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Abstract

Digital pen features model characteristics of sketches and can be used for various super-
vised machine learning (ML) applications, such as multi-stroke sketch recognition and
behavior characterization. In this thesis, a state-of-the-art set of 165 digital pen features
is defined, categorized, implemented, and made publicly available. The feature set is
evaluated in the use case of analyzing paper-pencil-based neurocognitive assessments
in the medical domain. An interactive cognitive assessment tool is presented that en-
ables physicians to record cognitive assessments using a digital pen. The tool scores the
assessments automatically and in real-time, producing structured reports that include
visual feedback and transparent explanations about the scoring results. As part of the
evaluation it is examined how accurately different feature-based, supervised ML models
can automatically score cognitive tests, with and without semantic content analysis.
Using standard ML techniques the feature set outperforms all previous approaches on
the cognitive tests considered, i.e., the Clock Drawing Test, the Rey-Osterrieth Complex
Figure Test, and the Trail Making Test, by automatically scoring cognitive tests with up
to 87.5% accuracy in a binary classification task.

To show the generalizability of the digital pen features, the feature set is also compared
against the HBF49 ML-based sketch recognition benchmark with the result that by us-
ing more features for training, significantly more accurate classification results can be
achieved. A series of ML-based sketch recognition experiments is conducted, evaluating
ten modern off-the-shelf ML classifiers (i.e., SVMs, Deep Learning, etc.) on a selection of
ten sketch data sets from different domains with varying sizes and complexity. In addi-
tion, an automated ML approach (AutoML) is explored for fine-tuning and optimizing
classification performance on the individual data sets, achieving superior recognition
accuracies.
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Chapter 1
Introduction

A multitude of everyday tasks and processes is conducted using pen and paper. These in-
clude, among others, note-taking, annotating text, diagramming, sketching, blueprinting,
as well as applications in the educational and medical domain. Pen-based writing and
sketching stimulate cognition and problem solving across different domains [70]. They
can be used to express all types of information, including gestures, language, numbers,
symbols, and diagrams. These types of information are easily grasped by humans, but
the semantic context and the information encoded in the drawings cannot be easily
understood out-of-the-box by a machine. Nowadays, commercially available devices,
such as styluses, digital pens and digitizer tablets are capable of recording pen input in
real-time. The resulting data is a continuous stream of timestamped x/y coordinates.
Various, mathematically defined, geometrical, spatial, temporal, pressure and other
features can be extracted directly from the raw input stream. These digital pen features
can then be used as input to train supervised machine learning (ML) algorithms for
different recognition and classification tasks.

Over the past years, several digital pen feature sets were presented in the scientific
literature. Unfortunately, there is a lack of transparently designed, reproducible feature
definitions, benchmark experiments and implementations available. This is why the
first contribution of this thesis is the definition, categorization and implementation of
165 digital pen features based on related work. The presented set includes state-of-the-
art features, and it is the biggest and most comprehensible set of digital pen features
yet. In addition, the mathematical formulas for all features are defined in the appendix
section of this thesis, and their implementation is made publicly available on GitHub.
To further improve the contribution to the scientific community, a software library is
published, which includes a standardized structured sketch data exchange format, as
well as pre-processing, visualization and format conversion functions. The goal is to
provide support for a wide variety of use cases and pen hardware devices, including
digital pens on paper, pen-enabled smartphones and tablets, drawing tablets, and even
virtual reality applications. The common denominator of these sensor devices is that
they provide an output stream of timestamped coordinates, from which the digital pen
features can be calculated. In turn, these features can be used to perform ML-based
handwriting and sketch analysis in pen-enabled intelligent user interfaces.



The second contribution presented in this work covers a real-world use case from the
medical domain. Neurocognitive testing is a noninvasive method for measuring brain
function by evaluating specific cognitive abilities, including memory, fine motor control,
reasoning, and recognition. Despite recent technological advances, the majority of
cognitive assessments used in practice is still conducted using pen and paper with
manual scoring by the physician afterwards. This includes verbal interview-like tests, in
which the physician takes notes of the patient’s answers, as well as tests in which the
patient is asked to write or sketch as part of the assessment task. Cognitive assessments
have been the subject of recent debate because there are limitations when they are
conducted using pen and paper. For example, the collected material is monomodal
(written form) and there is no direct digitalization for further and automatic processing.
In addition, the results can be biased depending on the physician’s level of expertise.
Using a digital pen to record neuropsychological tests allows for the analysis of additional
parameters that cannot be considered otherwise.

Two approaches for the automatic analysis of paper-pencil-based cognitive assessments
are presented here as part of an interactive cognitive assessment tool. The first one is a
traditional approach that uses digital pen features to perform a content analysis of drawn
sketches and scores the test based on the predefined medical scoring scheme, thereby
automating the process that is normally conducted manually by a physician. The next
big step in analyzing digital cognitive assessments is to predict cognitive performance
independently of the test content, by looking only at the writing and sketching behavior
of users, which is explored in the second approach. In this approach the cognitive
test performance is predicted by only considering the digital pen features, which are
applicable independent of the task, without performing further content analysis. The
aim is to support more automatic, more objective and accurate diagnostics of pen sensor
input, which can be used in hospitals and retirement homes to transparently evaluate
cognitive performance (i.e., without explicit testing), to guide medical interventions, and
to adapt cognitive training in a personalized manner.

One of the fundamental tasks in pen-based user interfaces is sketch recognition, which
is concerned with the automatic labeling of sketches with a certain class, e.g., circle,
rectangle, text, airplane, clock etc. A common approach is to train feature-based super-
vised ML models for the classification of sketches. The third contribution of this thesis is
the comparison of the presented set of 165 digital pen features to a public benchmark
that uses only 49 features, to test the hypothesis that more features allow for better
sketch recognition performance. However, one limitation of this benchmark is that it
only considers two ML algorithms, which is why the fourth contribution of this work
is a comparison of ten modern off-the-shelf ML classifiers on a selection of ten sketch
data sets from different domains. The aim is to guide researchers in the selection of ML
algorithms for sketch recognition, by testing the classification performance on a variety
of sketches of varying complexity, which were recorded using different pen interfaces. In
addition, an automated ML approach (AutoML) is evaluated, to show how the feature-
based classification approach can achieve superior recognition performance when it is
fine-tuned and optimized on individual data sets.

The rest of this thesis is structured as follows. Chapter 2 covers related publications
from the field of digital pen features, ML and cognitive assessments. Chapter 3 describes
the implementation details, including the definition of digital pen features and their
categorization. In chapter 4 the architecture of the interactive cognitive assessment tool
and the method for collecting the sketch data sets are detailed, and a summary of all data
sets is presented. The evaluation is presented in chapter 5, followed by a summary and
discussion of future work in chapter 6.



Chapter 2
Related Work

This chapter summarizes relevant related publications in four sections. Section Digital Pen
Feature Sets summarizes the features considered in this thesis, section Machine Learning
provides an overview of different ML methods, section Cognitive Assessments covers
neurocognitive testing instruments, and the last section focuses on Analyzing Cognitive
Tests using Digital Pen Features.

For the remainder of this work series of timestamped x/y coordinates are referred to as
strokes, and a collection of continuous, interrelated strokes is referred to as a sketch. In
this context gestures are sketches conveying a particular meaning, e.g., arrows or text
strikethroughs. The terms cognitive assessments and cognitive tests are interchangeable.

