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Abstract

Vision-language models are powerful tools for versatile and interactive applications
given their capability to leverage multimodal data. However, integrating these models in
real-world, safety-critical domains remain challenging due to their limited interpretabil-
ity, and difficulties in ensuring robust performance for unseen scenarios. This thesis
addresses the challenge of improving the interpretability of vision-language foundation
models, particularly in understanding the correlation between image regions and their
associated textual descriptions. The primary aim is to develop a practical methodology
for mapping which specific visual elements directly influence particular text outputs.
This is particularly important for applications such as automated radiology report gen-
eration, where accurately correlating image findings to text can significantly enhance
the clarity and reliability of reports and allow for safety checks in novel cases. Utilizing
techniques from explainable artificial intelligence (XAI), this research aims to (a) identify
visual concepts that significantly influence text generation, (b) systematically extract
human-understandable visual cues and (c) establish a data-driven link between textual
and visual concepts contributing to the final output. Such cross-modal concept-based
explanations can help the user comprehend how vision-language models process and
utilize information across different modalities. To achieve this, we propose a concept-
bottleneck-based approach; which shows promising results on selected datasets despite
not generalizing reliably across all scenarios. In this work, we discuss both the po-
tential and limitations of concept-based interpretability by providing deeper insights
into the model’s decision-making process and the practical challenges of cross-modal
alignment. This work seeks to contribute and motivate future work towards more trans-
parent and interpretable architectures, thereby increasing user trust in using Al-assisted
applications.
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Chapter 1
Introduction

Artificial intelligence (AI) has been continuously proving its potential to transform
healthcare, particularly through the use of recent state-of-the-art models for tasks such
as diagnosis support [73], medical image analysis [58], and clinical report generation.
Among these, use of vision-language models (VLMs) are a key advancement due to
their ability to combine visual and textual modalities, allowing Al-enabled applica-
tions that can investigate medical images and textual findings in human like nature.
This multimodal reasoning capability offers the possibility of more comprehensive and
context-aware Medical Al systems. However, despite their progress on benchmark
datasets, significant challenges remain for safely deploying such model in healthcare
environments. One of the most critical issue among these challenges is the difficulty
in interpreting how such models correlate visual features with corresponding textual
outputs. In the context of such critical and life-dependant decision-making, such as
radiological diagnosis or report generation, transparency in model reasoning is the key
to user trust. Therefore, the higher complexity and lack of interpretability highly limits
the adoption of Al assistance into clinical workflows[72].

Although Explainable Al domain is a well-researched domain providing valuable insights
into model behaviour, the techniques applied to vision-language models in complex,
real-world domains are still not established. Methods such as saliency maps [110] and
attention visualizations offer limited interpretability [2], and struggle when reasoning
across modalities is involved. Moreover, there remains a gap between post-hoc explana-
tions and the need for human-understandable explanation that can support by medical
professionals.

Addressing these limitations requires a deeper investigation into how visual and textual
concepts interact within VLMs and how they can be systematically aligned in a clinically
meaningful way. In this context, the following section articulates the motivation for
this thesis, focusing on the need for structured, concept-based interpretability methods
that can enhance transparency, support clinical validation, and ultimately foster trust in
Al-assisted medical decision-making.



1.1 Motivation

Despite the success of VLMs both in visual-question answering and natural language
understanding, the deployment of these models in safety-critical fields poses a very
high-staked challenge due to their limited interpretability and vulnerability to unseen
scenarios [53, 20]. In clinical practice, where model decisions can significantly impact
diagnosis and treatment outcomes, understanding the reasoning behind Al predictions in
such clinical decision support systems is critical along with safety checks when a model
might make wrong predictions; for ensuring transparency, trust, and accountability[71].

In medical imaging, particularly radiology, explainable artificial intelligence (XAI) ap-
proaches at its early stages only relied on post-hoc techniques such as saliency maps [114,
110]. However, these methods frequently produce coarse, ambiguous, or even mislead-
ing explanations [2], reducing their utility in practical decision-making applications
[53]. Moreover, vision-language models introduce additional complexity by operating
across different modalities, making it even more difficult to explain which specific visual
elements influence their textual counterparts. Without any mappings or understanding
between visual regions and generated reports, medical professionals remain skeptical of
Al-generated results [128], along with regulatory compliance under frameworks such as
GDPR and HIPAA becoming stricter.

Recent efforts in concept-based interpretability offer a meaningful direction of under-
standing the decision-making of such models by projecting latent representations into
semantically meaningful subspaces [137, 91]. However, most existing concept bottleneck
models are designed for unimodal settings and require manual annotation to concept
curation, limiting their scalability to real-world scenarios. Particularly in medical appli-
cations, where data curation and annotations are dependant on expert opinion, there is a
demand for automatic extraction and validation of concepts in a human-understandable
way [20].

This thesis aims to bridge this critical gap by developing a cross-modal, data-driven
methodology that systematically maps image regions and textual descriptions in an
interpretable manner. By leveraging principles of XAl and integrating visual concept
extraction with textual concept alignment, the proposed approach seeks to offer both local
(instance-specific) and global (class-level) interpretability. Such a framework is essential
to allow safety checks, auditing, and build clinician’s trust in Al-assisted decision support
systems. Through transparency and conceptual traceability, this research delved into
explaining vision-language models from opaque black-box systems towards clinically
viable, interpretable, and trustworthy solutions.

1.2 Problem Definition

In currently established research works, there is a lack of specificity in how image
regions contribute to particular elements of the textual descriptors [132]. While attention
mechanisms and saliency maps attempt to offer visual explanations, they often produce
coarse and clinically ambiguous outputs that are insufficient for supporting medical
decision-making [87]. Without understanding the connections between visual findings
and textual descriptions, these models risk propagating errors, generating hallucinated
content, or missing clinically significant features in unseen scenarios.

Therefore, there is a critical need for methodologies that can (i) extract human-interpretable



visual concepts from medical images without relying on extensive manual annotation,
(ii) systematically associate these visual concepts with corresponding textual outputs,
and (iii) provide transparent, faithful explanations of the model’s decision process. Ad-
dressing this problem would not only improve the interpretability of vision-language
systems but also help develop a way towards more trustworthy Al applications in clinical
radiology.

1.3 Research Objectives

The goal of this research is to contribute toward improving the interpretability of vision-
language models in the context of medical imaging, with an emphasis on identifying both
visual and textual descriptors. Tthis thesis is structured around the following objectives:

* To design a systematic approach for extracting semantically meaningful visual
concepts from radiographic images, minimizing reliance on manual annotation.

* To develop methods for associating extracted visual concepts with clinically rele-
vant textual concepts generated by vision-language models, enabling traceability
between input features and model outputs.

¢ To implement a concept-based bottleneck architecture that facilitates interpretable
intermediate representations that encourages consistency between visual concepts
and textual descriptions during training.

* To evaluate the proposed methodology using publicly available medical imag-
ing datasets, assessing both predictive performance and interpretability through
quantitative metrics and qualitative analysis.

These objectives are intended to address the challenges outlined in the problem definition
by providing structured mechanisms for aligning visual and textual reasoning within
multimodal models, with the aim of supporting safer and more transparent clinical
applications.

1.4 Scope and Contribution

This thesis focuses on the interpretability of vision-language models applied to radiology
imaging, with a specific emphasis on understanding and explaining the associations
between visual regions and corresponding textual outputs. The scope is within the
domain of radiology imaging, and the scope is limited to tasks involving chest X-ray
datasets and related clinical concepts.

The contributions of this research are as follows:

* Visual Concept Extraction: A method is proposed to extract visual concepts from
radiographic images, aiming to identify regions that are semantically meaningful
without requiring extensive manual annotations.

¢ Cross-Modal Concept Alignment: Techniques are developed to systematically
associate visual concepts with corresponding textual concepts generated by vision-
language models.



* Concept Bottleneck Layer Integration: A concept bottleneck architecture is incor-
porated into the model pipeline, providing an interpretable intermediate represen-
tation that captures critical information before making predictions.

* Custom Loss Function Formulation: A tailored loss function is designed to encour-
age alignment between visual features and textual outputs during model training,
supporting more coherent and interpretable reasoning.

¢ Evaluation on Public Datasets: The proposed methods are implemented and
evaluated on publicly available datasets, with assessments based on both predictive
performance and the interpretability of generated explanations.

The scope of the study does not extend to explaining or evaluating language generation
itself but focuses on establishing connection between pre-generated concepts. Due to
computational resource limitations, evaluating the work on advanced VLMs is out of
scope.

The remainder of this thesis is structured as follows. Chapter 2 provides a detailed
review of related work, covering vision-language models, explainable Al techniques
and domain-specific approaches in medical Al Chapter 3 presents the necessary tech-
nical background, including an overview of transformers, vision transformers, vision-
language models, and explainability methods relevant to this study. Chapter 4 describes
the methodology developed for visual concept extraction, textual concept generation,
integration of a concept bottleneck layer, and formulation of custom training objectives.
Chapter 5 discusses the experimental setup, including dataset processing, model selec-
tion, evaluation procedures, and analysis of results on classification and visual question
answering tasks. Finally, Chapter 6 concludes the thesis by summarizing the findings,
discussing limitations, and outlining directions for future research.



Chapter 2
Related Work

Vision-Language models are powerful architectures that can learn to perform a variety
of tasks such as image captioning, visual-question-answering and even cross-modal
generation. Such Al models are more contextually aware than classical models. However,
the more complex a model gets, the less interpretable and explainable it becomes, making
it less trustworthy for using in critical domains. Therefore, introducing interpretability
can help to improve human interaction with these complex models. In this report, after a
brief overview of the architecture of Vision-language models, how these models or their
individual components can be made human-understandable is explored. The literature
work is divided into two sub-sections:

¢ Explainable Al approaches: primarily post-hoc methods are explored that do not
require target model training and focus on explaining how the model generated a
particular decision [9].

¢ Inherently Interpretable Al approaches: methods that require training to make the
model systematically conclude interpretable decisions are explored [9].

2.1 Vision-Language Models

Vision-Language models combine both the strength of Vision Models and Large Lan-
guage models to process visual and textual data within the same pipeline. The transform-
ers [123] architecture was first introduced for Language related tasks where sequence-
to-sequence modelling is essential to maintain long-term coherence [49] within a piece
of text. Self-attention and multi-headed attention [31] mechanisms were introduced to
capture the relationship within and between words. The same theory later was adapted
for images in Vision-transformers [42], where each image is divided into patches that
are treated like words in a sequence. This allows vision-transformers to capture the
relationship within image patches to get a global embedding of the whole image, as
opposed to the limited global understanding of Convolutional Neural Networks (CNNs)
[115].
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Figure 2.1: Primary components in Vision-language models: Decoder-only Transformer
(a) architecture is used for language understanding and Vision Transformers (b) for
image understanding.

Contrastive Language-Image Pre-training (CLIP) [98] model was created by combining
these two architectures. CLIP is a multimodal neural network that can capture the
relationship between its individual unimodal embedding spaces by aligning them in a
shared embedding space. Many models and approaches were later introduced to take
this one step further by incorporating cross-modal attention [23] mechanism. Whereas
CLIP uses contrastive learning to align embeddings, cross-modal attention method is
applied to learn multimodal embeddings by jointly processing both modalities within
attention layers. This mechanism allows the model to capture fine-grained interaction
between images and texts and has been widely researched [76, 6, 75, 93, 1, 28]. Due
to Vision-Language models” broad applicability, various learning paradigms such as
instruction tuning, masked language modelling, image-text matching, masked region
modelling, generative training and others were introduced to make these models more
efficient and adaptive [84, 25,117, 101].
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Figure 2.2: Contrastive Language Image Pre-training Architecture [98] that uses a con-
trastive learning objective to align image and text embeddings.




