using image mean aggregation generally lie above
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Figure 5.12: Target region prediction accuracies for the Amazon book cover
dataset considering different patch sizes and CNN layers. Randomly gener-
ated and human fixations from the eye tracking get compared as well as the
average chance probability.

the chance value while the differences between random and human fixations
are compared to the other methods relative small. The model with patch
size of 60px using layer pool2 (accuracy: 24%) as well as the model with the
patch size 80px in combination with fc8 (accuracy: 27%) performed best,
both with a 4% above statistical chance accuracy.

All approaches using the pattern voting aggregation performed 3%-6% lower
than chance. With 21% (chance: 23%) layer fc8 with patch size 80 delivered
the best result for this category. With 29% accuracy (chance: 23%) the
benchmark method using RGB histogram vectorizations and a patch size of
80px achieved the absolute best performance for the VIU dataset. Figure
5.11| summarizes all prediction results for images of the VIU dataset.

Performances of the Amazon Book cover dataset, visualized in figure
generally provide a different appearance compared to these of VIU images.
The average prediction accuracy but also the chance levels are much lower
while differences between layers come up to 7%. Representation mean ap-
proaches provide with deep extraction layers off-chance performances up to
13% (chance: 3%) with layer fc6 and patch size 180px whereas early layers
deliver low performances.

With an average performance of 4%, model variants using image mean aggre-
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gation performed similar slightly above chance level, independent on patch
size and layer choice. The highest accuracy of 6% got achieved by layer fc6
with path size 180px. Pattern voting based models, always achieved above
chance level accuracies with the layers pool5, fc6 and fc8 for all patch sizes of
maximally 5%. The RGB histogram based benchmark generally performed
above statistical chance for human fixations but also for randomly gener-
ated samples. With almost 6% accuracy using a patch size of 180px, faked
fixations even performed 1% better than human fixations.

Interpretation

In general, the prediction approaches using CNN feature aggregations do not
deliver reliable results. The above chance performances of certain methods
approve the concept of distance based inference but are still too vague for
useful application.

Prediction results which do not exceed the statistical chance level indicate
that feature similarity measures rather prevent target inference. In these
cases, target features seem to differ and not resemble gaze attracting fea-
tures.

The different accuracy ranges between the considered datasets result from
the contrary difficulties of the search tasks. However, the target relation of
book cover fixations gets better reflected in the encodings than for examples
of the VIU dataset.

Another remarkable difference between the datasets is the performance vari-
ance considering different patch sizes. Performances of the VIU dataset in-
creased with the respective patch size while for the Amazon book cover
dataset, the patch size had a rather small impact on the prediction accura-
cies. This can be explained with the general structures of the images. Visual
features in natural scenes like in the VIU dataset appear in larger segments
while in image collages, features are restricted to always same sized areas.
Therefore, extending the radius of considered features does not always ben-
efit the prediction.

Summarized, certain approaches of direct spatial inference with CNN fea-
tures predict slightly better than chance, but generally underly or do not
outperform methods that do not use CNN features. Consequently, most
fixation and target feature encodings do not directly correlate. Therefore,
targets cannot get reliably inferred by just considering the locations of the
fixation encodings in the vector space.
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5.2.4 Target Inference by learned distance metric

The previous experiments as well as the heatmap visualizations clarified that
CNN encodings of visual features at search fixations do not directly relate
to target feature encodings. The vector distance might be a good feature
similarity metric but the feature similarity itself does not seem to describe
the relation between fixations and search target well. Therefore, this section
introduces an approach which learns a distance metric between a fixation
sequence and the target. The resulting model returns a probability value
stating the likelihood that a certain patch contains the target of a given
search fixation sequence. With fixation data of one test person for each
dataset, models using different extraction layers, aggregation methods and
patch sizes get trained and evaluated.

Experiment

For model training, the available data gets preprocessed and then adapted
to a labeled training and test set.

A single data sample is set up by the combination of a fixation sequence
aggregation with the feature encoding of a considered image patch. The cor-
responding label states whether the patch contains the search target of the
search sequence or not. To keep dataset sizes and training time feasible, the
global average pooling encoding of CNN features (see chapter |4)) gets used
in the following for all layers except fc6 and fc8.