2.1 Digital Pen Feature Sets

Traditionally, stroke level features are most often used for statistical gesture recognition.
One of the most prominent sets of pen features was presented by Dean Rubine in 1991 [88].
It contains a total of 13 features that are designed to reflect the visual appearance of
strokes in order to be used in a gesture recognizer. The feature set includes geometric
features, such as cosine and sine values of the initial angle of the gesture, the length of
the gesture or total angle traversed, and temporal aspects, such as maximum speed and
duration of gestures. According to the author, these features were determined empirically
to work well on several different gesture sets. Applying linear classifiers to these gesture
sets, Rubine reports recognition rates of over 96%, even for relatively small training
set sizes of 15 samples per class. He also presents GRANDMA (Gesture Recognizers
Automated in a Novel Direct Manipulation Architecture), a toolkit that allows users to
define new gestures by example, thereby eliminating the need to hard-code recognizers
for different gesture sets. However, one major limitation is that all features are defined
on single-stroke gestures exclusively. Rubine states, that this is an intentional limitation
of GRANDMA, and a contrast to multi-stroke gesture-based systems by design [88]. By
limiting recognition to single-stroke gestures, the segmentation problem of multi-stroke
recognition is avoided [99], enabling shorter timeouts and response times in interactive
interfaces. According to Rubine, single-stroke gestures represent a single intentional



physical user action, a property thought to contribute positively to the usability of user
interfaces [14]. Nevertheless, Rubine’s work presents one of the first and most cited,
generalized and reproducible feature sets available for statistical gesture recognition. It
has been successfully applied in pen-based intelligent user interfaces [98, 112], multi-
touch gesture recognition [19, 85] and even eye-tracking analysis [2, 3].

More recent work by Don J.M. Willems and Ralph Niels [108] defines a total of 89
features using formal mathematical descriptions and algorithms. While their technical
report mainly focuses on the implementation details, their other publications show ML-
based applications of their feature set for multi-stroke gesture recognition [109, 110, 111],
forensic writer identification [67] and writer verification [13]. The Willems & Niels
feature set includes several features, which are also present in Rubine’s set [88], but it is
overall comprised of computationally more complex features. These include curvature,
perpendicularity, complex hull properties, histogram analysis, acceleration and many
more. It is also one of the few feature sets that includes force-based characteristics. These
are features related to the pressure that users apply to the writing surface, and which,
depending on the hardware device, is either measured directly by the digital pen or the
digitizer tablet. In addition, the Willems & Niels feature set contains higher level meta
features, which model crossings, connected strokes and straight lines. Such features are
beneficial for the classification of multi-stroke gesture recognizers. Overall, this feature
set poses a relevant source for the modeling of sketch characteristics, which can be easily
reproduced and applied to a variety of use cases and ML algorithms.

In 2013, Adrien Delaye and Eric Anquetil introduced the HBF49 (Heterogeneous Baseline
Feature) set [25], which contains 49 features and is specifically designed to be used as
a reference for the evaluation of symbol recognition systems. Similar to Rubine [88] an
empirical constructive approach is adopted for designing this feature set, with the aim
to handle a large diversity of symbols in various experimental contexts [25]. In contrast
to Willems & Niels [108], Delaye & Anquetil only consider the simplest features from
each feature category (geometrical, temporal, etc.), to maintain a feature space of limited
dimension [25]. They evaluate their 49 features using a standard SVM and a simple
1-Nearest-Neighbor classifier on eight data sets with considerable diversity of content
(digits, characters, symbols, geometrical shapes and gestures). Results show that using
off-the-shelf statistical classifiers, the HBF49 representation performs comparably or
better than state-of-the-art results reported on these hand-drawn objects (>90% accuracy
using SVMs). The transparency of the approach, the details of the feature design, and
the presentation of their experimental protocol make it possible to use the HBF49 feature
set as a benchmark for comparing the classification performance of different feature sets.
After overcoming several obstacles, it was possible to obtain all of the eight data sets
required to reproduce the presented experiments in this thesis.

Another set of 14 features described by Sonntag et al. [96], presented as part of a pen-
based interactive decision support system for radiologists, is included in the selection.
A common practice in hospitals is that a radiologist’s dictated or written patient report
is transcribed by hospital staff and sent back to the radiologist for approval, which
takes a lot of time and lacks direct digitization of pen input. Sonntag et al. present a
system, which allows doctors to use a digital pen to fill out the paper-based structured
reporting form, with direct digitization of pen input in real-time. The input is not limited
to numbers and text, but can also include hand-drawn sketches, free text annotations
and correction gestures. Instead of forcing the user to switch manually between writing,
drawing, and gesture mode, a mode-detection system is deployed to predict the user’s
intention based on the sketch input. To classify the input, a number of features are calcu-
lated, including compactness, eccentricity, closure and others. These features are used in



a multi-classification and voting system to detect the classes of handwritten information,
shape drawings, or pen gestures [96]. According to Sonntag et al., the system reaches a
recognition rate of nearly 98%. The presented work shows how digital pen features can
be used transparently in pen-based intelligent user interfaces to improve interactivity
and reduce cognitive load for the user. In addition, the reproducible description of the
features makes the feature set an ideal candidate to be considered in this work.

So far 165 digital pen features from the four aforementioned feature sets [25, 88, 96, 108]
are included in the selection. In addition, 11 features are considered, collected from
literature focused on the evaluation of cognitive assessments [21, 24, 107]. These features
include the number of strokes, sketching time, stroke distance, duration, average pressure,
average velocity, the variation of velocity, number of pauses, average pause duration,
the ratio between sketching and pausing, and average lift duration. A comprehensible
summary of these publications is given in section 2.4 (Analyzing Cognitive Tests using
Digital Pen Features). By directly analyzing the characteristics of pen input and sketching
behavior, a causal link between sketch characteristics and cognitive test performance is
created, without the need to analyze the sketch content itself. This way cognitive behavior
is classified transparently during user interaction and independent of the task at hand,
thereby enabling additional opportunities in interactive systems, such as evaluation,
feedback and content adaptation of pen-based interfaces in real-time.

In summary, a total of 165 (+11) digital pen features are considered, which are computable
in real-time, and, among others, cover geometrical, spatial, temporal, and pressure
properties of the sketch.

2.2 Machine Learning

This thesis is concerned with supervised machine learning methods, which cover the
ML task of learning models that map an input to an output based on examples of
input-output pairs [89]. The input is typically a set of labeled data in form of a feature
vector, on which the ML algorithm is trained to classify unseen samples by predicting
their labels [63]. In the context of ML, a feature describes a measurable property or
characteristic of a data sample [9] and a label describes the category assigned to a sample.
Using the above described feature sets, a vector of features can be calculated for each
sketch directly from the digital pen input. All use cases in this thesis are concerned with
classification problems, where labels are either binary or multi-class categories.

The publications presented in this chapter cover a wide selection of supervised ML
algorithms, which are explained in more detail in the remainder of this section. One of the
basic pattern recognition algorithms, the k-Nearest-Neighbors algorithm, was introduced
by Fix & Hodges [100]. This non-parametric classification algorithm uses distance metrics
(e.g., Euclidean distance) to calculate closest neighboring samples in the feature space.
During the training phase, the algorithm only stores the feature vectors and class labels,
whereas in the classification phase the unlabeled sample is assigned the label which is
most frequent among the k training samples nearest to it [89, 100].