Vision-Language Foundation models, in this context are comprised of vision-language
models that uses pre-training paradigm [127, 135, 79, 80, 33] and being trained on very
large datasets, can perform a wide range of multimodal tasks. Domain-specific models
already exist for healthcare, automotive, finance, 3D image understanding and even
geospatial domains [12, 138, 15, 27, 116, 129, 54]. LVM-med [89] is a medical foundation
model that is trained on various modalities of data such as MRI, X-rays, CT-scans and
improves performance for medical-specific tasks. Needless to say, these models are
black-box and non-interpretable, preventing their wide-spread trust-based deployment
in real world.

2.2 Explainable Al techniques

Explainable Al is a branch of Al that seeks to explain Al models in a systematic way
to establish user trust and perform sanity checks [9]. Based on training stages, we can
divide the approaches in two: explain the model behaviour after training and train the
model to behave in desired rules of interpretation. Before we dive deeper, it is important
to understand the societal impact of such approaches in figure 2.3. Social Scientists argue
that explanations should be relevant in context and should be understandable by non-
technical users (that is probabilities probably do not matter) [88]. Some popular methods
like Saliency maps are even found not reliable or generating random explanations [4, 121].
Therefore, while exploring such methods, it is important for a data scientist to be aware
of the purpose and use of methods.

Opaque Models Transparent Models ey

‘Ensemble Method
Support Vector Machine
Multi-layer Neural Net
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Convalution Neural Net
Recurrent Neural Net, etc.
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Figure 2.3: General high-level ontology of Explainable Al approaches. While transparent
models exists which are easily interpretable, most models are black-box and categorized
as opaque. To make these methods explainable, model-specific or various model-agnostic
approaches are applied [9].

4
Explanation by
Simplification

Within the context and scope of this work, we deal with following concepts of Explainable
AI (XAI):



¢ Explainability: An interface between humans and Al systems that make the model
accurate and comprehensible to human understanding [47].

¢ Interpretability: The model’s capacity to to provide interpretable decisions that are
easily understandable by humans. [47].

* Model-agnostic: XAl approach that can be applied to any model to explain its
outputs given its inputs, as opposed to model-specific approaches that leverage
the knowledge of the model architecture and parameters [39, 103].

¢ Explanation by Feature: XAl approaches that rely on input’s features or attributes
to explain the decision-making process of the model [85, 11]

¢ Interpretation by Concept: XAI approaches that connect the decision-making
process or internal workings of AI models to high-level concepts that are under-
standable by humans [63, 32]

2.2.1 Explanation by Feature

Feature Relevance techniques rank the features to explain the model’s decision by convey-
ing which feature contributed to the final output. Saliency[114] maps and gradient-based
methods were formulated to visualize such features; while these methods provide
somewhat explanation on what part of image the model is focusing on, reliant on back-
propagation they often fail to encapsulate sufficient information on data distribution
[57]. EMILE-UI [59] employs feature removal techniques while incorporating interactive
explanations for improved human understanding. Shapely values [85], originated from
game theory, tries to find most explanatory features by distributing importance to each
feature and calculating weighted contribution of every possible combination of features
on the model’s output. While it is model agnostic, applying it on non-additive model
may not provide useful explanations or may not even be efficient. Layer-wise Relevance
Propagation (LRP) [11] on the other hand calculates a relevance score starting from the
final output layer and backpropagates it through each layer of a network until it reaches
the input layer. This was particularly developed for Deep Neural Networks, to explain
how relevance flows through the entire network, providing local explanations. However,
relevance flow provides limited interpretability and the model-specificity of LRP can
make it unusable on complex architectures. Over the years, LRP has been developed for
Deep Learning models [112, 13, 7, 102] showing its capacity in providing meaningful
explanations. These works provide a pathway to explain specific components of vision-
language models, such as generating attention-aware explanations for transformers
[3] using LRP formulation or using shapely values to explain CLIP model’s decision
behaviour [118].

2.2.2 Interpretation by Concept

Concept Activation Vectors [63] were introduced to quantify the degree to which a
concept influences a model’s prediction, making the model interpretable. These concept-
based explanations do not focus on granular data but extracting abstract and complete
features across the entire dataset (i.e. higher level concepts). In this work, a concept set
was pre-defined to support human understandability and flexibility. Methods exist to
reduce the amount of manual intervention and risk of bias to create such concept sets
[45] and even incorporate game-based approaches to rank the most meaningful concepts
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[136]. Concept Relevance Propagation [2] further extended the idea by combining LRP
to provide both local (concept relevance heatmaps) and global (concept relevance score)
explanation for concepts, as seen in figure 2.4
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Figure 2.4: Concept Relevance Propagation proposed the idea of conditional backpropa-
gation linked to a specific concept or latent representations of multiple concepts within
or across layers [2].

Even though these can help explain and even validate model decisions using additional
prototypical concepts [43], they still inherit the limitations LRP. Furthermore, how to
choose the best set of concepts are still unknown to these methods and often comes
pre-defined, hand-crafted or with the assumption of a mixture-of-Gaussian (MoG) dis-
tribution of concepts [43]. A concept discovery approach [124] attempts to remove the
constraints of earlier method by creating multidimensional concept subspaces, how-
ever the algorithm is generic and may not be transferable to Large Language Model
architectures in practice.

2.3 Inherently Interpretable Al

Linear regression, logistic regression and decision trees are known to be interpretable
models [65] as humans can easily understand the underlying cause for their decisions.
An early approach for making any given model interpretable is Local Interpretable
Model-Agnostic Explanations (LIME) [104]. However, it uses perturbation methods with
random sampling to generate explanations, which may provide inconsistent explanations.
Furthermore, it only approximates feature contribution locally and is sensitive to artifacts.
Although Anchors [105] try to mitigate some limitations of LIME by improving precision
and addressing the issue of inconsistency, the limited coverage of this method and
inability to generate complex rules in presence of high-dimensional features, make
it unusable for complex models. However, LIME has been a cornerstone to develop
improved locally interpretable methods such as ALIME [113], SLIME [130], GLIME
[120] and DSEG-LIME [68] which can be applied directly to Vision-transformers to find
meaningful visual concepts. Explain-Any-Concept [118], as seen in figure 2.5b, also
introduces segmentation techniques [67] to create visual concepts and train a surrogate
model with shared fully-connected layers that is supposed to overcome the limitations of
Linear LIME models, however this may lead to unrelated concept generation irrespective
of task intended.
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Figure 2.5: Recently developed methods that use segmentation techniques to support
and improve performance of existing methods [68, 118].

2.3.1 Concept Bottleneck Models

Concept Bottleneck Models (CBMs) are designed to be inherently interpretable as they
focus on finding a set of concepts that are human-understandable and then use these
concepts to draw final decisions. It is a simple idea to introduce an intermediate layer
that learns these concepts and adjusts the model’s decision boundaries based on these
concepts [69]. There have been many approaches to enhance such model’s interpretability
in different scenarios. Policy-based interactivity [22] even allows concept set selection for
particular labels to maximize the final prediction decision. Visual concept filtering uses
concept activation scores [66] to measure whether the visual cues in predicted concepts
are relevant or not before learning to predict final outcomes. Probabilistic CBMs [64] ad-
ditionally adds an uncertainty score using probabilistic concept embeddings to increase
user trust and reduce ambiguity. Additional unsupervised concepts can also be included
to improve learning of the predicted concepts [109]. Hierarchies within concepts were
also introduced to capture understandable concepts on two-levels of granularity. Use
of data-driven coarse-to-fine selection methods and Bayesian sparsity can make these
sort of framework highly interpretable [95]. CBMs has been since applied for various
models within the context of image/text classification, object detection, semi-supervised
tasks and error monitoring in semi-supervised and even self-supervised concept learning
settings [62, 51, 107]. However, the non-visual concept filtering via submodular opti-
mization (as seen in step II of figure 2.6) in domain-specific image classification [132]
might leave out subtle concepts that is important for original classification tasks, hence
affecting model’s performance.
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Figure 2.6: Visual Concept Filtering using activation scores in CBMs [66]. Instead of
manually creating a concept set, an LLM is used to generate concepts per disease. Then
concepts are filtered via submodular optimization (which is a mathematical approach
applied to a set of concepts and acts similar to feature selection techniques) and concepts
with the highest visual activation scores are selected to train the final bottleneck layer.

2.3.2 CBMss for Vision-Language Models

For vision-language models, there’s an emerging trend in generating initial textual
concept sets using LLMs by prompting it for feature relevant concepts for each class,
removing the need for manual concept set creation. Language guided bottlenecks
(LaBo), leverages GPT-3 [17] to find factual concepts to first generate a pool of candidate
concepts which are used to make even CLIP models inherently interpretable [134]. As the
bottleneck layer restricts the model’s internal parameters to only focus on understandable
concepts, it allows the user to observe which concepts guide the final output generation.
This idea is further leveraged to create a completely label-free CBM, shown in figure 2.7,
where a Concept Bottleneck Layer is [91] learned via calculating a concept activation
matrix and optimizing the projections weights to maximize the CLIP’s performance.
CLIP-dissect [92] is used to measure the similarity between activation patterns and target
concepts.
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Figure 2.7: Label-free Concept Bottleneck Models [91] automate the process of text
concept creation using GPT models. A CBL layer is then learned with the objective of
maximizing similarity between the concept activation vector and the concept matrix,
which is the joint representation of projection of image and concept embeddings. This
helps the model focus on the most meaningful concepts by maximizing the alignment
between the activations and the image-derived concepts. The final layer then minimizes
the classification error with the objective to improve accuracy while maintaining inter-
pretability through a sparse representation.

All of these works enforce sparsity in the concept bottleneck layer as it has been proven to
be useful to enhance model’s interpretability. The same technique has also been used in
many other works [94] accompanied by both contrastive and special loss functions such
as Gumbel-softmax distribution based loss [111]. The notion of hierarchical concepts has
also been reiterated in CBMs [16] to accommodate different granularities within the con-
cept space provided in figure 2.8, which however comes at the expense of computational
complexity and still requires broader evaluation across different tasks and datasets.

2.4 Domain-specific Approaches: Medical Al

In the context of application in medical imaging, classic methods like LRP, GRAD-CAM
[110], SHAP, saliency maps with sanity checks for attribution methods are used for
explaining deep learning methods for ECG analysis, heart-based diagnosis, lung disease
classification, X-ray diagnosis and others [125, 40, 108, 133]. Self-explainable Neural
Networks proposed [61] for skin lesion classification is an approach that fine-tunes
CNN’s and saliency map based explanations at the same time without affecting model’s
performance.
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However, methods based on heatmaps do not provide clearly interpretable or distinguish-
able answers as to why the model made a certain decision [87]. Independent approaches
has also been applied to explain medical decisions and support medical professionals.
Xplainer [96] focuses on explaining zero-shot X-ray diagnosis by leveraging CLIP embed-
ddigs for both image and text reports, calculating their cosine similarities and providing
an explanation based on the joint probability distribution of classes. Needless to say, the
assumption of joint probability introduces a bias in this model which is not aligned with
clinical assumptions. Recent work on Clinically-relevant Concept bottlenecks [19] show
the application of CBMs in enhancing interpretability within deep learning models for
lesion detection. Concept extraction for X-rays [100] for binary classification models have
been shown to perform well against traditional XAI methods such as LIME or SHAP;
example shown in figure 2.10. Model distillation techniques have been also applied [46]
to find Post-hoc CBM models that can provide more meaningful explanations for medical
x-ray data without hurting the performance of original black-box models. We found that
these works and their practical implementation are limited to deep learning models [90]
and has not been transferred to Vision-language models due to their complex nature.
We also found research works on design principles that should be incorporated in XAI
based medical decision support systems [18], which has not been implemented in any
practical work so far despite having 77% of the medical practitioners willing to adopt
such guidelines.