Therefore, each search image I gets subdivided into n equally sized image
patches p; € IP,0 < i < n like in section Afterwards, the CNN fea-
ture encoding gets computed for each patch with @8@5’}. The m fixation
patches g; € I,0 < j < m resulting from the fixation sequence of a single

user get encoded with an aggregation method 57? AP For each image patch
p; € IP,0 < i < n, a single data sample gets created by concatenating the
patch encoding PS5y (p;) with the fixation aggregation E)SAP(gl, oy Om)-
If p; is overlapping the ground truth area of the search image I, the data
sample receives the label 0, indicating a low distance between fixation fea-
tures and target representation. If p; does not contain the search target, the
sample gets labeled with the maximum distance of 1. The dataset creation
process gets summarized in algorithm

Due to the naturally lower amount of image patches containing the search
target, much more samples would receive the label 1 for not containing it
which would bias the resulting model. To avoid this, the created datasets
gets balanced by discarding randomly sampled data with label 1 until both
labels occur equally often.

The model itself is a support vector machine (short: SVM). This archi-
tecture learns to reconstruct the label values out of the features of the
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Algorithm 5.1: Generating a dataset out of fixation aggregations to learn
a distance measure function.

1: CREATEDATASET(C, F)

2 dataset < &

3 for all image patch € C' do

4 x — DZN (image patch) @ ©,,(F)
5: if target € image patch then
6 y <+ 0

7 else

8 y<+—1

9: end if

10: dataset <+ dataset + (z, 1)

11: return dataset

12: end for

13: end

corresponding data samples. In this case, it predicts for a data sample
x = @8%}@) b Y AP(F) whether the patch p contains the target which
got searched in the fixation sequence F' or not. Therefore, the chance prob-
ability of returning a correct prediction result is 50%.

For both datasets, models get trained and tested with fixations of one user.
The performances of using different patch sizes, feature extraction layers

and aggregation encodings get evaluated by a 10-fold cross validation.

Results

For both datasets, all prediction models performed significantly better than
chance. Considering the results of VIU data samples, the performances of
models using different parameters achieved similar accuracies of 52% - 64%.
The best performance was delivered by layer fc6 using image mean aggre-
gation on a patch size of 45px.

For models trained on the Amazon book cover dataset, the patch size seems
to have a larger impact. The highest accuracy of 73% was achieved by com-
bining layer pool2 with the representation mean aggregation as well as by
using mean RGB-histogram aggregation without using CNN features, both
with 80px patch size. Models using a patch size of 180px generally performed
worse, with maximally 64% accuracy using layer pool5 and representation
mean aggregation.

Figure visualizes all measured prediction accuracies of the trained and
evaluated models.
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Figure 5.13: Prediction accuracies of distance learning models for VIU and
Amazon book cover dataset for different patch sizes, extraction layers and
aggregation methods.

Interpretation

Despite the book cover collages provide larger search images and therefore
a more difficult search task than VIU images, models trained on fixations of
the Amazon book cover dataset generally performed better.

One can say that encodings of fixated features of the Amazon book cover
dataset are more related to the feature representations of their search target
than encodings of fixations from the VIU dataset. This might result from the
higher concentration needed for the visual search in image collages, which
further do not rely on semantic context. Anyway, none of the presented
methods delivered an outstanding performance but all prediction accuracies
remained in a relatively small range. Further, models using CNN encod-
ings did not perform much better than approaches using the RGB based
benchmark. A model which did not use CNN encodings even achieved the
best prediction results for the Amazon book cover dataset. This indicates
that CNN feature encodings and aggregations might deliver target related
representations but these encodings do not provide any real advantage over
simpler color value vectorization methods.
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Summary

For search target inference, visual features at locations fixated by the ob-
serving person relate to visual features of the search target. This chapter
analyzed the idea, that this relation gets reflected in similarities of features
which can be encoded by convolutional neural networks. Therefore a method
got introduced which extracts activations from hidden layers of a trained
CNN as visual feature representation.