Despite its name, Logistic Regression is a linear model used for classification rather than
regression, which is a very popular technique for dealing with binary classification prob-
lems [9]. Logistic regression is a statistical model that uses a logistic function to model
the probability of the input belonging to a certain class. Most commonly the output is
transformed using the logistic sigmoid function to return a probability value which can
then be mapped to two or more discrete classes [89]. Naive Bayes describes a family of



probabilistic classifiers based on the Bayes’ theorem, which covers the "naive" assumption
of conditional independence between every pair of features given the value of the class
variable [63, 89]. It is called naive, because the conditional independence assumption
on which it is based, is rarely true in real-world applications [115]. Nevertheless, Naive
Bayes classifiers deliver excellent performance for many complex real-world applications
and are highly scalable while requiring only a small amount of training data to estimate
their parameters [115]. However, for some problems, other approaches, such as Boosted
Decision Trees or Random Forests outperform Naive Bayes classifiers, as shown by Caru-
ana & Niculescu-Mizil [17]. Decision Trees are non-parametric tree-like graphs, created
with the goal to predict the label by learning simple decision rules inferred from the
features [113]. The leaves of the graph are the class labels and the inner nodes represent
if-then-else decision rules. A major benefit of decision trees is the inherent transparency
of the resulting model, as the trees can be easily visualized, and any given situation is
observable and can be easily explained by Boolean logic. On the other hand, the trees can
become very complex, hence not generalizing the data well (overfitting), and learning
an optimal decision tree is known to be NP-complete even for simple settings [48, 51].
This is one of the reasons why ensemble methods, such as Boosted Decision Trees create
more than one decision tree, based on previously mislabeled training samples, which
can improve performance in certain settings [51]. Similarly, Random Forests construct a
number of decision trees for various sub-samples of the dataset and averaging over them
to improve accuracy and compensate for the overfitting problem [42]. Another version of
decision tree is the Gradient Boosted Decision Tree, which uses boosting to optimize weaker
decision trees [12]. In supervised machine learning, boosting describes an ensemble
method that involves training multiple models (decision trees) in sequence, where the
error function used to train each model depends on the performance of the previous
models [9]. Boosting is also used in other ML methods, such as the AdaBoost (adaptive
boosting) ensemble algorithm, which begins by fitting a classifier on the original data set
and then fits additional copies of the classifier on the same data set [9]. For each copy, the
weights of incorrectly classified instances are adjusted such that subsequent classifiers
focus on misclassified samples [9].

At the end of the last century Support Vector Machines (SVMs) became quite popular for
solving classification problems in high dimensional spaces [9]. They do so by finding
a hyperplane (decision boundary) in a high dimensional space that distinctly classifies
the sample points [22, 89]. Data points falling on either side of the hyperplane can
be attributed to different classes. There is a direct correlation between the number of
features used as input and the dimension of the hyperplane [22]. SVMs can perform a
non-linear classification by implicitly mapping their inputs into high-dimensional feature
spaces, which is called kernel trick [9]. In the scope of this thesis, two different types of
SVM-kernels are considered, the linear and the radial basis function kernel (RBF), which
is especially useful when the data points are not linearly separable [22].

Another family of ML methods, the so-called artificial neural networks, become increas-
ingly popular in the last few years [37]. The current wave of popularity began with a
breakthrough by Hinton [45], who showed that a specific type of neural network, called
deep belief network, can be trained efficiently. Bengio et al. [7] and Ranzato et al. [81]
showed shortly afterwards that this method can be extended to other neural networks.
At this time the term Deep Learning was coined, which emphasizes that researchers are
now able to train larger neural networks (deeper networks with many layers) than ever
before [37]. Although many of the algorithms and concepts are known for decades,
it were the breakthroughs in computing capacities in recent years that led to practical
applications that can work efficiently on large data sets [37]. Especially the development



of high-performance graphics processing units (GPUs) enables a growing complexity and
performance of neural networks [26]. Convolutional Neural Networks (CNNs) are one type
of network commonly used for image recognition, but they can also be used for sketch
classification from digital pen input [52, 116]. A novel approach by Moetesum et al. [62]
investigates how CNNs and more traditional ML methods (e.g., Random Forests, Naive
Bayes, SVMs, etc.) can be combined to analyze deformations in neuropsychological
drawings. Unfortunately, their results are not directly transferable for the scope of this
thesis, as they focus on the images of sketches rather than the pen input.

In contrast, Long Short-Term Memory (LSTM) approaches have proven to be successful
in classifying handwriting input directly from the continuous digital pen signal [16, 43].
Similarly, Recurrent Neural Networks (RNNs) deliver state-of-the-art performance for
sketch recognition, e.g., the Sketch-RNN by Ha & Eck [40], which is part of Google Quick
Draw!. Interestingly enough, Sketch-RNN uses as sequence-to-sequence Variational
Auto-Encoder (VAE) to automatically generate latent feature vectors from the sketch input,
which are then analyzed by the RNN. Another example of RNNSs, the SketchSegNet+
by Qi & Tan [80] was trained on a subset of the Quick Draw data set to perform multi-
class sketch segmentation. Essentially, they take stroke sequence order as well as the
contextual information among strokes into account to determine the semantic labels of
input strokes. RNNs and LSTMs can also be used for signature verification [58] and
to generate handwriting samples from textual input [10, 39], which can be used for
interactive ink editing in HCI, such as spell-checking and correction of handwriting [1].

However, the major drawback of DL models is their inherent blackbox approach, which
lacks transparency and explainability about the recognition process. More classic ML
approaches often deliver a more easily understood classification. This is important in
the medical use cases discussed in this thesis, as physicians need to understand the
predictions in order to trust the output of the model. Another issue is the vast amount of
data that is required to train DL models, e.g., the Google Quick Draw data set contains
about 50M drawings from 15M players. The concept of transfer learning in the context
of sketch recognition has been proposed only recently [62, 92], and still requires a lot of
data. Despite these limitations, the evaluation in chapter 5 also covers DL models.

The majority of the presented ML/DL methods consists of parameterized algorithms.
These so-called hyperparameters are used to control the learning process since the same
kind of ML model can require different constraints, weights or learning rates to generalize
on different data sets [30]. In ML, Hyperparameter Optimization (HPO) is the task of
choosing a set of optimal hyperparameters for a learning algorithm [9]. The main task
of automated machine learning (AutoML) is to automatically perform HPO to enhance
performance and reduce the human effort necessary for applying machine learning [30].
Several studies have shown that AutoML approaches improve the performance of classic
ML algorithms by tailoring them to the problem at hand [30, 59, 93]. In addition, this
approach can improve the reproducibility and fairness of scientific studies, since it applies
the same level of tuning for all methods and therefore provides fairer comparisons [8, 30].
Several frameworks are nowadays available for AutoML, such as auto-sklearn [31, 32],
which is a drop-in replacement for the famous scikit-learn library?, the open-source H20
platform used by RapidMiner [61] and Google AutoML Tables®, which is utilized for
HPO in this thesis.

1Quick Draw is an online game developed by Google that challenges players to draw a picture of an object
or idea and then uses a neural network to guess what the drawings represent. The game is publicly available at
https://quickdraw.withgoogle.com/.