2.5 Summary

In general, we see although advanced methods exist to provide useful explanations, XAI
has many dimensions (user-based, task-based) and therefore, is difficult to be transferred
despite models having same architectural components. The human understandability
factor is quite broad and needs to be accurately implemented to ensure usability of such
explanations. Heatmaps, though widely used, are often not sufficiently interpretable for
clinicians to fully trust or understand the model’s decision-making process. There is a
clear need for an understandable mapping between visual and textual correlations within
vision-language models, as how they map multimodal representations to outputs is still
unclear. Therefore, this research work aims to address these limitations by developing
a methodology that automatically maps visual elements to text outputs in a way that
is easily understandable to humans. The goal is to create an automated and easy-to-
employ interpretability method, improving both usability and trust in Al-driven medical



16

diagnostics. To evaluate the approach, we also explore systematic evaluation frameworks
to ensure consistency and trustworthiness. Earlier research works introduced various
metrics to establish and verify the usefulness of explanations [60], while primary method
remains to be Faithfulness. Faithfulness scores are introduced [118, 97] which calculates
the correlation between explanations and the actual decision-making process of the model
being explained. Understandability is another metric, seen in many works that relies on
human evaluations and user feedback. Discriminability Scores are introduced to measure
how well a concept aligns with images of a specific class, contributing to the concept
selection process [66]. There’s a high trade-off between Efficiency and Interpretability
in CBMs as training the model requires higher computational cost. Furthermore, they
often rely on a static initial set of concepts that is costly to generate for large datasets.
Therefore, we also will evaluate the Efficiency [60] of the approach to understand how
much model’s response time is affected due to interpretable layer and if the trade-off is
worth it. In this work, we aim to develop a methodology to -

¢ Automate Visual Concept Creation for Medical X-ray data

¢ Enhance Textual Concept Generation for Medical Reports

¢ Improve Concept Bottleneck Learning for Vision-Language Models (VLMs)
¢ Ensure Global Interpretability for Medical VLMs



Chapter 3
Technical Background

3.1 Transformers

Vaswani et al. [123] introduced the Transformer architecture in their seminal work At-
tention Is All You Need, which revolutionized deep learning by eliminating recurrence in
favor of a self-attention mechanism. The Transformer processes sequences of embeddings
in parallel and learns dependencies by weighing interactions between all token pairs
through multi-head attention. This mechanism enables efficient modeling of long-range
dependencies and facilitates parallel computation, resulting in faster training and scal-
ability to large datasets. Their model outperformed previous methods on translation
tasks such as English-to-German and English-to-French while requiring significantly
less training time. Today, the Transformer serves as the backbone of modern Al systems,
especially large language models.

The Transformer architecture consists of an encoder-decoder structure built upon layers
of multi-head self-attention and position-wise feed-forward networks. The encoder
transforms an input sequence into a set of continuous representations, while the decoder
generates output sequences by attending to both encoder outputs and previous decoder
outputs. A key innovation is the multi-head self-attention mechanism, which computes
scaled dot-product attention in parallel across multiple heads. Each head allows the
model to focus on different positions and semantic subspaces of the input. Stacking
multiple layers of attention and feed-forward modules facilitates deep representations
and efficient sequence modeling. Positional encodings are added to preserve order
information, allowing full sequence-level parallelism during training and inference.

Transformers underpin a wide array of Natural Language Processing (NLP) systems in-
cluding BERT [37], GPT [99], and other large language models [17]. These models achieve
state-of-the-art performance in diverse tasks such as question answering, summarization,
and machine translation. The parallelizable architecture enables scalable training on
massive corpora, which has been instrumental in recent advancements in deep learning.
In summary, the Transformer architecture introduced by Vaswani et al. [123] has become
a foundational paradigm in contemporary Al research and deployment.

17
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3.2 Vision Transformers (ViTs)

In 2021, Dosovitskiy et al. [42] introduced the Vision Transformer (ViT), demonstrating
that pure Transformer architectures can achieve strong performance in image classi-
fication tasks without convolutional neural networks (CNNs). This challenged the
long-standing dominance of CNNs, which build in strong inductive biases like spatial
locality and translation equivariance [70]. In ViT, an image is divided into fixed-size
patches (e.g., 16 x 16 pixels), each flattened and linearly projected into a latent vector.
These patch embeddings are then treated as input tokens to the Transformer encoder.
Self-attention is applied to these token sequences, capturing relationships across the
entire image. ViTs establish that Transformers can be competitive or superior to CNNs,
especially when trained on large-scale datasets due to their data-hungry nature.

The Vision Transformer mirrors the original Transformer encoder design. Each image
patch is linearly embedded, and positional embeddings are added to retain spatial struc-
ture. A learnable [CLS] token is prepended to the sequence, and its final representation
is used for classification. Layers of multi-head self-attention and feed-forward networks
are applied in sequence. Unlike CNNs, ViTs lack built-in inductive biases, making them
more reliant on extensive pre-training. While this allows ViTs to learn from data without
pre-defined heuristics, they may underperform CNNs in low-data regimes. Nevertheless,
ViTs have opened new avenues for fully attention-based modeling in vision.

3.3 Vision-Language Models (VLMs)

Vision-Language Models (VLMs) are designed to learn joint representations of visual
and textual information, enabling a wide range of multimodal tasks such as image cap-
tioning, visual question answering (VQA), and automatic medical report generation.
The ability to reason across modalities reflects the multimodal nature of real-world prob-
lems, particularly in domains like healthcare, where decision-making often requires both
visual (e.g., X-rays, MRIs) and textual (e.g., clinical notes, diagnostic reports) contexts
[48]. By processing inputs from both modalities, VLMs aim to develop more robust and
contextually informed representations that improve task performance. This capability
has opened the door to applications such as zero-shot image classification, multimodal
retrieval, visual-question answering and automated diagnostic assistance [48].

Architectural Design

The underlying architecture of VLMs can be broadly classified based on how and when
cross-modal interactions are performed. The two dominant paradigms are single-stream
and dual-stream architectures [24].

Single- vs. Dual-Stream Architectures

Single-stream models, such as VisualBERT [78] and UNITER [26], perform early fu-
sion by concatenating visual embeddings and text tokens, feeding them into a unified
transformer model. This setup enables the model to learn joint representations across
modalities from the earliest stages of processing. Because the same parameter set is
used for both image and text features, single-stream architectures are typically more
parameter-efficient and computationally lightweight during training and inference.
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In contrast, dual-stream models, including ViLBERT [84] and CLIP [98], adopt a late
fusion strategy. Each modality is encoded independently through separate transformer-
based encoders, and cross-modal interactions are introduced at later stages via attention
mechanisms. This design preserves modality-specific information before integration,
which can enhance performance on tasks that require fine-grained understanding of
each modality. However, dual-stream models are usually more resource-intensive and
complex to train [48].

Encoder vs. Encoder-Decoder Frameworks

In addition to fusion strategies, VLMs can be differentiated by their use of encoder-only
or encoder-decoder architectures [24].

Encoder-only models, such as ALIGN [55], are typically used for retrieval tasks, where
the objective is to map visual and textual inputs into a shared embedding space. These
models excel in efficiency and scalability, making them well-suited for real-time ap-
plications like multimodal search and contrastive learning. However, their utility in
generative scenarios is limited due to the absence of a decoding mechanism.

On the other hand, encoder-decoder models, exemplified by SimVLM [127], are designed
to support free-form text generation from multimodal inputs. The encoder aggregates
features from both modalities into a unified representation, which the decoder then uses
to generate outputs such as captions or long-form narratives. Although encoder-decoder
models offer greater expressive capacity for generation, they also impose increased
computational demands and longer inference times.

Overall, the choice of architecture—whether single-stream or dual-stream, encoder-
only or encoder-decoder—reflects a trade-off between performance, efficiency, and
applicability across different multimodal tasks. These architectural choices continue to
shape the research and development of increasingly capable vision-language models.

Training Paradigms for VLMs

Training VLMs effectively requires strategies that allow the model to learn robust and
generalizable cross-modal representations. Several paradigms have been adopted:

* Transfer Learning: Pre-training on large-scale datasets followed by fine-tuning on
task-specific data is a common approach. Models such as CLIP [98] demonstrate
the effectiveness of learning from noisy but extensive image-text pairs.

® Curriculum Learning: Some medical VLMs (e.g., LLaVa-Med [74]) employ curricu-
lum learning strategies, presenting simpler tasks early in training and gradually
increasing complexity to improve model generalization.

¢ Self-Supervised Learning (SSL): SSL enables models to learn without relying
on large amounts of labeled data, which is particularly valuable in medical con-
texts where annotations are costly. Common pretext tasks include contrastive
learning [122] and masked modeling [37, 131].

¢ Multitask Pretraining: Many modern VLMs combine multiple training objectives
(e.g., image-text matching, masked language modeling) to enrich the learned
representations and improve performance across downstream tasks [77].
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Challenges and Advancements in Medical VLMs

Adapting general-domain Vision-Language Models (VLMs) to clinical applications
presents unique challenges due to the specialized, domain-specific, and sensitive nature
of medical data [48]. Ensuring clinically accurate and trustworthy outputs necessitates
robust interpretability mechanisms and fine-grained visual-textual understanding.

To address these challenges, recent advancements have been made in the development
of medical VLMs. One such advancement is the introduction of LVM-Med, a large-scale
self-supervised vision model tailored for medical imaging. LVM-Med leverages a novel
graph-matching formulation to enhance representation learning across diverse medi-
cal imaging modalities, demonstrating superior performance on various downstream
tasks [89].

Additionally, advancements have been made in biomedical claim verification through
the integration of large language models (LLMs), transparent model explanations, and
user-guided justification. An interactive biomedical claim verification system has been
developed to classify scientific studies as "Support,” "Contradict," or "Not Enough Infor-
mation" regarding specific claims, enhancing the transparency and interpretability of
Al-assisted decision-making in biomedical contexts [81].

Overall, vision-language modeling represents a critical area for advancing multimodal
artificial intelligence, particularly in complex, high-stakes fields such as healthcare.
Continued innovation in model architectures, training strategies, and evaluation methods
is essential to fully realize their potential in supporting clinical decision-making and
improving patient care.

3.4 XAI for Vision-Language Models

Vision-Language Models (VLMs) integrate two distinct data modalities—visual em-
beddings (e.g., from CNNs or Vision Transformers) and text embeddings (e.g., from
transformers or language models)—via shared latent spaces or cross-modal fusion. The
complexity of these architectures poses a challenge for transparency. To address this, Ex-
plainable Artificial Intelligence (XAI) techniques have been adapted to for these pipelines,
including attention-based saliency, attribution methods, and intermediate concept super-
vision. In this work, we focus on concept bottlenecks models (CBM), which are one of
the inherent interpretability paradigms. Below we provide the theoretical foundations of
a CBM:

3.4.1 Concept Bottleneck Models for VLMs

Concept Bottleneck Models (CBMs) introduce an interpretable layer between the rep-
resentation and decision layers by explicitly using human-understandable concepts
before classification [69]. In the standard CBM framework, the model is structured as
a composition of two functions: a concept encoder g : X — R¥, which maps the input
x € X to a concept vector ¢ € R¥, and a downstream classifier f : RX — R¢, which
maps concepts to class probabilities.

Training Objective:

The overall model is defined as:
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The training objective minimizes the sum of two loss terms:

Lcpm = A1 - Acconcept(g(x)a C) + A2 ﬁtask(f(g(x))7 y)

whereLconcept is the loss between predicted concepts g(x) and ground truth concept labels
c € {0,1}%, Ly is the task loss, typically cross-entropy between predicted class logits
and ground truth labels y € {1,...,C} and A1, A2 € R> are scalar weights to balance
the two objectives.