Considering the vector space of the CNN feature encodings revealed that
fixations of a visual search provide characteristics which makes them distin-
guishable from features without a search target relation.

Anyway, measuring feature similarity by computing the cosine distance
of CNN encodings did neither reveal any temporal dependency nor any rela-
tion between fixation and target encodings. Also combining fixated features
to an aggregation did not deliver any significant benefits.

Locating the region in the search image which provides the highest similarity
to fixated points got introduced as similarity based target inference. With-
out the need of a learning process, this approach only performed around
chance level.

Using a CNN feature based fixation-to-target metric, which got learned by a
support vector machine delivered clearly above chance performances. Nev-
ertheless, CNN encodings did not provide significant advantages over simple
color based feature extraction methods.

In general, the introduced CNN feature encoding methods in combination
with fixation data seem to provide too vague target revealing information.
Fixation relations can be measured, but applicable models require more ac-
curacy and stability.



Chapter 6

Bag of Neural Network
Features

In the previous chapter, visual features got encoded by hidden CNN activa-
tions to infer search targets images. By the subdivision into image patches,
spatial inference approaches analyzed all regions in the search image as po-
tential targets.

Considering Sattar et al’s distinction of open and closed world setting ,
spatial inference performs an open world inference as none of the models was
specifically trained on a later predicted target. Because CNN features do not
provide outstanding performances on the more challenging open world in-
ference, this chapter analyzes by an adaption of the approach by Sattar
et al. the more restricted closed world target inference. Therefore, the
general Bag of Words vectorization method, used in gets modified to
an approach using CNN features and introduced as Bag of Neural Network
Features.

After explicitly describing the target inference approach by Sattar et al.
which uses an RGB based Bag of Words encoding, the implementation and
evaluation of the adapted technique get considered.

To expand the applicability of the closed world approach to natural scenes,
the use of semantic segmentation gets introduced and deployed in combina-
tion with Bag of Neural Network Features in the last section of this chapter.
Further, the influence of respecting semantic information at search fixations
for target inference gets measured.

53
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6.1 Closed World Inference by Sattar et al.

A general Bag of Words (short: BoW) is a vectorization method which en-
codes data sequences to histogram representations. BoW encodings often
get used for automatic text understanding and image classification.

To setup a BoW, a limited set of vectors (= code words) which represent
remarkable and distinguishable features of the considered data, gets defined.
Depending on the data, the code word generation can be performed by var-
ious methods. To encode a sequence of data, for each sample, the most
similar codeword gets selected and noted in a histogram which counts the
matchings for each codeword. The resulting histogram vector represents the
final encoding for the sequence, which can be used for different purposes like
model training.

In their work, Sattar et al. used a BoW approach to encode fixation
sequences of visual search trials on image collages, inter alia on images of
the Amazon book cover dataset. Training a five-class SVM, fixation sequence
encodings got used to predict the searched target image out of a set of five
alternatives in a closed world setting.

Obviously, when finding the target image, the observer fixated it at least
once. But these fixations in the ground truth do not belong to the search
process anymore. Against this definition of a search fixation stated in figure
in the last fixations of a sequence have always been taken into con-
sideration even if they are located at the search target.

For this work, the approach of Sattar et al. got re-implemented for closed
world inference. In the following experiments, the Bag of Words setup as
well as the closed world target prediction gets described and evaluated with
this re-implementation using the Amazon book cover dataset. To analyze
the impact of the last fixations of a search sequence which are located in the
target region, performances of models that in- and excluded these fixations,
get compared.

Experiment

For the setup of a Bag of Words, which vectorizes search fixation sequences,
the fixations on all search images in the training set get considered sepa-
rately. First, the book cover in the image collage, which got focused (not
necessarily fixated) by the observer gets determined for each single fixation.
This gets achieved by choosing the book cover with the lowest Manhattan
distance from the fixation point. When the fixation is located inside the
bounds of a book cover, this step is trivial. Except the focused cover, all
book covers in the search image get "hidden" by setting their RGB color
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Figure 6.1: (a) Book cover patch selection. Except the selected cover, all
other images get masked out. Totally nine patches get considered while
patches that contain a certain amount of gray, get ignored. (b) Visualized
code word vectors resulting from a k-means clustering (k=60) of fixation data
from the Amazon book cover dataset. RGB colors get mixed from multiple
fixation patches in the same cluster.

values to gray (RGB = 128, 128, 128) as visualized in figure a.