2https://scikit-learn.org/

Shttps://cloud.google.com/automl-tables
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Assessment  Execution Time Pen Input Sketch Shapes

AKT [35] 15 min 100% Cross-out
CDT [34] 2-5 min 100% Clock, digits, lines
CERAD [64] 30-45 min 20% Pentagons, rectangles, circle, ...
DemTect [53] 6-8 min 20% Numbers, words
MMSE [33] 5-10 min 9% Pentagons
MoCA [65] 10 min 17% Clock, digits, lines
ROCEF [15] 15 min 100% Circles, rectangles, triangles, ...
TMT [83] 3-5 min 100% Lines

Table 2.1: Comparison of widely used cognitive assessments including the percentage of
tasks with pen input that contribute to the total score. Execution time does not include
the time needed by the physician to score the test (several minutes, depending on test).

2.3 Cognitive Assessments

Neurocognitive testing is a noninvasive method for measuring brain function by evalu-
ating specific cognitive abilities, including memory, fine motor control, reasoning and
recognition. Despite recent technological advances, the majority of cognitive assessments
used in practice is still conducted using pen and paper with manual scoring by the
physician afterwards. This includes verbal interview like tests, in which the physician
takes notes of the patient’s answers, as well as tests in which the patient is asked to write
or sketch. In this work, a selection of paper-pencil cognitive assessments is considered
based on feedback from domain experts and a recent market analysis of existing, widely
used, cognitive assessments conducted by Niemann et al. [69]. These assessments were
successfully digitalized during the Interakt project (Interactive Cognitive Assessment
Tool) [94], and are summarized in table 2.1, namely Age-Concentration (AKT) [35], Clock
Drawing Test (CDT) [34], CERAD Neuropsychological Battery [64], Dementia Detection
(DemTect) [53], Mini-Mental State Examination (MMSE) [33], Montreal Cognitive Assess-
ment (MoCA) [65], Rey-Osterrieth Complex Figure (ROCF) [28], and Trail Making Test
(TMT) [83]. This selection of tests accounts for a variety of patient populations and test
contexts. In this thesis, the focus is on the CDT, the TMT and the ROCF, as they have the
highest ratio of pen input relevant to the scoring result. The AKT is discarded, because it
only consists of the rather simple task of crossing out figures, and preliminary testing
results show that the samples have too few strokes for analysis.

For more than 50 years, the CDT is used as an assessment tool for cognitive impairment.
It is a simple paper and pencil test in which the participant is asked to draw a clock face
and indicate a certain time (see figure 2.1a). The task is primarily designed to test the
visuospatial ability and is often used in geriatrics to screen for signs of dementia, such
as Alzheimer’s disease, or other neurological conditions, including Parkinson’s disease,
traumatic brain injury, and stroke recovery. Usually a trained professional observes the
clock drawing task and scores the final sketch based on a scoring scheme, which takes
up to a few minutes. Automatically scoring the CDT has several benefits: Firstly, it
significantly reduces the time caregivers have to invest into administering the CDT; and
secondly, it is likely to produce more objective scores and potentially enables a more
detailed analysis [94]. Not all scoring schemes are equally well suited for automation,
since most of them have been designed to be quick and easy to be interpreted by human
testers. The 20-point Clock Drawing Interpretation Scale (CDIS) by Mendez et al. [60]
is selected in this thesis, because it contains clear test parameters that can be modeled



(a) Clock Drawing Test. (b) Trail Making Test B.

(c) Rey-Osterrieth Complex Figure Test.

Figure 2.1: Samples of cognitive assessments recorded during the Interakt project.
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Figure 2.2: The Rey-Osterrieth Complex Figure (ROCF) is composed of 18 sub-figures.

mathematically and computationally. In addition, the manual scoring procedure of CDIS
is very time-consuming and would highly benefit from automatic computation. The
CDIS contains items such as "All numbers 1-12 are present”, which are to be rated 0 if not
fulfilled and 1 if satisfied. All 20 individual scores are then added up and the final score
indicates the severity of cognitive impairment. For example, a score of 18 or less is likely
to indicate Alzheimer’s and similar forms of dementia.

Frequently used in neuropsychological testing, the Trail Making Test (TMT) [83] is a
standardized paper and pencil test in which the participant is asked to connect numbered
nodes similar to a child’s connect-the-dots puzzle (see figure 2.1b). In its original form,
it was part of the Army Individual Test Battery (1944) and was later subsequently
incorporated into several cognitive test batteries [102]. The TMT is widely available and
can be easily administered in practice [23]. In addition, it can be used to assess a variety
of neurological disorders [90]. Here, the use case of geriatrics is considered, where TMT
versions A and B are used to screen for signs of dementia. Each of the two parts (A and
B) consists of 25 encircled items on an A4 sheet of paper and subjects are asked to draw a
line through them in the correct order as quickly as possible without lifting the pen. TMT-
A involves number sequencing (1 to 15), whereas TMT-B includes set-shifting: it requires
the subject to alternate between numerical and alphabetic sequences (1-A-2-B-3...). The
main performance indicator used in clinical practice is the total completion time, which is
manually measured by the physician using a stopwatch [11, 57]. The total scoring of the
cognitive assessment is then calculated by comparing the completion time to age-specific
normative values [23, 57].

An even more complex example of a neuropsychological assessment, that is rated entirely
based on pen input, is the ROCF [15, 28]. A printed Rey-Osterrieth figure template is
presented to the subject, who is then asked to copy it onto a blank piece of paper (see
figure 2.1c). Then the physician hides the template and the subject is asked to immediately
recall the figure from memory and sketch it onto another blank piece of paper. This is
repeated once again after approximately 30 minutes (delayed recall). Afterwards the
physician scores each sketch based on the visual appearance of the 18 sub-figures of the
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ROCEF (see figure 2.2). Each sub-figure is rated between 0 (non existent) and 2 (drawn
and placed correctly), and the individual scores are summed up to produce the final
score. In contrast to the CDT, the TMT and ROCF have only one scoring scheme that is
commonly applied in practice according to medical guidelines.

2.4 Analyzing Cognitive Tests using Digital Pen Features

Cognitive assessments have been the subject of recent debate because there are limitations
when they are conducted using pen and paper. For example, the collected material is
monomodal (written form) and there is no direct digitalization for further and automatic
processing. Additionally, the results can be biased depending on the physician’s level of
expertise. To mitigate these shortcomings, digitizing and analyzing paper-and-pencil
assessments has been introduced recently [95]. Using a digital pen to record neuropsy-
chological tests allows for the analysis of additional parameters that cannot be considered
otherwise. In Heimann-Steinert et al. [44] we show that replacing a standard ballpoint
pen with a digital pen has no influence on neurocognitive test results. Werner et al. [107]
perform an experiment in which they record common cognitive assessment tasks using
a digitizer tablet to compare the handwriting behavior of healthy controls to patients
suffering from mild cognitive impairment (MCI) and Alzheimer’s disease. Their feature
set includes on paper time, in air time, the ratio between in air and on paper time, on
paper length, velocity and pressure. They report significant differences between the
groups in almost all measures [107], for example, temporal measures are higher and pres-
sure is lower in the cognitively impaired groups. Using ANOVA, Werner et al. classify
69% to 72% of the participants correctly, although the classification for the MCI group is
reported to be relatively poor. Findings by Schroter et al. [91] support the statement that
it is possible to distinguish between different forms of cognitive impairment and healthy
subjects by analyzing handwriting movements. They find that both patients with MCI
and patients with probable Alzheimer’s exhibit loss of fine motor performance and that
the movements of Alzheimer patients are significantly less regular than those of healthy
controls. In both publications the classification is made entirely without content analysis,
solely based on the handwriting behavior of subjects.