In scenarios without concept annotations, the concept loss is replaced by an unsupervised
or weakly-supervised objective (e.g., alignment-based or sparsity-promoting terms),
forming a label-free CBM [91]. The intermediate concept vector c serves as an interpretable
bottleneck. Each dimension ¢;, corresponds to a semantically meaningful concept (e.g., "a
round face", "large teeth"). By inspecting c and the weights of f, one can trace predictions
to high-level abstractions, enabling both global (model-level) and local (instance-level)
explanations.

To enhance post-hoc transparency, natural language rationales can be generated along-
side predictions [91]. Retrieval-Augmented Generation (RAG) architectures extend
CBMs by introducing an evidence aggregation step. Visual concepts are first mapped
to textual findings, which are passed to a generative module conditioned on external
knowledge sources. Recent works combine CBM outputs with RAG-style decoders to
produce justification chains for medical classifications [5]. This augments structural inter-
pretability with narrative-level explanations, aligning the system’s reasoning with clinical
diagnostic procedures. While attention and attribution methods remain foundational,
they provide only surface-level insights into model focus and saliency. CBMs introduce
architectural interpretability by enforcing concept-level supervision and representation
disentanglement, which is particularly effective in domains with well-defined ontologies.
Integrating CBMs with VLMs enables a unified framework that supports interpretable
intermediate reasoning and multimodal explanation, and hence is chosen for this work.

3.5 Evaluation Metrics

Evaluating the quality of explanations produced by Vision-Language Models (VLMs)
is crucial for ensuring their reliability, especially in high-stakes domains like medical
diagnostics. Unlike traditional performance metrics (e.g., accuracy, Fl-score), explain-
ability metrics assess how well a model’s reasoning aligns with human understanding.
This section outlines key evaluation metrics pertinent to explainable AI (XAI) in VLMs.
Faithfulness measures the extent to which an explanation accurately reflects the model’s
decision-making process. A faithful explanation should correspond directly to the inter-
nal computations of the model. Metrics used to assess faithfulness include:

* Deletion and Insertion Metrics: Evaluate the impact on model output when
important features identified by the explanation are removed or inserted [106].

* Sensitivity Analysis: Measures how sensitive the model’s predictions are to
changes in input features deemed important by the explanation [10].

In this work, we used deletion and insertion based Area Under the Curve (AUC) measure-
ments to address faithfulness. Plausibility is another metric that assesses how convincing
or understandable an explanation is to human users, regardless of its faithfulness. Com-
mon evaluation methods include human judgment studies where participants rate the
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quality of explanations based on clarity and usefulness [41]. Agreement with human
annotations compares model-generated explanations with human-annotated rationales
[38]. Under the scope of this work, we do not conduct any human studies. However, the
visual concepts are understable by any human expert radiologists as they are directly de-
rived from the radiographs. On the other hand, generating textual concepts as described
in section 4.2 is an well-established approach adopted by many research works.

In Concept Bottleneck Models (CBMs), it’s essential to evaluate the quality of the in-
termediate concepts. Therefore concept Completeness is measured to understand how
well the set of concepts captures all the information necessary for the final prediction
[136]. Concept Purity is also assessed to know whether each concept corresponds to a
distinct, interpretable feature without overlap [45]. We use an interpretability heuristic
to determine concept purity instead of adapting to any filtering techniques (see section
5.4 Consistency on the other hand examines whether the model provides similar expla-
nations for similar inputs. We run the models multiple times and consider the mean and
standard deviation to define stability Metrics [8].

In addition to quantitative metrics, human-centered evaluations are vital. User studies
assess how explanations affect user trust, satisfaction, and decision-making whereas task
performance measures whether explanations help users perform tasks more effectively.
Although we acknowledge that in addition to quantitative metrics, human-centered
evaluations are vital, it has not been carried out during the thesis phase.

Challenges and Future Directions

Despite advancements, evaluating explanations in VLMs remains challenging due to lack
of standardized benchmarks where diverse tasks and datasets make it hard to compare
methods. Subjectivity in human evaluations can also vary, affecting the reliability of
plausibility assessments. In this work, we provide qualitative explanations and analysis
that may help clinicians evaluate the plausibility, faithfulness and reliability of proposed
approches.



Chapter 4
Methodology

In this work, we propose a two-phase framework for learning interpretable visual-
language representations using Concept Bottleneck Models (CBMs). The proposed
approach decomposes the end-to-end prediction pipeline into semantically structured
stages that explicitly incorporate human-understandable visual and textual concepts.
The goal is to create a model that not only performs well on medical classification tasks
but also provides concept-level explanations in both modalities.

The methodology comprises two main components, as illustrated in Figure 4.1: (i) Concept
Set Creation and (ii) Learning the Concept Bottleneck Layer. Each phase is designed to enforce
interpretability constraints while retaining predictive performance.
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Figure 4.1: Overview of the proposed visual-language concept bottleneck framework.
Visual concepts are extracted via a trained and interpretable concept generator module.
A concept bottleneck layer, trained with a sparse classifier, maps these concepts to the
final task output. The framework also supports influence analysis to quantify visual and
textual contributions.

Phase I: Concept Set Generation begins with the extraction of high-dimensional vi-
sual embeddings from a pre-trained backbone network applied to input X-rays. A
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concept generation module segments the image into semantically meaningful parts.
Each segmented region is then embedded into a feature space using a visual encoder.
Simultaneously, a textual concept set—representing domain-specific diagnostic terms—is
embedded using a text encoder, creating a shared latent space for cross-modal compari-
son. The concept set is not pre-annotated but is generated and processed automatically
using prompt engineering.

Phase II: Learning the Bottleneck Layer focuses on constructing the concept bottleneck
layer. Visual segments and text concepts are projected into a shared embedding space.
For each image, a Concept Matrix is constructed, where each entry captures the alignment
score between a segmented visual region and a concept. These alignment scores are com-
puted using a similarity function between their respective embeddings. An aggregation
function, such as weighted pooling over visual segments, is applied to obtain a final
concept activation vector for the image. This serves as the input to the bottleneck layer.
The concept bottleneck vector is passed through a sparse fully connected classifier that
maps interpretable concept activations to final diagnostic predictions.

The output of this module supports both quantitative analysis and human-readable
explanations, enabling insight into which visual concepts were most influential for a
given prediction. In the subsequent sections, we describe each component in detail,
including the tailored loss objectives, training procedure, and evaluation metrics.

4.1 Visual Concept Generation

Automatic extraction of human-understandable visual concepts from raw X-ray data
serves as the foundational step in our proposed approach, particularly in frameworks
designed to elevate the interpretability of deep neural networks (DNNs). This section
introduces the concept generation phase in our implementation, which is adopted from
the the Explain Any Concept (EAC) framework [118].

To overcome the limitations of manual annotation and fragile unsupervised clustering,
we utilize the Segment Anything Model (SAM) [67], an instance segmentation framework,
for automated and scalable concept discovery. This integration enables us to construct
concept sets from input images with high fidelity and semantic richness. These regions
are subsequently refined via a filtering pipeline to remove redundancies and artifacts,
yielding a structured and interpretable concept set C' = {c1,¢2,...,cn}

Visual concept generation constitutes the first phase of a two-stage pipeline in our
framework. The stages are as follows:

1. Concept Discovery: SAM segments an input image into multiple object-level
regions, which are proposed as visual concepts.

2. Explanation via Shapley Estimation: These filtered concepts are passed to a
surrogate model trained using the Per-Input Equivalence (PIE) [118] scheme,
where Shapley values [85] are computed to quantify concept importance.
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Figure 4.2: Overview of the proposed Visual concept generation framework.

While effective on natural images, the quality of concept extraction depends heavily on
the domain relevance of the segmentation model. Therefore, for medical imaging tasks,
we used MedSAM [86] which is a Segmentation model trained with a very large-scale
medical image dataset, covering 10 imaging modalities.

We elaborate on the segmentation approach in the following section 4.1.1.

4.1.1 Concept Discovery via Segmentation

To derive semantically meaningful visual concepts from raw images, we employ a
segmentation-based approach rooted in pre-trained foundation models. Let an input
image be denoted as x € R?*W >3, The segmentation model S maps z to a finite set of

binary masks:
S(x) = {m1,ma,...,my}, m; € {0,1}71*W, 4.1)

where each mask m; defines a distinct spatial region in the image that is hypothesized to
correspond to a semantically coherent object or object part.

We instantiate S using either the Segment Anything Model (SAM) [67] or a domain-
specific variant such as MedSAM, depending on the application domain. These models
are applied in zero-shot inference mode without any task-specific fine-tuning.

The resulting collection C(z) = {c1, ..., cn}, where each ¢; = m; © « denotes the masked
image region, is defined as the visual concept set for image x. Importantly, no post-hoc
filtering is applied to this set. All masks {m;} produced by S are retained for subsequent
analysis. This decision ensures maximal fidelity to the segmentation model’s predictions
and avoids introducing inductive bias via handcrafted filtering criteria.

In implementation, all segments are cached to avoid recomputation across multiple ex-
planation runs. The visual concept set C(x) forms the basis for downstream perturbation
and Shapley-based attribution analysis, as detailed in Sections 4.1.2 and 4.1.3. This fully
automated segmentation-based procedure enables scalable and architecture-agnostic
concept generation across diverse visual domains.

4.1.2 Per-Input Equivalence (PIE)

To enable efficient computation of concept-level attributions, we adopted a surrogate
modeling technique termed Per-Input Equivalence (PIE) [118]. Rather than relying on
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the full target model f for evaluating the marginal contribution of each concept sub-
set—which is computationally expensive—we construct a simplified surrogate model f
that is trained to approximate f’s behavior for a specific input image.

Let the concept set for an image = be denoted as C(z) = {c1, ..., cn}. We define a binary
selection vector z € {0,1}"V, where z; = 1 indicates that concept ¢; is preserved in the
input and z; = 0 that it is masked out. For each z, we synthesize a masked image:

N
Ty = Z Zi * Ci, (4.2)
i=1

and compute the feature embedding ¢(z.) € R? via a fixed visual encoder.

We then train a surrogate model f : {0,1}" — R¥ such that:

f(z) = f(z2), (4.3)

where f(x,) is the predicted probability distribution from the original model, and K is
the number of classes. The surrogate f’ is instantiated as a shallow neural network that
learns to map binary vectors z to output logits, using cross-entropy loss over 2500 Monte
Carlo-sampled combinations of concepts.

To further constrain f’ and enhance approximation fidelity, the final fully connected
layer of the target model f is reused (parameter sharing). This allows the surrogate to
preserve the original class decision boundaries while decoupling it from the costly visual
backbone.

Formally, the surrogate model is defined as:

f'(2) =FC(y(2)), (4.4)

where ¢ is a learnable nonlinear transformation and FC is the frozen final linear layer of
f-

Training proceeds by minimizing the KL divergence between the class probability vectors
f(z.) and f’(z) across a dataset of sampled binary vectors:

H:gn ]EzNBernoulli(p) [DKL(f(-Tz) H f/(Z))] . (45)

Once trained, the surrogate f’ is used in place of f to estimate the Shapley value of each
concept efficiently. This substitution reduces computational cost by orders of magnitude
while preserving input-specific behavioural equivalence.

4.1.3 Shapley-Based Attribution

To quantify the influence of each visual concept on the model’s prediction, we adopt
a Monte Carlo approximation of the Shapley value [85], a principled measure from
cooperative game theory. Let C(x) = {c1, ..., cn } be the set of visual concepts derived for
input z, and let f’ be the per-input surrogate model trained as described in Section 4.1.2.
For a given class of interest y, we seek to estimate the marginal contribution of each
concept ¢; to the class probability f/(z),.

Following the definition of the Shapley value, the contribution of concept ¢; is computed
as:

¢i = Esceviey [/ (SU{ei})y — F1(9)y], (4.6)
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where S denotes a randomly sampled subset of the concept set excluding c;. Since the
number of such subsets is exponential in N, we use Monte Carlo sampling to approximate
the expectation.