To capture the visual features at the fixated location, the search image gets
cropped to a squared image patch with the fixation point in the center. As
eye tracking data are often slightly inaccurate, the eight directly surrounding
fixations patches get extracted additionally as stated in figure a. Patches
that exceed the borders of the focused book cover, mainly consist of gray
pixels and do not provide important information. These patches get sorted
out, so that one single fixation maximally delivers nine patches.

For all available fixations these patches get collected and represented as
flattened RGB vectors. With a preliminary defined code word amount k, a
k-means clustering gets applied to all fixation patch vectors. The resulting
k cluster centers form the code words (see figure b) of the so called Bag
of Visual Words.

For the actual fixation encoding, search sequences get represented as k sized
histogram vectors. Therefore, each fixation of the considered sequence gets
mapped to the most similar code word of the Bag of Words. The ith compo-
nent of the resulting encoding vector states the amount of similarity map-
pings for the i¢th code word. The idea of this way of encoding is, that for
some targets, participants fixate certain features more often than others.
Counting, how often which feature got fixated, might provide enough infor-
mation for a machine learning model to find out which target candidate was
searched.

Finally, a five class support vector machine gets trained to predict the ID
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of a target cover when getting the fixation sequence encoding as input. As
different test persons might applied different strategies for the visual search,
an individual Bag of Words as well as an individual prediction model get
created for each participant (within-user consideration). The final model
performance gets evaluated with fixation sequences of the test set which get
encoded by the BoW generated in training.

The described process gets conducted on all available fixations as well as
on fixation sequences ignoring the last fixations in the respective ground
truth area.

Results

With this approach, Sattar et al. as well as the re-implementation for this
work achieved an average prediction accuracy over all users of 75% (chance:
20%) using a patch size of 41 pixels and a Bag of Visual Words of size k =
60.

The model trained with the same parameters but restricting on search fix-
ations that do not lie in the ground truth area performed with an average
accuracy of 36%.

Interpretation

The high performance decrease when ignoring the last fixations in the target
area underlines the vast impact of these fixations on the prediction model.
The above chance performance indicates that the color based Bag of visual
Words encodings provide target correlations even when no target features
got considered. Nevertheless, the resulting 36% prediction accuracy is too
low for reliable real-time target inference.

6.2 Bag of Words Adaption using CNN Features

The method by Sattar et al. . described in the previous section encoded
fixation sequences with a Bag of Visual Words approach which is based
on the RGB data of fixation patches from the search image. As feature
encodings introduced in chapter [4| might have the possibility to consider
visual features which are not describable with simple RGB vectors, this
section introduces the alternative approach, called Bag of Neural Network
Features. The idea is to measure the prediction performance of the same
target inference concept like in section but replacing the consideration
of RGB data from patches with the corresponding CNN feature extraction

Ponn-
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Experiment

Leaving the patch extraction and filtering process from Sattar et al’s ap-
proach untouched, for each fixation patch the encoding @~y gets computed
and used for the k-means clustering to generate k=60 code word vectors.
For each fixation sequence, the code word histogram gets created with the
similarity mapping of the respective CNN encodings of the fixation patches
to the code words. Like, in the color based approach, the created histograms
get used for training a five class SVM which predicts the target for search
image collages of the Amazon book cover dataset.

For testing, unconsidered samples get encoded with the Bag of Neural Net-
work Features generated in training. Prediction performances get measured
for models with different layer extractors and that got trained on all avail-
able fixations as well as on sequences excluding finding fixations that do not
belong the the search process.