Similar findings are reported by Davis et al. [24], who use an off-the-shelf digitizing
ballpoint pen to analyze the cognitive abilities of patients with dementia, Alzheimer’s
and Parkinson’s disease, by deploying a digital version of the CDT. A set of digital pen
features, including temporal aspects, such as speed and pauses, is used as input for a
collection of ML algorithms, including SVMs, random forests, boosted decision trees, and
others. They report a top accuracy of 82% using SVMs to classify dementia, but it is not
clear which features exactly are used. However, Davis et al. report that time-dependent
variables prove to be important for detecting cognitive change. They can reveal when
individuals are working harder, even though they are producing normal-appearing
outputs, e.g., the total time to draw the clock differentiates those with amnestic mild
cognitive impairment (aMCI) and Alzheimer’s disease from healthy controls [24]. In
Cohen et al. [21] the same authors elaborate on these findings by comparing the ratio
of drawing versus non-drawing time for older adults with depression during the CDT.
Their evaluation reveals a significant effect of age on drawing times during challenging
tasks, while there is no significant effect during simpler tasks like copying figures. This
could prove highly relevant for interactive pen-based systems, in which content and
task difficulty need to be adjusted in real-time, depending on the cognitive load of users.
Oviatt et al. report similar findings in the educational domain, where they use digital
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pen features to predict task expertise and user performance in mathematics [71, 72, 117].
Using SVMs, Random Forests, and Naive Bayes classifiers, they achieve up to 92%
prediction accuracy with features, such as average number of pen strokes, total writing
time, stroke distance, duration, pressure, and speed. Similar techniques have been used
to diagnose other cognitive impairments, such as Parkinson’s disease [27, 55], or to
predict task difficulty and user performance of cognitive tests [6]. This shows that the
ML-based digital pen features approach considered in this work can be applied to a
variety of application domains and use cases.

Digital pen features are also useful to perform a traditional content analysis of cognitive
assessments. Automatic scoring systems mimic the scoring procedure performed by
physicians, which is regulated by medical guidelines and usually produces a numeric
score. In Prange et al. [79] we show how to model cognitive status through automatic
scoring of a digital version of the CDT. We implement the Mendez scoring scheme and
create a hierarchy of error categories that model the test characteristics of the CDT, based
on a set of impaired clock examples provided by a geriatrics clinic. Using a digital pen we
record 120 clock samples for evaluating the automatic scoring system, with a total of 2400
samples distributed over the 20 scoring classes of the Mendez scoring scheme. Samples
are scored automatically using a handwriting and gesture recognition framework based
on digital pen features and results show that we provide a clinically relevant cognitive
model for each subject. In addition, we heavily reduce the time spent on manual scoring.
A similar automated analysis of the CDT based on ML is presented by Souillard-Mandar
et al. [97]. They design and compute a large collection of content related features and
explore the performance of classifiers built using a number of different subsets of these
features and a variety of ML techniques. The authors use traditional ML methods to
build prediction models that achieve high accuracy in detecting cognitive impairment.
However, their major drawback is, that the deployed feature set is not reproducible, nor
is there a data set available for repeating the experiments.

Another very popular assessment is the Mini-Mental State Examination (MMSE) intro-
duced in 1975 by Folstein et al. [33]. The MMSE is a 30-point questionnaire, which is
administered by a trained professional, who leads the subject through the questionnaire
and sketching tasks whilst taking notes. The CDT is often administered together with
the MMSE, since both assess different, complementing cognitive abilities [74]. In Prange
et al. [77] we present a multimodal system for the automatic execution and evaluation
of the MMSE, that uses speech analysis in combination with handwriting and gesture
recognition based on digital pen features. Taking into account multiple sensor inputs
is the next step to improve neurocognitive testing by taking advantage of multimodal,
multi-sensor interfaces [73]. In Niemann et al. [69] we describe the architecture of a
multimodal multi-sensor assessment framework for cognitive impairment that combines
digital pen strokes, pen sensors, automatic handwriting and gesture recognition and
electrodermal activity (EDA). We use EDA for potential inclusion of open sympathetic
arousal, stress and affect (e.g., emotion detection through autonomic nervous system
signals). To include biosensors (e.g., EDA) into future digital pen-based interfaces is very
interesting because it is a process-tracing method (unobtrusive and continuous measure)
for neural activity and can reflect psychological processes. The digital pen-based envi-
ronment provides a sensor fusion context for its interpretation. In the future, large scale
community screening programs can arise from resulting multimodal data collections
to identify multimodal profiles of impairment across different cognitive, psychiatric
and functional domains/abilities. It will also help to guide differential diagnosis and
further neurocognitive assessment, especially because multimodal digital assessments
are unbiased to a large degree.
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Clinically relevant examples of digitalized pen-based cognitive assessments also include
the ROCF [15, 28], which can be used for various purposes, such as diagnosing the pe-
riphery [20]. The authors show that accurate reproduction of spatial features predictably
declined as the target was presented further in the visual periphery. Such analysis of
the periphery in the context of the ROCF drawing tasks has shown relevant for a vari-
ety of medical conditions, including age-related macular degeneration and apoplectic
stroke [20]. Wang et al. [106] report a significant correlation between ROCF measures,
tremor and bradykinesia (impaired and slow body movement), such as is often present
in patients suffering from cognitive impairment (i.e., Parkinson’s disease). Similarly,
Salthouse [90] shows that the TMT can be used to assess a variety of neurological disor-
ders and it can even be adopted for diagnosing neurological disorders in children [82].
His findings are backed by Barz et al. [6], who use digital pen features to predict task
difficulty and user performance of the TMT. Their automated evaluation uses a subset of
the features considered in this thesis and shows that a correlation-based feature selection
can be beneficial for ML-based model training in certain scenarios. Similar results were
reported by Dahmen et al. [23], who investigated the utility of features in analyzing a
digital version of the TMT. Their considered features include, among others, the average
pause duration, number of lifts and average pressure.

To summarize, utilizing digital pen features, in ML-based automated cognitive assess-
ment systems, opens up an opportunity to analyze handwriting and sketching behavior,
that could not be considered otherwise. Related work shows that these features can be
used for both, sketch content analysis and the unobtrusive, transparent modeling of
cognitive behavior from raw digital pen input. Furthermore, this thesis is motivated by
the lack of a comprehensible and publicly available feature set for such purposes.



Chapter 3
Implementation

Motivated by the lack of a publicly available feature collection, this section details one
major contribution of this thesis, namely the categorization and implementation of 165
digital pen features, including their public release on GitHub*. In addition, the Digital Ink
Library is presented, which specifies a structured stroke and sketch data format, including
conversion tools, and allows users to calculate digital pen features on their data. Of
course, the library, too, is available on GitHub in several programming languages.