For each concept ¢;, we independently sample K binary vectors 21 ... 2(5) ¢ {0, 1}V
such that:
z§k) ~ Bernoulli(0.5), for j # i. 4.7)
Two variants of each sample are created:
z(fl) = 20 with zi(k) =1, (4.8)
z(,kz) = 20 with zi(k) =0. 4.9)

The Shapley value for ¢; is then estimated as:
1 X
2 k k
b= 2[££ (410)
k=1

In practice, we set & = 50,000 to ensure convergence of the Monte Carlo estimator. This
sampling procedure is repeated independently for each concept, resulting in a vector of
Shapley values ¢ € RY.

The resulting scores are sorted to identify the most influential concepts. The top-k
concepts are then saved as binary masks for later use. This process enables local in-
terpretability and visual transparency by grounding explanations in identifiable image
regions.

4.2 Textual Concept Extraction via Prompting

Textual concepts are extracted using a structured prompt applied to the OpenAlI GPT [1]
model via APL The prompt is designed to elicit short, radiologically relevant phrases
grounded in visible findings observable in X-ray images. The prompt follows the form:

You are a radiology assistant extracting concise visual concepts
from X-rays for diagnostic purposes. [...] Format the output
strictly as a Python list.

The full prompt can be found in the appendix.

Each diagnostic label /; from a dataset is passed as input to the prompt template. The
LLM was instructed to avoid using non-visual concepts. The response from the language
model is parsed and stored as a Python list of string concepts. These lists are reused
for downstream concept bottleneck supervision and for evaluation of visual-to-text
alignment.

Formally, given a label /;, the LLM produces:
T; = LLM(prompt (L)), T; = [t1,t2,...,txa], 4.11)

where T; is a list of textual concepts describing radiologically relevant visual patterns
associated with [;.
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4.3 Concept Bottleneck Modeling (CBM)

4.3.1 Architecture Overview

Our Concept Bottleneck Model (CBM) is designed to learn a semantically structured
representation of images by projecting high-dimensional vision-language embeddings
into a lower-dimensional bottleneck space composed of disentangled visual and textual
concepts. The architecture adheres to the encoder-bottleneck-decoder paradigm, with
the key novelty lying in the design of the bottleneck supervision and loss composition:

Encoder. Given an input image z € R¥*W >3 a pre-trained CLIP-based vision en-
coder fu;p maps it to a latent feature vector z = faip(z) € R?. These latent vectors are
precomputed and cached prior to CBM training.

Projection Layer. The feature vector z is passed through a projection module Py : R? —
RY, where C is the number of learned concept dimensions. This layer is a learnable fully
connected network optimized via supervised alignment losses.

Concept Bottleneck Supervision. Each projected concept embedding is supervised
using both visual concepts (see Section 4.1) and textual concepts (see Section 4.2). The
bottleneck is structured to encourage alignment between corresponding visual and
textual representations of concepts.

Training Objective. To learn the projection layer, we define a composite loss function
incorporating alignment with textual and visual concepts. These loss components are
introduced in detail in Section 4.3.2, and briefly summarized here:

Liotal = aLyq + )\ﬁagg + Lout, (4.12)

where L) is a local concept alignment loss, L.g; is an aggregated feature similarity
loss, and Ly, is an output similarity loss. Each term is weighted using user-specified
hyperparameters « and A.

The CBM is trained using mini-batch gradient descent over randomly sampled subsets
of concept embeddings. The original image encoder is frozen, and only the projection
layer parameters 6 are updated. Training proceeds for a fixed number of projection steps
using a pre-defined batch size and learning rate. Once trained, the projection layer serves
as input to a sparse final classifier detailed in Section 4.3.2.

4.3.2 Visual-Textual Concept Supervision

The learning phase of the Concept Bottleneck Model (CBM) relies on semantically aligned
supervision from both visual and textual modalities. As illustrated in Fig. 4.1, our
approach uses segmentation-derived visual concept embeddings and prompt-generated
textual concept descriptors to enforce structured learning in the bottleneck layer.
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Visual Concept Embeddings

From each input image X, the Concept Generation Module extracts a set of V visual concept
masks via the segmentation model. Each mask v; € {0,1}7*W is applied to the image to
isolate a region, which is then passed through the vision module of the pretrained VLM
to yield a visual embedding:

Fym(vi; Wyim),  vi € Vx, (4.13)

where Vx is the set of all visual concept masks for X. These embeddings are stacked to
form the visual concept matrix V = Fym(Vx; Wyim).

Textual Concept Embeddings

For each diagnostic label, a list of textual phrases is generated using a structured prompt
applied to an LLM (see Section 4.2). Each phrase ¢; is embedded using the text encoder
of the pretrained VLM:

FLM(Cj; WVLM)a cj € C, (414)

forming the textual concept matrix C' = Fim(C; Wyim).

Concept Bottleneck Layer

The Concept Bottleneck Model (CBM) includes two stages: a projection layer that com-
putes similarity-based concept activations, and a sparse linear classifier that maps these
activations to output labels.

Projection Layer. Let Z € RP denote the global image embedding obtained from a
pretrained vision-language model (VLM). We have already defined V = {v;} ; C RP
as the set of visual concept embeddings and C' = {¢;}7-, C R” represent the textual
concept embeddings.

The projection layer computes pairwise similarities between visual/textual modalities
using inner products:

Pmg = ZCT, (4.15)
Pog =VCT, (4.16)
where P € R™ is the Projection Matrix of full image embeddings and Py € R™*™

represent the image-to-text and segment-to-text similarity matrices, respectively. The
resulting concept activations are defined by flattening and/or aggregating these matrices.

fCBL(Za ]Dimg7 Pseg; Wc) =W, hO(Z7 ]Dimga Pseg)a (4.17)

Sparse Linear Classifier. Given the concept activation vector hy(Z, Pmg, Pseg) = ho(Zc)
, a sparse linear classifier produces the final prediction:

fCBM(ZC; Wg) = WghG(Zc)7 (418)

where W, € REX(mm) i5 the weight matrix mapping concept activations to K output
classes. Following projection layer training, W, is optimized independently using the
SAGA [35] optimizer with elastic-net regularization. The use of ¢; and ¢, penalties
encourages sparse yet stable weights, supporting modular and interpretable decision-
making.



30

Loss Composition

Training is supervised by three complementary loss terms:

(i) Output Similarity Loss (Loy). To encourage the bottleneck projection to resemble
the original CLIP space, the projected vector is compared against the original image
embedding using a cosine similarity cube:

Lout = — cos®(hg(2), 2). 4.19)

(ii) Local Concept Alignment Loss (Li). A similarity matrix is computed between each
visual segment s, and textual concept ¢;, and a softmax weighting is used to compute a
contrastive alignment loss:

v C
Lig = —é Z Zsoftmax(e(si) -e(ey)) - (e(sq) - e(ey)). (4.20)

i=1 j=1

(iii) Aggregated Feature Similarity Loss (L,gg). To encourage the projected embeddings
to be similar to the most representative visual segment, we compute an aggregated
concept vector using max-pooling over P8:

Eagg = - COS3 (AggmaX(Pseg)a he (Z)) . (421)

Final Training Objective
The total training loss is a weighted sum of the above three components:

Liotal = Lout + MaLia + )\aggLagg- (422)

The hyperparameters \jq and A,gg control the influence of concept alignment and feature
similarity during optimization. All image encoders are frozen during training, and only
the bottleneck projection layer Wcpy is updated using stochastic gradient descent over
mini-batches.

In summary, the CBM training pipeline proceeds as follows: (i) visual and textual
concepts are extracted and embedded; (ii) image-level CLIP embeddings are projected
into the concept space via a learnable bottleneck; (iii) this projection is supervised using
a combination of alignment and similarity losses; and (iv) the resulting normalized
concept activations are used to train a sparse linear classifier for final prediction. This
end-to-end supervision enables concept disentanglement while preserving classification
performance.

Understanding Sparsity

To quantify the interpretability of the final classifier, we measure the sparsity of W, by
computing the proportion of non-zero weights:

Inonzero(W,)lo
||Wg ||U

sparsity (W) = (4.23)
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This allows us to monitor how many concepts are actually used by the final model,
allowing for interpretability analysis and concept-level importance attribution. This final
sparse layer completes the concept bottleneck pipeline, allowing the model to make
predictions based on a compact, interpretable set of visual and textual concepts. Unlike
conventional deep networks, the learned weights in W, can be directly examined to
understand which concepts contribute most to the model’s output.

4.4 Design Considerations

A critical design objective of in this framework is to balance interpretability and fidelity
with computational efficiency. One of the strengths of our implementation is the use
of pre-trained SAM models in a purely inference setting. No fine-tuning, retraining, or
domain-specific calibration is required. This design decision aligns with the objective of
creating a scalable and generalizable explainability system that can be readily applied
to new datasets without extensive engineering overhead. The segmentation step is
intentionally kept simple and modular. All detected instance masks are retained in
their raw form without any filtering or merging. This maximizes compatibility with
the subsequent explanation stage and ensures the reproducibility of concept attribution
scores derived later via the Shapley value approximation.

Generating concept-level attributions via exact Shapley value computation over the
original deep neural network f would be highly expensive due to two factors: (i) the
exponential number of concept subsets, and (ii) the high cost of forward passes through
f for each masked input.

To address this, these approach integrates three key efficiency mechanisms:

1. Surrogate Approximation via PIE. As described in Section 4.1.2, we used a per-input
surrogate model f’ trained to approximate f on concept-masked inputs. Because f’
replaces the full forward pass through the visual encoder with a lightweight transfor-
mation of binary vectors, it substantially reduces the runtime of Shapley estimation.
Let Ty and T denote the average evaluation times of f and f’ respectively; then the
computational gain per sample is approximately:

T
_ s 424
T, = (4.24)

n

In empirical runs, T exceeds 2 seconds per input (with visual backbone and classification
head), whereas f’ completes inference in less than 10 milliseconds, resulting in a speedup
of over 200x during MC sampling.

2. Monte Carlo Sampling. Instead of enumerating all 2V concept subsets, we esti-
mate each Shapley value using K = 50,000 random samples per concept. The use of
binary sampling vectors enables efficient batching during inference, leveraging matrix-
multiplication-optimized GPU execution.

3. Result Caching. To further accelerate the workflow and support reproducibility, all
segmentation masks and surrogate models are cached on disk. Let M be the segmenta-
tion cache mapping image paths to concept sets. Once a concept set C(x) is computed
for input z, it is stored in M and reused across all subsequent explanation runs. This
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prevents redundant invocations of the SAM or MedSAM models, whose runtime per
image ranges between 1-3 seconds depending on resolution and hardware.

4. Avoiding Redundant Forward Passes. During the training of the surrogate f/, we
precompute the masked features using the full visual encoder and store them. This
avoids repeated feature extraction for each concept subset, amortizing the cost of the
encoder over the sampled dataset.

Collectively, these optimizations make it feasible to generate concept-level Shapley
explanations for high-resolution images in under one minute per instance. This contrasts
with the naive baseline—which would require several hours per image due to repeated
evaluation of a deep model on thousands of perturbed inputs. Our approach thus
achieves a favorable trade-off between computational efficiency and explanatory fidelity.



Chapter 5
Experiments and Evaluation

5.1 Dataset Description

To evaluate our explainable framework across both general and domain-specific settings,
we use five publicly available datasets that span natural image classification and medical
imaging domains. These datasets are described below:

ImageNet [36]; ImageNet is a large-scale image classification dataset containing over
1.2 million images across 1,000 object categories. It serves as a benchmark for evaluating
high-level vision models and is used here to assess generalizability to complex object-
centered scenes.