Results

Taking all available fixations into account, layer fc6 as feature extractor
with a Bag of Neural Network Features of size 60, performs best with an
accuracy of 86%. Excluding finding fixations in the ground truth area, leads
to a decrease of performance for all layer extractors. With an accuracy of
44%, layer fc8 performed best with only considering search fixations.
Figure summarizes the results of the models using different layers and
fixation sequences and further compares the performances against the RGB
based approach from section [6.1]

Interpretation

Compared to the performance of the benchmark method by Sattar et al.
which achieved under the same circumstances 10% less accuracy, fc6 fea-
tures allow the SVM a better separation of classes than RGB values.

Like in section also for CNN feature models, the last fixations in the
ground truth provide many information about the target, as discarding
them leads to a performance drop of averagely 50%. With 44% accuracy
of a model inferring the target image without considering target fixations,
CNN features still performed an improvement of 22% against the color based
re-implementation of Sattar et al.

Summarized, one can say that Sattar et al’s closed world target inference
approach generally could be improved by the introduced Bag of Neural Net-
work features method to encode search fixation sequences.
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Figure 6.2: Accuracies of 5 class one-vs-all SVMs trained to predict the
searched book cover by encoding fixation patches with a bag of neural net-
work features. (a) displays the accuracies of a prediction model while all
fixations that have been recorded during the experiment got used. The per-
formances stated in (b) got achieved by models which do not took the last
fixations into account, which are located inside the area of the target book
cover, as these fixations do not belong to the search process anymore.

6.3 Semantic Supported Inference

In the previous section, the introduced Bag of Neural Network Features ap-
proach was used for a closed world search target inference task. The target
candidate restriction to five alternatives allowed the prediction model to ex-
plicitly learn target specific feature correlations which led to a general good
performance. Therefore, it was required that the same target got searched
in multiple trials in order to provide a suitable training set.

For images of the VIU dataset showing natural scenes, this approach is not
applicable as depending on the visible content, the target alternatives would
have to differ for each image. Therefore, it does not make sense to restrict
on certain object classes to train on. Nevertheless, one strong characteristic
of natural scene images is the presence of a semantical organized structure,
a so called context between visible objects as described in the beginning in

figure

In the following, a neural network called SegNet gets used to extract
additional context information from images of the VIU dataset. SegNet was
trained on the SUN RGB-D dataset managing 10000 images of indoor
scenes to detect and classify visible objects in an image. Therefore, input im-
ages get segmented into multiple distinct areas of different semantic classes
(see figure . The single class meanings of the resulting segments are not
relevant for the following consideration unlike the segmentation and their
distinction.

Instead of inferring the exact position of the search target, this approach
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(b)

Figure 6.3: Semantic segmentation with SegNet. After processing the input
image (a) through SegNet, each pixel gets mapped to a certain class (b).
Segments with the same class are likely to provide similar semantic meanings.

aims to predict the segment class in which the target object might be lo-
cated to reduce the search space. This concept allows to apply an adapted
closed world target inference on any kind of natural images. Further, the
semantical class around the search fixations, which might be related to the
target segment class, gets included into the learning process. With this con-
sideration, inter semantic dependencies like for example: "When a user looks
for a car, streets get fixated often while buildings do not" might support the
inference performance. To measure the actual benefit, the performances of
models with and without semantical context consideration at the fixations
get compared.

Experiment

First, each considered search image gets processed through the SegNet net-
work resulting labeled segmentations. Afterwards, fixation patches of 45px
get cropped for each image of the training set in order to set up a Bag of
Neural Network Features of size 10 as introduced in section which gets
further used to encode all fixation sequences.

For the impact analysis of considering semantical context around fixations,
the segment class which is dominant in a fixation patch gets mapped to the
respective fixation in a sequence. Counting which class got fixated how often
during a trial, creates a corresponding a histogram vector.

For the approach which ignores the fixation semantics, a single data sample
consists of the Bag of Neural Network Features encoding. For the semantic
respecting method, the Bag of Neural Network Features encodings get con-
catenated to respective semantic class histogram for each fixation sequence.
In both cases, as prediction label, the class gets selected, which is dominant
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CNN Bag of Words - VIU CNN & Segment Class Bag of Words - VIU

Figure 6.4: Accuracies of 8 class one-vs-all SVMs trained to predict the
class of the segment containing the searched object. (a) shows the model
performance using only a CNN feature bog of words encoding of fixation
patches while (b) additionally considers the segment classes of fixations dur-
ing search.

in the ground truth area.