Over the past few years, the availability of digital pen hardware has increased drastically
and there is a wide variety of devices to choose from, which produce sketch samples in
varying data formats. In this work, the focus lies on the similarities between the most
commonly used hardware devices for pen-based user interfaces. As not all technologies
deliver the same type of sensor data, a subset is identified that is covered by the majority
of input devices. It is referred to as digital ink, a set of time-series data containing coor-
dinates and pressure at each timestamp. For the remainder of this paper the following
notation is used:

x,y : coordinates (3.1)
D : pressures (3.2)
t : timestamps (3.3)

A series S of n sample points between a pen-down and pen-up event is called a stroke
and can be represented as a series of tuples:

S = (370,11/0,190»150)7 (x1>y1ap17t1)7 ceey (mnfhynfhpnflatnfl) (34)

Where z; represents the x coordinate of the i-th sample point within the series with
0 < i < n. The tuple itself is referenced by s;. Timestamps are measured in milliseconds
and it is unimportant if they are absolute or relative to the first point.

4https://github.com/DFKI-Interactive-Machine-Learning

14


https://github.com/DFKI-Interactive-Machine-Learning

O 0 N N Ul W N =

== =
N = O

O 0 N N Uk W N =

15

3.1 Digital Ink Library

During the collection of sketch data sets it became evident that there is no standard data
format for digital ink samples currently in use. Hence, as part of this thesis, the digital ink
library is implemented to provide a simple and extensible standardized data exchange
format with conversion tools for common formats. Currently, the API is available in
several programming languages, including Python, Rust and Java. The JSON (JavaScript
Object Notation) open standard file format is used to encode all necessary information of
strokes, such as x/y coordinates, timestamps and pressure (see listing 3.1). This format is
highly extensible, as additional information can be easily stored in the meta field of each
stroke. Depending on the use case this can include strings, such as class labels, array-like
information, such as point-wise annotations or any other kind of serializable data object.

Listing 3.1: Structured JSON data exchange format for strokes.

"type": "stroke",
"meta": {
"<key;: string>": <walue;>,
"<keys: string>": <walue;>,
} r
"x": [<zy: float>, <z9: float>, ..., <z,: float>],
"y": [<yp: float>, <yg: float>, ..., <y,: float>],
"timestamp": [<f;: long>, <tg: long>, ..., <t,: long>],
"pressure": [<p;: float>, <pz: float>, ..., <p,: float>]

Similarly, sketches are encoded as a collection of strokes with the option to include
additional meta information (see listing 3.2). The digital ink library also includes several
conversion functions, i.e., scaling and normalization, which help prepare sketch data
samples as input for ML experiments. A collection of visualization tools is provided to
render sketches as images and videos. Having a real-time representation of the sketch as
it was originally drawn is a major benefit of digital ink data, as it enables an analysis of
the sketching process at a later time. This is especially useful in the use case of cognitive
assessments, as the behavior of patients can be analyzed over time. In addition, the order
of strokes is not evident from a static image, but can easily be retraced by watching the
playback of the video.

Listing 3.2: Structured JSON data exchange format for sketches.

"type": "sketch",
"meta": {
"<keyi: string>": <wvalue;>,
"<keys: string>": <wvalues>,
b
"strokes": [<strokei;>, <strokes>, ..., <stroke,>]
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3.2 Digital Pen Features

Individual, measurable properties or characteristics of digital ink are referred to as
features. Features are calculated directly from the input sample points and represented
by a numerical value. Therefore, a feature can be seen as a mapping function:

fiSo R (3.5)

Depending on the feature, S can be a set of strokes (gesture level), a single stroke (stroke
level) or a subset of sample points. Most commonly a vector of features F' is calculated
from the input data, which can then be used in ML-based classifiers:

Unfortunately, there are currently no comprehensible features sets available that could be
used off-the-shelf by researchers. This is why in this thesis a definition, categorization and
implementation of 165 digital pen features is presented. The collection of features is based
on the four feature sets discussed in section 2.1 (Digital Pen Feature Sets), while a fifth
set of features, related to cognitive assessments, is presented as part of the experiments
in chapter 5 (Evaluation). The remainder of this section provides a categorization and
brief overview of the features, while their mathematical definitions are detailed in the
appendix (A: Rubine’s Feature Set, B: Willems & Niels Feature Set, C: HBF49 Feature Set, and
D: Sonntag et al. Feature Set).

As the majority of today’s ML frameworks and libraries are available in the Python
programming language, the implementation, too, is done in Python 3.7. It is designed in
a way that enables users to either calculate individual features or entire vectors at once,
assuming that the input is provided in the digital ink library format. During preliminary
experiments, it turned out that calculating all features on data sets of more than 10,000
samples can take quite some processing time on common computer hardware. Because
this possibly presents a major limitation for bigger data sets common in ML research, an
alternative version written in the Rust programming language was implemented. Rust is
a relatively new programming language introduced by Mozilla Research in 2010, which
is designed for performance and safety, especially in concurrent contexts [54]. In contrast
to Python, an interpreted, high-level and general-purpose programming language, Rust
code is eventually compiled to native machine code and therefore delivers performance
comparable to C++ code, but with guaranteed memory safety. As a result, the Rust
implementation is able to calculate digital pen features up to ten times as fast as the
Python reference API. In addition, Rust code can be deployed on multiple platforms,
including iOS and Android, making it a perfect candidate for mobile interactive pen-
based applications.

3.2.1 Categorization of Digital Pen Features

Due to the nature of sketched and handwritten input, there are a few features and
concepts that the considered feature sets have in common. Before going into detail about
the categorization, it is useful to gain a general understanding of digital pen features.
The most prominent example of a common feature is the length of a stroke, where the
Euclidean distance is used to measure the gap between sampling points. Given two
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sampling points ¢ = (z4,y,) and r = (z,, y,) their distance is calculated as follows:

larl = lIr = all = \/(@e = 20)? + (e — ) (37)

The length of a stroke (a sequence of sampling points) is given by the sum of distances
between the sampling points:

n—1
fStrokeLength = Z HSZ' - Sile (38)

i=1

A bounding box (see figure 3.1) around a set of strokes describes the smallest enclosing
rectangular area containing the entire set of points. Its size is determined by the minimum
and maximum sample points:

Tomin = Min xz; (3.9)
0<i<n

Y oin y (3.10)

Tmaz = MaX T; (3.11)
0<i<n

maz = i 3.12

Ve = 3 G12)

The area of the bounding box is then given by:

fBoundingBoxArea = (xmaw - mmin) : (ymax - ymin) (313)

This thesis combines different families of features, to exhaustively cover all the aspects of
sketch characteristics encountered in the literature. A further categorization of features
reflects their sensitivity to different properties of the stroke patterns, which can ultimately
lead to more transparent and explainable ML models. Two major categories of features
are introduced: syntactic features and semantic features. We distinguish each feature to
be either a syntactic or semantic feature. Syntactic features reflect task-independent
characteristics about the geometry and other aspects of the raw pen input and are
divided into seven sub-categories (see table 3.1): angle-based, space-based, centroid-
based, temporal, pressure-based, trajectory and meta features. These types of features
can be applied to all sketch samples, independent of their source. In contrast, semantic
features describe closely task-related knowledge, which is highly dependent on the use
case. Semantic features are not in the focus of this thesis, as they need to be modeled
for each application individually and therefore cannot be generalized easily across
different data sets. For comparison sections 3.2.3 and 3.3 provide explanations and
several examples of semantic features used in the analysis of the CDT.