COCO[83]: The Microsoft Common Objects in Context (COCO) dataset consists of 330k
images with over 80 object classes, annotated for detection, segmentation, and captioning
tasks. We use the validation set for concept-level attribution on richly annotated scenes.

CheXpert [21]: CheXpert Plus is a medical imaging dataset released by the Stanford
AIMI Center, containing 223,228 unique chest X-ray images; both frontal-view and lateral
view X-rays are labeled with 14 chest pathological conditions. We use the CheXbert
labels to curate a single labeled dataset to evaluate the classification performance of our
approach.

MIMIC-CXR [56]: MIMIC-CXR is derived from the MIMIC-IV clinical database and
includes over 377,110 chest radiographs and corresponding reports. The dataset also
provides 14 chest diseases from real-world hospital imaging data. We used the LongTail-
CXR [50] dataset which provides single labels for each radiograph combining MIMIC-
CXR and ChestX-ray8 [126] datasets, to select single-labelled radiographs.

33
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Table 5.1: Total sample counts for each finding across MIMIC-CXR, CheXpert, and
ChestX-ray8 datasets

Finding MIMIC-CXR CheXpert ChestX-ray8
Total 250,022 191,229 108,948
No finding / Normal 83,271 17,000 84,312
Enlarged cardiomediastinum 7,915 9,132 -
Cardiomegaly 49,249 23,451 1,010
Airspace opacity 56,017 94,328 -
Lung lesion 7,058 6,997 -
Edema 29,560 49,717 -
Consolidation 11,813 13,015 -
Pneumonia 18,434 4,683 1,062
Atelectasis 49,960 58,777 5,780
Pneumothorax 11,674 17,700 2,793
Pleural effusion 59,104 76,963 -
Pleural (other) 2,166 2,506 -
Fracture 5,044 7,436 -
Support devices 74,698 107,269 -
Infiltration - - 10,317
Mass - - 6,046
Nodule - - 1,971

COVID-QU-Ex [29]: COVID-QU-Ex is a curated dataset for COVID-19 diagnosis from
chest X-rays, containing labeled images annotated by clinical experts. The database
contains a total 3487 images of which 423 are COVID-19, 1485 are viral pneumonia, and
1579 are labeled as normal chest X-ray images.

5.2 Experimental Setup

We structure our experimental pipeline into two primary stages: (i) visual and textual
concept generation, and (ii) concept bottleneck model training and evaluation. This
modular setup ensures that concept discovery and interpretability learning are decoupled
and can be independently analyzed. The first stage of the pipeline is responsible for
identifying interpretable visual regions and semantic descriptions associated with each
input sample. This step is completely model-agnostic and dataset-specific.

Visual Concept Generation: For each input image z, we generate a set of M segmenta-
tion masks using SAM or MedSAM. Each mask s; € {0, 1}7*W isolates a distinct region
of the image, representing a candidate visual concept. To efficiently extract embeddings,
we form a batch containing;:

® The full image =

¢ The M masked variants ¢ ® s1,...,2 ® Sys

The resulting embeddings are arranged as:

E= [fclip(x)a faip(x @ 81),..., faip(z © SM)] € RIHMxd (6.1)
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During experimentation phases, we parse this batch by separating the first embedding
(representing the whole image) from the subsequent M segment-level embeddings as
needed:

z = faip(7) o
P8 = { faip(z © 31)}?11 >

Textual Concept Generation. For each diagnostic label in our dataset, we generate a
list of descriptive textual phrases using LLMs with a structured prompt (see Section 4.2).
These phrases are designed to reflect radiologically relevant, observable patterns. Each
phrase is embedded using the frozen CLIP text encoder:

plext — { tFXt(C;)}C (54)
clip \™J j=1 ’

where C is the number of textual concepts associated with the label.

These visual and textual representations are then aligned during concept bottleneck
training, as described in Section 4.3.2.

Concept Bottleneck Model Training

In the second stage, we project full-image embeddings into the concept space and train a
sparse final classifier. This stage uses precomputed features and concepts from the first
stage. We use pre-extracted CLIP image embeddings and train a projection layer to map
these embeddings into a concept space of dimensionality C. The projection is optimized
using the combined loss function defined in Section 4.3.2, including:

* Output similarity loss (Lout),
* Local concept alignment loss (L),

» Aggregated feature similarity loss (L,g).

Training is performed using mini-batch SGD over a fixed number of projection steps,
with all backbone encoders frozen. The output of the projection layer is number of total
visual concepts multiplied with number of total textual concepts. Once the projection
weights are learned, we freeze them and train a sparse linear classifier and the sparsity
level is monitored by computing the ratio of non-zero weights.

5.3 Evaluation of Visual Concept Generation

We evaluate our concept-based explainability framework across five datasets as men-
tioned. The evaluation focuses on visual concept attribution performance using Area
Under the Curve (AUC) as the primary metric, computed across five independent runs
for each dataset. The results are compared against the different baseline when available.
The results in Table 5.2 demonstrate that our method either outperforms or is comparable
to EAC across all tested datasets. On ImageNet and COCO, our framework slightly im-
proves over EAC. On CheXpert , a more domain-specific dataset, we observe a consistent
gain in mean AUC and lower variance indicating stability.
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Table 5.2: Mean AUC (%) and standard deviation (%) for visual concept attribution across
5 runs.

Dataset Model Mean AUC Std. Devw.
ImageNet EAC [118] 54.41 +13.97
& Our approach 58.00 +11.05
EAC [118] 46.68 +16.15
COCo Our approach 47.36 +16.96
EAC [118] 39.94 +7.28
CheXpert Our approach 41.04 +8.94

5.3.1 Impact of Domain-Specific Models

To explore the effect of domain adaptation, we incorporated MedSAM—a medical
instance segmentation model—into our pipeline. Table 5.3 compares the attribution
performance with and without MedSAM on the CheXpert dataset. Using MedSAM,
AUC score improves to 86.62%, highlighting that segmentation precision correlates with
concept attribution effectiveness. Stability of the model across five runs is also highly
increased indicating that domain specific adaptation is needed at this stage to accurately
curate visual concepts.

Table 5.3: Performance impact of MedSAM on CheXpert (5 runs).

Model Mean AUC Std. Dew.
EAC [118] 39.94 +7.28
Our approach (SAM) 41.04 +8.94
MedSAM + Our approach 86.62 £1.02

5.3.2 Performance Across Medical Datasets

In Table 5.4, we report the final attribution AUC across all medical datasets supported
by our framework. Our approach achieves strong performance on both MIMIC and
COVID-QU, with AUCs exceeding 81.59%, demonstrating generalizability across differ-
ent radiological image and disease distributions.

Table 5.4: Faithfulness - AUC scores with standard deviation across medical datasets (5
runs).

Deletion
AUC  Std. Dev.

0.8497  0.0206
0.8369  0.0169
0.8232  0.0115

Dataset Insertion
AUC  Std. Dev.

CheXpert 0.8662  0.0102
MIMIC-CXR 0.8377  0.0082
COVID-QU  0.8159  0.0140

These findings confirm that our framework not only scales to multiple datasets but also
achieves robust concept-level attribution without requiring extensive model re-training
or handcrafted concept filtering.
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5.3.3 Qualitative Interpretability

In addition to quantitative results, we qualitatively assess the interpretability of our visual
concept explanations using SHAP-based overlays. Figure 5.1 and Figure 5.2 show sample
outputs from our concept attribution pipeline on chest X-ray images, each overlaid with
identified visual concepts (segmentation masks) and their respective contributions (SHAP
scores). IN other words, the segments represent automatically discovered concepts whose
importance values are derived via Shapley value approximations.

These overlays offer a human-understandable explanation by highlighting the anatomical
regions (e.g., cardiac silhouette, mediastinum, lung fields) that most influenced the
model’s decision. Higher SHAP scores indicate stronger contributions toward the final
class prediction, providing a granular and spatially localized rationale. For instance, in
the case of Cardiomegaly (Figure 5.1a), the model attributes higher importance to the
cardiac area (0.17), consistent with clinical expectations.

This also demonstrates that our method can distinguish between subtle radiological find-
ings such as Cardiomegaly and Enlarged Cardiomediastinum, as seen in Figure 5.1(top left
and bottom left respectively). This ability to differentiate overlapping thoracic patholo-
gies validates the effectiveness of our concept-based decomposition in understanding
clinical semantics.
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Figure 5.1: Extracted visual concept attributions on frontal chest X-rays. Their SHAP
values overlaid on segmented regions reflect their importance in predicting respective
findings.

However, we also note that the model struggled to extract concepts from Chest X-rays
with lateral view (shown in figure 5.2) and often assigns the dark regions on the side
with higher importance. The segmentation model also struggles to extract semantically
aligned segments from these images, causing the VCG to incorrectly learn importances
in such scenerios.
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Figure 5.2: Visual Concept based interpretability across different viewpoints and findings

The qualitative understanding of our approach confirms that our visualizations align with
the principles of concept-based explainability; as it offers explanations that are faithful,
interpretable, and localized. They reinforce the diagnostic potential of the method,
especially in domains like radiology where spatial reasoning and exact localization is
critical. Overall, this qualitative evidence complements our AUC-based metrics and
supports the adoption of interpretable, concept-guided decision pipelines in clinical Al
systems.
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Figure 5.3: Top 5 concepts for each class across different Chest X-ray Samples from
COVID-QU [29], MIMIC-CXR [56] and CheXpert [21]. In this approach, concept dis-
covery is highly dependant on the segmentation model used, thus concepts may lack
completeness in clinical semantics. The average accuracy across all datasets is 83.42%;
indicating the potential of visually interpretable classification using this approach and
therefore concept discovery can be highly improved by using a more accurate medical
segmentation model.
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5.4 Evaluation of Concept Bottleneck Model (CBM)

To contextualize our method, we compare against prior Concept Bottleneck Model
(CBM) approaches in medical imaging. Table 5.5 summarizes accuracy, supervision
requirements, and concept source across the MIMIC-CXR, CheXpert, and COVID-QU
datasets. Our method demonstrates competitive performance on COVID-QU and MIMIC
while using no manual labels and maintaining sparsity.

Table 5.5: Comparison of concept bottleneck models in medical imaging. Our method
uses no manual labels and achieves competitive accuracy.

Model Dataset Accuracy Manual Sparse
Label Free CBM [91] MIMIC 62.40% X v
Interpretable-CXR [132] MIMIC 63.27% v X
Ours MIMIC 68.35% X v
Label Free CBM [91] COVID-QU  72.23% X v
Interpretable-CXR [132] COVID-QU 78.00% v X
CBM-RAG [5] COVID-QU  81.00% X X
Ours COVID-QU  83.43% X v
Label Free CBM [91] CheXpert 43.60% X v
Ours CheXpert 43.35% X v

While our method underperforms slightly on CheXpert compared to prior CBMs, it
achieves a new state-of-the-art on COVID-QU and shows substantial gains on MIMIC;
without any manual supervision. These results highlight the potential of leveraging large-
scale pretrained vision-language models and automated concept extraction pipelines for
interpretable and scalable medical decision systems.

5.4.1 Evaluation on MIMIC-CXR

To further analyze the effectiveness of different modalities and design choices within our
framework, we perform an ablation study on the MIMIC dataset. Results are reported
in terms of validation accuracy and sparsity. Sparsity here serves as a score for model
interpretability: lower values indicate fewer concepts used for prediction.

Table 5.6: Ablation on modality combinations, similarity cutoff, and sparsity vs. perfor-
mance tradeoffs for MIMIC. All models use CLIP ViT-B/32 as backbone.