For natural images it is obvious that several classes appear more often than
others which would lead to an unbalanced dataset. Therefore, only the eight
classes that contain the search target in most images get considered while
images whose target is located in a segment of another class get ignored.

To respect test person specific search behavior, for each participant an in-
dividual SVM gets trained. Using different layer extractors and both, either
considering fixation semantics or not, allows to find the best feature repre-
sentation and states the impact of semantic consideration around fixations.

Results

Figure shows the prediction results of the described experiments. The
prediction performances of models which do not consider the semantical
context at fixated points provide an average accuracy of 15.6%. The best
performance of 20% has been achieved with pool2 as extraction layer.

Considering the semantic class at the fixations, increases the the predic-
tion accuracy for all layer extractors up to 48% using layer pool5.
Predicting the target segment class out of eight alternatives provides a
chance probability of 12.5%.

Interpretation

The low performance results of the approaches without the consideration
of semantical context at fixations show, that none of the CNN feature ex-
traction methods provides significant segment related information. This can
result from the variety of visual features that might be located in segments
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of the same class. Relations of these different domains seem to be too vague.
However, the vast performance increase when respecting the segment classes
at search fixations underlines the importance of semantic relations in target
inference while visual features seem to play a minor role in this considera-
tion.

Summary

In this chapter, the closed world target inference approach introduced by
Sattar et al. got considered and analyzed. The impact of fixations that
appear at the end of a search sequence and that are located in the ground
truth area of a search image got approved. As these fixations do not belong
to the search process, the stated performances in might be misleading.

By adapting the Bag of Words vectorization with CNN feature encodings,
the target inference performance for the Amazon book cover dataset could
generally be improved.

To apply the introduced approach to more variable natural images, a se-
mantic segmentation model got involved to deliver trainable classes for the
closed world inference which reduces the search space dependent on the
search behavior. Further, the consideration of semantic classes at fixated
regions delivered a vast performance boost to the prediction of the semantic
segment in which the target is located.



Chapter 7

Conclusion

Convolutional neural networks generally deliver very precise image classifi-
cation results because they are able to learn extracting relevant information
from images to find existing correlations to considered object classes.

This work presented and evaluated multiple approaches to use extracted
features from convolutional neural networks to perform a gaze based search
target inference on image data. Visual feature encodings from the considered
pre-trained CNN respect a higher amount of information than approaches
from previous work and therefore are worth considering to be applied to the
target inference concept.

By introducing the idea of spatial inference, relations between fixation en-
codings and target representations got analyzed in multiple experiments in
order to find characteristic vector space structures that can be exploited
for target inference. Under the assumption that fixations and search targets
provide feature similarities which can be described by the encoding vec-
tor distance, neither a similarity based inference approach nor the explicit
learning of a similarity measure delivered outperforming target inference
predictions. This concludes that fixation target relations of visual search
tasks underly more complex correlations which can just barley get repre-
sented with feature similarities.

The second consideration in this work described an adaption of the pop-
ular Bag of Words vectorization using CNN features. Applied to the closed
world inference approach by Sattar et al. , the use of the so called Bag
of Neural Network Features increased the inference performance by 20%.
Further, with the involvement of automatic segmentation, a way to con-
duct closed world inference on natural scenes got presented which does not
predict the target object, but reduces the search space to support the finding
process. Moreover, this approach revealed the high importance of respecting

62
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the semantical context of fixated objects in search images.

Semantical dependencies in search tasks provide a high potential for fu-
ture research to improve stability and precision of target inference systems.
An application of this work’s findings could be a usability consideration of
real time search support. Live target predictions in combination with smart
glasses might open various possibilities. Not restricting on search target in-
ference, the achievements and approaches of this thesis can be adapted and
applied to many further fields of supportive and gaze based human computer
interaction.
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