Geometric features

Angle-based Space-based
Circular variance Stroke length (avg./SD)
Rectangularity Gesture length
Curvature (avg./SD) Perimeter length
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Angles after resampling Compactness
Cosine/sine of first to last point vector Eccentricity
Cosine/sine initial vector Principal axes
Bounding box diagonal angle First/Last point X & Y
(Signed) Perpendicularity (avg./SD) Distance of first to last point
k-Perpendicularity First to last point vector
Absolute/squared curvature Initial /final horizontal / vertical offset
Maximum k-angle Average length of straight lines
Absolute directional angle 2D histogram
Relative angle histogram Ratio of axes
Principal axis orientation (cosine/sine) Ratio of principal axes
Maximum angular difference Length of first principal axis
Circular variance Convex hull area/compactness
Sum of (absolute/squared) angles Sample ratio octants
Macro perpendicularity (avg./SD)

Centroid-based
Deviation
Centroid offset & radius (avg./SD)
Hu moments

Temporal features

Maximum speed (squared)
Duration of gesture
Pen-up/pen-down ratio
Velocity (max/avg./SD)
Acceleration/deceleration (max/avg./SD)

Pressure-based features

Pressure (max/avg./SD)

Trajectory features

Closure
Inflexion X & Y
Proportion of downstroke trajectory
Ratio between half-perimeter and trajectory
Stroke direction (avg./SD)
Cup count & offset (first/last)
Cosine/sine chain code

Meta features

Number of strokes & straight lines (SD)
Straight-line ratio
Largest straight-line ratio

Number of connected components & crossings

Table 3.1: Categorization of syntactic features, avg. = average, SD = standard deviation.
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e L
Figure 3.1: Visualization of rectangular bounding boxes around strokes (black) in the
context of the "draw two overlapping pentagons” task during the MMSE cognitive assess-
ment. The overlapping rectangular bounding boxes around the two individual gestures
(green & yellow) and the larger bounding box (cyan). Red dots represent the sampling
points recorded by the digital pen.

3.2.2 Syntactic Features

This work introduces the following seven categories of syntactic features:

(1) Angle-based features

Angle-based features are calculated from angles between sample points (e.g., curvature,
perpendicularity, rectangularity).

0; = arccos{ S.i_lji Sifit] } (3.14)
' Isi—1s3l] - ||sisivill '

n—2

fCum;ature = Z 92 (315)
i=1
n—2

fPerpendicularity = Z Sin2 (91) (316)
i=1

In ML-based gesture recognizers, these features can be used to distinguish rectangles
from circles and ellipses, for example.
(2) Space-based features

Space-based features depend on the distances between samples (e.g., convex hull area,
principal axes, compactness). The area A of a gesture is usually derived from the area
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of the convex hull around all sample points, which can be calculated using Graham’s
algorithm [38]:

fCon'ue;cHullArea =A (317)

With the area of the convex hull and the length of its perimeter / a feature called compact-
ness is calculated. The closer the sample points are together, the smaller the compactness
will be. Handwritten texts, e.g., will have a larger compactness than geometric symbols,
such as rectangles [108]:

l2
fCompactness = Z (318)

As a result, this feature is used in pen-based intelligent user interfaces to distinguish the
sketched content (e.g., gestures and symbols) from the written content (e.g., words and
numbers).

The side length of the bounding box of a figure is used to calculate the eccentricity. Note
that the co-ordinate axes are used instead of the principal axes (which are rotated with
the pen gesture).

fEccentricity = 1—-— (319)

In handwriting and gesture recognition this feature is commonly used to distinguish a
circle from an ellipse.

(3) Centroid-based features

Centroidal features describe relations between sample points and the overall centroid
(e.g., centroid offset, deviation, average radius). Using the dimensions of the bounding
box the center point c can be calculated:

c—= (zcenter) _ (xmin +0.5- (xmax - zmzn)) (320)
Ycenter Ymin + 0.5- (ymaz - ymzn)

The average distance of sample points to the center point is another feature:

n—1

1
f]MeanCentroidDistance = ﬁ Z Hsz - CH (321)
1=0

In the case of the CDT, for example, one of the evaluation criteria is the extent to which
all numbers are evenly distributed, which can be calculated with the distance from the
center.
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(4) Temporal features

Temporal features are derived from timestamps of sample points (e.g., duration, speed,
acceleration). The velocity v between sample points is defined as:

Sit1 — Si—
v; = L Piml (3.22)
tiv1 —ti1

From which the feature of average velocity is calculated:

n—2
1
fA'uerageVelocity = m Z; ||V1|| (323)

The acceleration is calculated as follows:

a; = Vi+1 — Vi—1 (3.24)
tiv1 —ti—1

And the average acceleration is then given by:

1 n—3
fAverageAcceleration = m L_ZQ ||az|| (325)

These characteristics allow for an analysis of sketch areas in which the subject took more
time, e.g., areas in which he was more concentrated or found the task to be more difficult.
Changes in writing style can also be measured over time.

(5) Pressure-based features

Pressure-based features are computed from hardware sensors capturing applied pressure
(e.g., average pressure, standard deviation). The most intuitive features are the average
pressure and the standard deviation in pressure:

1 n—1
fA'ueragePressure = E Z Di (326)
i=0
1 n—1
2
fStandardPressureDeviation == E Z (pz - fAveragePressure) (327)
i=0

Since temporal and pressure-based features are difficult to detect with the human eye,
a further component for the visualization of features is developed as part of this thesis.
Figure 3.2 shows the result of the visualization for pressure-based based features of two
figures from the CERAD neuropsychological test battery. The color coding of the feature
values at each data point allows the physician to analyze additional properties, which
would not be measured during a traditional assessment and can provide additional
information about the cognitive state of the patient.
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Figure 3.2: Visualization of pressure-based features. The digital pen, which was used to
record these samples, provides a floating point pressure value in the range of 0 to 1.

(6) Trajectory-based features

Trajectory-based features reflect the visual appearance of strokes (e.g., closure, average
stroke direction).

The path length from one sample point to another is denoted as L and is calculated as

follows:
i1y
Ly =Y (328)

= | llskskal
L = Ly, is the total length of S. Whereas the first to last point vector and its length is:
v=s15;, [vl| = Ilsisnl (3.29)

Typical trajectory-based features are closure and average direction:

[[o]

fClosure = T (330)

fAveTageDirection = 7 Z arctan (yﬁ_l Yi ) (331)

xz+1 — I

In the case of the TMT, for example, these features can be used to analyze the direction of
the strokes and thus the order of the connected nodes.

(7) Meta features

Meta features are higher-level features and relations between components (e.g., number
of strokes, inter-connections, crossings, straight-line ratio). One intuitive example is the
number of straight lines (fxstraightLines) OF, to be more precise, the number of straight
segments. A sliding window with a threshold is used to calculate sets of connected
points which have minimal curvature between them. The size of the sliding window
and threshold can be either dynamically adjusted to the length of the stroke or be a fixed
value depending on the task.
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Figure 3.3: Visualization of semantic features in the context of the CDT.

3.2.3 Semantic Features

Depending on the task, additional features can be constructed from the task description.
As these features describe higher-level semantic concepts about the sketched contents,
they are referred to as semantic features. Semantic features highly depend on the given
context and therefore vary noticeably between different tasks. Such features usually
cannot be transferred easily to other use-cases, as they are often hard-coded for each
application. The next section (3.3) describes such a system.