Textual Visual Sim Cutoff Train Acc Val Acc ValSim Sparsity (%)

Y Y 0.2 0.6446 0.6835 0.6525 85.71
Y Y 0.35 0.7008 0.6392 0.6601 64.88
Y N 0.35 0.8586 0.7910 0.6717 60.19

This analysis reveals several key insights. First, the higher similarity cutoffs encourage
sparsity when only textual concepts are learnt in the projection layer. However, this is
too restrictive when both textual and visual concepts are to be aligned. Lowering the
cutoff, in other words, allowing slightly less similar textual and visual concepts allows
the model retain concepts that are important for the classification task itself. As seen in
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table 5.6, the model achieved 68.35% accuracy when the similarity cutoff was lowered to
accommodate both textual and visual concepts.

5.4.2 Evaluation on CheXPert

We further investigate the performance of our Concept Bottleneck Model (CBM) across
multiple model architectures and segmentation configurations for CheXpert dataset as it
underperforms. Table 5.7 summarizes the CBM performance on the CheXpert dataset
using different backbones and loss weights.

Table 5.7: CBM results on CheXpert . All models use max-pooling for visual concept
aggregation.

Target Model CLIP Ala  Batch Size Val Acc  Sparsity

CheXAgent ViT-B/16 5 128 0.5800 0.1210
CheXAgent ViT-B/16 5 64 0.6100 0.1297
ViT-XRay ViT-B/16 2 128 0.4900 0.6294
ViT-XRay ViT-B/16 2 64 0.5899 0.1427
CLIP-RN50 CLIP-RN50 1 64 0.6974 0.1431
CLIP-RN50 CLIP-RN50 2 128 0.7560 0.4418

We observe that when target model and embedding models are same, the explanations
are more accurate, for example, CLIP-RN50 reaching 75.6% validation accuracy while
maintaining reasonable sparsity (0.44). CheXAgent[27] models achieve moderate ac-
curacy (57-61%) with notably moderate sparsity (0.12-0.13), suggesting more compact
decision logic. Models using ViT-XRay (CLIP trained on chest X-rays) exhibit the highest
sparsity but lower accuracy, indicating underfitting or overcompression.

We also note that, the removal of visual concepts while retaining only textual supervision
leads to the highest validation accuracy and similarity alignment. This suggests that
textual concept supervision alone can provide sufficient semantic abstraction when
grounded in strong pretrained vision-language encoders like CLIP. Even though visual
concepts help structure the concept space, they may introduce noise or redundancy due
to dark or abstract regions in present in chest X-rays.

5.4.3 Qualitative Interpretability

In this subsection, we analyze how sparsity and concept attribution contribute to inter-
pretability, and present representative case studies to illustrate explanation behaviour.
Our final linear classifier exhibits significant sparsity (upto 85%) across multiple back-
bones. This allows us to isolate which concepts directly influence a model’s output by
inspecting the non-zero weights in W,. Each non-zero entry in W, corresponds to a
specific visual-textual concept, which can be interpreted by:

¢ Identifying the textual concept c; it corresponds to

* Mapping it to the most similar visual concept s; using cosine similarity

This mapping enables clinicians to inspect both spatial features and clinically relevant
concepts that contributed most to the model’s decision.
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Example: COVID Classification In a representative prediction from the COVID-QU
dataset, our model predicted COVID-19 with a confidence of 0.967 The following con-
cepts were most influential in the decision, as shown in Figure 5.4(d) textual concept
contributions:

* Increased interstitial markings — strong positive contribution (+1.71); localized
in interstitial regions indicating pathology.

* Multilobar distribution — also positively weighted (41.41); signals diffuse abnor-
mality across multiple lobes.

¢ Pleural effusion present — supports diagnosis (+1.13); typically associated with
severe respiratory conditions.

¢ Peripheral ground-glass opacities — negatively weighted (—1.17); potentially
contradictory or weakly matched in visual region.

* Hazy opacification, Unremarkable soft tissues and bones, and Air bronchograms
within consolidation — moderate negative contributions; may indicate competing
or less relevant patterns.

These textual concept-level attributions provide global insight into the model’s reasoning
while visual concepts provide localized insights, helping to validate correct predictions,
quickly identify biased predictions and the influence of clinically relevant markers.
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Figure 5.4: Visual and Textual concept attributions on Sample chest X-rays. The SHAP
values overlaid on segmented regions reflect their importance in predicting respective
findings. The Concept scores indicate the weight of the learned sparse layer in CBM
architecture.

Each of these concepts corresponds to an active mask in the input, allowing clinicians
to verify model rationale visually. While interpretability is improved, we also observe
failure cases:

¢ Over-segmentation leads to redundant or irrelevant concepts

* Visual masks sometimes align with dark/gray regions or anatomical structures not
relevant to the diagnostic task

¢ Textual concepts may be overly general (not distinctive enough) and appear spuri-
ously

Such artifacts motivate future improvements in domain-specific filtering and concept
consolidation.
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5.4.4 Global Concept Attribution

To gain insight into the global decision-making patterns learned by the Concept Bottle-
neck Model (CBM), we visualize the weights of the final linear classifier layer as Sankey
diagrams. Each diagram illustrates the relative influence (positive or negative) of selected
visual concepts on a target class, derived directly from the sparsely trained CBM weights.
This complements the local visual concept attributions presented in section 5.3.3 .

Figure 5.5 shows the concept contributions for Cardiomegaly, where influential concepts
include “Ill-defined lung opacity” and “Mass with spiculated margins,” while the ab-
sence of lobulated or calcified lesions negatively contributes to the prediction. Such
interpretability provides assistive clinical rationale behind the model’s outputs.

Concept Contributions to: Cardiomegaly

Lobulated mass inright lung (-0.597)

Il-defined|lung opacity/ (0:407)
Mass with spiculated margins (0:402).

No calcified lesions (:0.397).

Solitary, pulmonary.nodule (0:387) Cardiomegaly.
Calcified nodule (-0:371)

Calcified granuloma (0:341)

No visible cavitation (0:328):

Clear bilateral upper lobes) (0:328)

0 I

Multiple nodules in left lung(-0:325)

Figure 5.5: Learned concept contributions for Cardiomegaly. Positive contributions are
shown in blue, negative in red. Weights are taken from the sparse linear classifier in the
CBM.

We further visualize concept importance for additional classes across the MIMIC-CXR
and COVID-QU datasets. These include Lung Opacity (Figure 5.6), COVID-19 (Figure 5.7),
and Non-COVID vs. Normal (Figure 5.8). The diagrams reveal interpretable structure in
the learned weights—e.g., in the COVID-19 class, concepts like “Solitary circumscribed
nodule” and “Left lung cavitation” drive the prediction, while absence of features (e.g.,
“No visible cavitation”) serve as counter-evidence. These global summaries not only
validate that the learned representations align with radiological reasoning but also
highlight the utility of concept sparsity for transparent model inspection.
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Figure 5.6: Concept contributions to Lung Opacity. CBM captures fine-grained inter-
concept effects including suppression by clear findings.

Concept Contributions to: COVID-19
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Figure 5.7: Learned concept contributions to COVID-19. Findings like “Left lung cavita-
tion” and “Normal mediastinal contour” contribute positively.
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Figure 5.8: Concept-level decision patterns for Non-COVID and Normal classes. The
model learns to suppress abnormal features in the Normal class.

These global visualizations underscore the interpretability advantage of sparse concept
classifiers. They offer a holistic view of how individual concepts drive or counter specific
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predictions, providing transparency beyond local feature attribution.

5.4.5 Visual-Textual Concept Alignment

To demonstrate the semantic grounding of our visual concepts, we compute the cosine
similarity between top-k visual concepts and the set of concepts filtered based on this
alignment during CBM training. Figure 5.9 displays representative examples where each
visual concept (segment) is paired with its top-5 most similar textual descriptions.

Top-k Similar Textual Concepts

Segment 1

Hazy opacification

Homogeneous opacification

Normal mediastinal silhouette

Subpleural sparing

Absence of masses or nodules

0.00 0.05 0.10 015 020 025
Cosine Similarity

(a) Normal case: segment aligned with normality and absence of abnormalities.

Top-k Similar Textual Concepts

Segment 2

Hazy opacification

Normal mediastinal silhouette

[
l Homegeneous opacification

Presence of alveolar consolidation

Absence of masses or nodules

0.05 0.10 0.15 0.20 0.25
Cosine Similarity

(b) COVID-19 case: segment associated with consolidation and opacification.

Segment 1 Top-k Similar Textual Concepts

Hazy opacification
Crazy-paving pattern
s § Absence of lymphadenopathy

Tree-in-bud pattern

Presence of nedules or masses

0.00 0.05 0.10 0.15 0.20 025 0.30
Cosine Similarity

(c) COVID-19 case: segment aligned with “Crazy-paving” and “Tree-in-bud” patterns.

Figure 5.9: Top-5 textual concepts semantically aligned with visual segments using cosine
similarity. These associations confirm the medical interpretability of extracted visual

concepts.

Across multiple cases, we observe high semantic consistency between the segmented



49

regions and their corresponding textual concepts. For instance, segments in COVID-19
cases align with descriptions such as “Hazy opacification,” “Crazy-paving pattern,”
and “Presence of alveolar consolidation,” which are findings relevant to COVID-related
pneumonia. Similarly, for a Normal case (Figure 5.9a), the aligned concepts include
“Normal mediastinal silhouette” and “Absence of masses or nodules,” reinforcing the
effectiveness of visual-textual alignment as a complementary interpretability strategy.
These results demonstrate that the discovered visual concepts are not arbitrary or overfit-
ted, but instead are aligned with clinically meaningful descriptors, thereby enhancing
the transparency and trustworthiness of the concept bottleneck model pipeline.

5.5 Interpretability and Utility of Generated Explanations

Figure 5.10 demonstrates the interpretability benefits of our visual concept-based ex-
planation framework applied to chest radiographs. Each of these showcases how our
approach highlights that the model’s decision making is based on anatomically mean-
ingful segments (using Shapley-based attribution values). This aligns with the aim of
providing clinically understandable, and efficient explainability as emphasized in our
approach.

* Figure 5.10(a) highlights lower and perihilar lung zones contributing to a COVID-
19 diagnosis. The model attributes high importance to these clinically relevant
regions, reflecting proper feature learning of the vision-language model.

* Figure 5.10(b) shows accurate identification of mid-lung opacities for the Lung
Opacity class. The two distinct highlighted zones reflect the model’s ability to
localize pathological features effectively.

* Figure 5.10(c) focuses on the Enlarged Cardiomediastinum class. The model assigns
high attribution scores to the central thoracic area, consistent with an enlarged
cardiac silhouette, suggesting alignment with clinical reasoning.

* Figure 5.10(d) corresponds to Pleural Effusion. The model emphasizes basal lung
regions and costophrenic angles, where effusion typically appears, thereby con-
firming diagnostic relevance.

These visualizations collectively validate the utility of concept-based explanations as
they provide not only to understand model reasoning but also help establish trust in
the model’s decision making is anatomically grounded and semantically meaningful.
Overcoming the limitations of pixel or superpixel-level saliency maps, which do not
clearly identify such segments or assign influence scores in predictions, our approach
enhances interpretability by providing these information and building trust. On the other
hand, these also enable expert clinicians to localize errors and identify model failure in
cases of misclassification or inattentive focus; thereby increasing transparecny.
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Figure 5.10: Visually segmented concepts contribute towards higher interpretability and
quick understanding of model decisions based on important regions. In lateral views,
when model is confused or misidentifies regions, visual importances make it easily
detectable.

Figure 5.11 presents concept-level attribution bar plots for two classification instances—one
positive for COVID-19 and one negative (Non-COVID). For the COVID-19 positive case,
the model heavily weights features such as Pleural effusion present, Multilobar distribu-
tion, and Patchy infiltrates. These are clinically established indicators of COVID-related
pulmonary conditions. On the contrary, bilateral involvement or patchy infiltrates are
concepts related to COVID-19 diagnosis and are assigned as a negative contribution
despite the prediction being accurate; this may indicate that due to presence of such
conditions in NON-COVID cases, the model doesn’t rely on these to distinguish COVID
cases. This alignment with radiological priors increases the interpretability of the model,
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as the decision is grounded in familiar clinical patterns. In the Non-COVID case, the
model attributes strong positive weight to opposite indicators of COVID-specific features,
such as NOT Pleural effusion present, NOT Reticular opacities, and NOT Uniform vascular
markings. These negate pathological findings typically associated with COVID-19, thus
reinforcing the model’s classification decision in other pathological conditions.

By using clinically meaningful concepts (e.g., “Pleural effusion” or “Uniform vascular
markings”), explanations are directly interpretable by radiologists, as opposed to abstract
vector spaces or pixel saliency. The signed contributions easily clarifies whether each
concept supports or opposes a particular diagnosis, offering easily understandable
insight into model behavior. The relative magnitude of concept contributions highlights
which factors were most influential in the final decision, not only bringing trust but
possibly enabling targeted validation, correction or differential diagnosis. In case of
incorrect predictions, concept contributions can be audited to identify over-reliance on
non-discriminative or clinically less meaningful features, enabling diagnosis refinement
or expert reevaluation. Thus, the concept-level framework offers a powerful tool for
bridging machine predictions and expert decision-making, promoting actionable and
trustworthy Al in clinical settings.

Gt:COVID-19 - Pred:COVID-19 - Conf: 0.989 - Logit:3.70 - Bias:0.90 Gt:Non-COVID - Pred:Non-COVID - Conf: 0.980 - Logit:3.11 - Bias:-0.06
Pleural effusion present _ +1.01 NOT Increased interstitial markings _ +1.75
Patchy infiltrates ~0.95 - NOT Pleural effusion present _ +129
Uniform vascular markings _ +0.69 NOT Uniform vascular markings _ +107
Multlobar distribution _ +0.64 NOT Reticular opacites - +095
NOT Bilateral involvement -0.64 - NOT Normal tracheobronchial tree  ~0.92 -
Regularly spaced rib intervals _ +0.62 NOT Increased density in the lung - +0.81

NOT Crazy-paving pattern _ +0.61 NOT Presence of alveolar consolidation -0.65 -

Sum of 53 other features _ +0.81 Sum of 53 other features ~1.13 -

-10 =05 0.0 0.5 10 -15 -10 -05 00 05 10 15 20
Concept contributions Concept contributions

Figure 5.11: Concept contributions for COVID and Non-COVID disease diagnosis is
distinct, aligning with clinically important factors such as pleural effusion being an
indicator of the presence of COVID infection.

5.6 Case Studies and Limitations

Below, we examine two cases: one with ground truth Lung Opacity and another with
Cardiomegaly. Each example includes both a textual concept barplot and an overlay of
important regions on the chest X-ray.



52

5.6.1 Case 1: Lung Opacity
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(a) Concept contributions for Lung Opacity. (b) Visual attribution map overlaid on chest X-
ray.

Figure 5.12: Explanation of the model’s prediction for the Lung Opacity class (Confidence:
0.593).

The prediction for lung opacity (Figure 5.12a) is supported by strong positive contri-
butions from concepts like NOT Clear adjacent lung fields (+0.83) and No calcified lesions
(+0.69). The corresponding overlay in Figure 5.12b highlights multiple small, spatially
dispersed regions across the lungs. However, the overall confidence is moderate (0.593),
and the peak contribution values from individual segments are low (e.g., 0.08, 0.02),
suggesting that no dominant visual region drove the prediction.
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5.6.2 Case 2: Cardiomegaly
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(b) Visual attribution map overlaid on chest X-
ray.

Figure 5.13: Explanation of the model’s prediction for the Cardiomegaly class (Confi-
dence: 0.598).

The cardiomegaly case shows that most of the predictive weight is carried by the ag-
gregate of many small features (+2.4), while individual visual concepts contribute only
moderately (e.g., NOT No calcified lesions: +0.66). Figure 5.13b shows dispersed regions
with very low attribution scores (e.g., 0.04 or 0.03), primarily focused on the cardiac and
upper mediastinal area.

5.6.3 Limitations

Although concept attribution and spatial overlays offer transparency, several limitations
persist:

* Low Contribution Scores: The individual visual concept scores are relatively low

in magnitude (mostly <0.1), making it difficult to confidently attribute a specific
region or feature to the prediction.

Diffuse Attribution Maps: The highlighted regions are widespread and sometimes
non-specific, reducing interpretability in clinical settings where localized pathology
is critical (e.g., nodules, effusions). This is highly dependant on the segmentation
model itself and not a limitation of the approach.

Over-reliance on Composite Features: In the cardiomegaly case, a large proportion
of the logit contribution (+2.4) comes from the sum of over 100 minor features. This
suggests that the model lacks a dominant, easily explainable signal and instead
relies on weak correlations spread across many features.

Multilabel Challenges: These examples hint at the utility of the approach for
multilabel tasks, where overlapping features might support multiple conditions
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(e.g., lung opacity and cardiomegaly co-occurring). However, due to low concept
fidelity and region specificity, the model may struggle to disentangle correlated
classes or provide class-specific attributions.

* Visual Concept Quality: Some concepts (e.g., No calcified lesions, No cavitation) may
not manifest visually in the X-ray or might require clinical correlation, limiting
their standalone utility for image-based models.

* Limited Confidence: Both cases present predictions with confidence around 0.59,
indicating model uncertainty. Explanations derived from such low-confidence
outputs may be inherently unreliable.

view2_lateral. Label: Lung Opacity

(a) Segmentation model fails to extract (b) Model misidentifies dark region as
segments. pleural disease due to imbalanced opac-
ities.

viewl_frontal.png — Label: Enlarged Cardiomediastinum covid_1103.png

(c) Over-Segmented concepts with no  (d) Large overlap of segments indicate
high contribution concept. the need for a more sophisticated con-
cept filtering.

Figure 5.14: Limitations of Visual Segments and failure cases.

These examples illustrate the promise and limtations of this approach. While the model
incorporates many semantically meaningful cues, the lack of dominant signals and the
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diffuse nature of attribution maps suggest the need for more accurate segmentation mod-
els in visual concept extraction and curated textual concepts —especially for multilabel
medical imaging tasks.



Chapter 6
Conclusion

We proposed a fully automated, modular framework for interpretable image classifi-
cation based on concept bottlenecks. Integrating instance segmentation models with
cross-modal embeddings and prompt-generated textual concepts, our system constructs a
semantically grounded, sparse concept layer that facilitates transparent decision-making.
Through surrogate modeling via the PIE architecture, we compute concept-level at-
tributions efficiently while maintaining faithfulness. Empirical results across general
and medical datasets show that our approach yields competitive classification accuracy
while substantially improving interpretability. Our evaluation is mainly focused on the
radiology domain spanning across publicly available datasets: CheXpert , MIMIC-CXR
and COVID-QU. Notably, our method avoids manual annotations or expert-defined con-
cepts, enhancing scalability. In MIMIC-CXR and COVID-QU, our framework maintains
strong accuracy and transparency without relying on expert annotations or handcrafted
ontologies. This allows the approach to be both scalable and generalizable, especially
in medical settings where manual curation and expert intervention is costly or often
infeasible. While concept bottlenecks perform well in structured settings with reliable
labels, performance drops in label-sparse or noisy domains like CheXpert . Fine-grained
segments may increase coverage but risk introducing redundant or noisy concepts and
even confuse the model, while coarser abstractions may omit critical features. This
underscores the need for adaptive segmentation and concept filtering mechanisms tuned
to dataset properties. Despite the strengths of the pipeline, several limitations remain:

* Concept Redundancy: Retaining all segmentation masks without filtering leads to
overlapping, low-utility, or semantically ambiguous concepts.

* Lack of Semantic Labels: Visual concepts are not explicitly always tied to textual
or clinical terms, affecting understandability for end-users.

* Segmentation Dependency: Errors in the initial segmentation cascade through the
concept bottleneck, impacting both interpretability and prediction.

¢ Single-label Surrogates: The surrogate model optimizes for a single predicted
class, which constrains its effectiveness in multi-label or ambiguous scenarios
which is often present in radiological diagnosis.

56
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¢ Concept Drift: Concept activations sometimes align with vague or non-actionable
features (e.g., “diffuse opacity”), limiting their diagnostic utility.

¢ Contradictory Activations: Without inter-concept constraints, conflicting evidence
(e.g., “clear lungs” and “bilateral infiltrates”) may co-occur.

¢ Contradictory Textual and Visual concepts: Model may often confuse segmented
concepts or dark ragion as cavities described in textual concepts, leading to misdi-
agnosis.

Involving humans-in-the-loop, particularly clinical experts at two key stages: textual
concept curation and explanation validation can enhance trustworthiness and perfor-
mance both. Structured feedback could also guide adaptive pruning and correction of
mislabeled or spurious concepts [119].

6.1 Future Work

Building upon our current framework, future research can explore several avenues:

* Semantic Concept Alignment: Incorporating domain-specific knowledge bases to
align learned concepts with established ontologies, enhancing interpretability.

* Dynamic Concept Pruning: Developing algorithms that dynamically prune irrele-
vant, conflicting or redundant concepts during inference to streamline explanations.

* Cross-Domain Generalization: Evaluating the transferability of learned concepts
across different datasets to assess the robustness of the CBM framework.

¢ Interactive Explanation Interfaces: Designing user interfaces that allow end-users
to interact with and query the model’s explanations, facilitating better understand-
ing and trust.

These directions aim to enhance the scalability, adaptability, and user-friendliness of
CBMs via allowing interactivity, promoting their adoption in real-world applications.

6.1.1 Integration with Large Language Models (LLMs)

Future research could explore the synergy between CBMs and LLMs, investigating
how concept-based explanations can enhance the interpretability and controllability of
large-scale language models. Current work can be extended to be predict token based
on the curated concepts through an additional unsupervised learning layer proposed
in Concept Bottleneck Large Language Models (CB-LLMs) [119]. Radiological reports
can be analyzed to validate semantically relevant concepts via adopting cost-effective
strategies [82] to further support the refinement of concepts in 4.2.

6.1.2 Spatially-Aware and Adaptive CBMs

Integrating spatial information into CBMs can enhance their interpretability, especially
in vision tasks. The Spatially-Aware and Label-Free Concept Bottleneck Model (SALE-
CBM) [14] introduces a framework that projects features into interpretable concept maps
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without requiring human labels, producing high-quality spatial explanations. Adaptive
CBM [30] on the other hand, re-examines the CBM framework specifically for medical
image diagnostic tasks. Future work could explore combining spatial awareness with
adaptive mechanisms to further improve the flexibility and interpretability of CBMs
across diverse tasks.

6.1.3 Causal and Hierarchical Concept Modeling

Understanding the causal relationships between concepts and predictions is crucial for
trustworthy Al systems. Causally Reliable Concept Bottleneck Models (C2BMs) [34] aim
to ensure that the concepts used by the model have a causal influence on the output,
rather than merely being correlated. Additionally, incorporating hierarchical structures
into concept modeling can alleviate information leakage issues by introducing label
supervision in concept prediction and constructing hierarchical concept sets. Future
research should delve into integrating causal inference techniques and hierarchical
modeling within CBMs to enhance their robustness and interpretability.

6.1.4 Human-in-the-Loop and Editable CBMs

Incorporating human feedback into CBMs can significantly improve their interpretability
and trustworthiness. Editable Concept Bottleneck Models (ECBMs) [52] support various
levels of data removal, allowing users to interactively edit concepts and observe the
impact on model predictions. This interactive capability facilitates better understanding
and debugging of model behavior. Future work should focus on developing user-friendly
interfaces and methodologies for effective human-in-the-loop interactions with CBMs,
enabling domain experts to guide and refine model explanations.
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