Figure 3.3 shows the visualization of a selected semantic feature set in the context of
the CDT. Participants are asked to draw a clock face with the time set to 10 past 11
o’clock. The drawn clock is then examined by a trained physician and rated based on a
predefined scoring scheme, reflecting the visual appearance and integrity of the clock
using a numerical score. Some of the features found in scoring systems are quantitative,
such as checking for the presence of a digit or a hand. Others are less well defined: for
example, one scoring item calls for determining whether the minute hand is "obviously
longer" than the hour hand, while another checks whether there are "slight errors in the
placement of the hands". These can be estimated by a physician, but it is not immediately
obvious how to compute them as mathematical features in a way that captures the
original intent. Without providing quantitative definitions of those terms, the results may
vary in scoring and analysis depending on the experience of the physician. Since most of
the scoring systems have been designed to be quick and easy to be interpreted by human
testers, they are not all equally well suited for automation. Here, the detailed 20-point
Clock Drawing Interpretation Scale (CDIS) by Mendez et al. [60] is selected, which is
well suited for automation because it contains clear test parameters that can be modeled
mathematically and computationally. In addition, the manual scoring procedure of the
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CDIS is very time-consuming and would highly benefit from automatic computation. In
this example, the following semantic features are calculated based on the CDIS scoring
system (see figure 3.3):

* ¢ denotes the center point of the clock (centroid), the closer it is to the center of the
clock’s circle, the more points are awarded.

¢ Ly and L,, represent the lengths of the hour and minute hands respectively. If the
clock is well drawn, the hour hand should be shorter than the minute hand.

¢ The angle between the hour and minute hands is denoted as a. Together with the
orientation of the hands, it can be used to determine if the correct time was set.

* Ay is the displacement of clock face digits relative to their ideal location. In this
example it is the vertical offset of digit number 9 to its correct center position.

In the context of the TMT, the semantic features could describe whether nodes were
connected, or whether or not their connection order was correct. Similarly, the appearance
of the 18 sub-figures of the ROCF can be modeled (e.g., their positioning and visual
appearance) as required by the scoring scheme. Several of the automated scoring systems
described in section 2.4 (Analyzing Cognitive Tests using Digital Pen Features) are based
solely on semantic features or benefit from including them into their analysis. Semantic
features are also applicable in other domains, such as education, where sketches of
diagrams and mathematical formulas convey particular semantic meanings, or pen-based
interactive systems, where compound gestures (e.g., annotations, correction gestures)
are used to trigger specific actions. However, since the majority of semantic features is
not generalizable between different use cases, the main focus of this thesis lies instead on
the syntactic features, which can be applied independent of the task at hand, and do not
need to be re-implemented for each type of application.

3.3 Automated Scoring of the CDT

This section describes a system for the automated analysis of the CDT that utilizes a
combination of syntactic and semantic digital pen features. The described system is
part of the Interakt project and was published in the proceedings of the ACM UMAP
conference on User Modeling, Adaptation and Personalization in 2019 [79]. It implements
the Mendez scoring scheme and creates a hierarchy of error categories that model the
test characteristics of the CDT, based on a set of impaired clock examples provided by
a geriatrics clinic. Using a digital pen, a total of 120 clock samples are recorded for the
evaluation of the automatic scoring system. Results show that the system provides a
clinically relevant cognitive model for each subject. In addition, the time spent on manual
scoring is heavily reduced.

The technical architecture of the system is shown in figure 3.4. Clock sketches are
recorded using a digital pen and paper imprinted with a nearly invisible microdot
pattern. The NeoSmartpen N2° is a ballpoint pen with an integrated infrared camera
near the tip, which recognizes the microdot pattern on the paper and records the exact
position, timestamp and pressure of the pen. It streams the raw stroke data via Bluetooth
to a connected tablet or smartphone. In the backend, each stroke is then analyzed
and annotated with a corresponding gesture type (such as circle, hand, number etc.).

5https: / /www.neosmartpen.com/
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Figure 3.4: Architecture of the classification system for the automatic scoring of the CDT.

This is done by calculating the 165 syntactic features on each of the strokes and using
a rule-based gesture type classifier in combination with an off-the-shelf handwriting
recognition engine to annotate each stroke. Next, the values of the 20 CDIS scoring
classes are computed according to Mendez et al. [60]. To compute the scoring classes,
20 rule-based classifiers are created, which correspond to the conditions of the CDIS
scoring items. The rule-based classification relies on a combination of syntactic and
semantic features. A subset of stroke-level syntactic features is used to cover geometrical
properties of the sketched strokes, such as length, curvature or compactness (see section
3.2.2). In addition, a set of semantic features is extracted as described in the previous
section. For example, the distance to the clock center, or the location of a number inside a
clock quadrant are used as semantic features to predict the CDIS classes. The individual
scores produced by the classifiers are then summarized to create the final CDIS score,
which indicates the overall level of cognitive impairment indicated by the drawing.

The system differentiates between seven gesture types. A stroke can belong to a part
of the circle, digit, hand, center, helping line, text and unknown/uncategorized. In an
iterative streaming process, the system looks at stroke patterns that match one or more
of the gesture classes based on the stroke-level features. For example, a straight line has
the same initial and final directional vector as a circle, whereas parts of the circle show
a distinct curvature. Other gestures are classified based on their spatial location, e.g.,
markings on the outer circle are classified as being helper markings. For the detection of
digits and text, a commercial handwriting recognition engine by MyScript® is used. An
intuitive example for the classification process is CDIS item 10 (“All numbers 1-12 are
indicated.”), where the handwriting recognition engine is used to label the strokes with
the corresponding numbers. Then the system iterates through all strokes classified as
numbers and checks if all are present. Other scoring items require the use of additional
features, such as item 18 (“There are exactly two distinct and separable hands.”). The
strokes must first be labeled as hands, then the algorithm compares their length to
predict the scoring result. Some scoring items, e.g., item 14 (“All symbols lie about
equally adjacent to a closure figure edge.”) still leave room for interpretation. These
classes are implemented using a mixture of thresholds and mean values.

6h’r’tps: / /www.myscript.com/



Chapter 4
Data Collection Method

The following chapter details how the sketch data sets, used for evaluation in chapter 5,
were obtained, and what kind of sketches they contain. The Handwriting & Sketch
Recognition Data Sets section describes the data sets to be used for ML-based benchmark
experiments (i.e., the evaluation and comparison of different feature sets in handwriting
and sketch recognition). In contrast, section Cognitive Assessments Data Set elaborates
on how the data for ML-based cognitive performance classification is recorded using a
pen-based interactive cognitive assessment tool.

4.1 Handwriting & Sketch Recognition Data Sets

Table 4.1 provides an overview of all ten sketch data sets considered in this thesis. The
selection covers a wide variety of symbols, gestures and sketches from different domains
and pen input devices. The first eight data sets are selected because they are part of the
HBF49 baseline experiment [25]. The DFKI-symbols set is recorded as part of this thesis
and How Humans Sketch is a recent set of sketches with a large number of classes and
participants, therefore ideally suited to complement this selection. Several of these sets
are freely available for download, while others need to be paid for. Obtaining a copy of
the Niclcon data set was particularly difficult because sadly the first author passed away
a few years ago and his assistant had not retained a copy. Fortunately, the authors of the
HBF49 benchmark were kind enough to share their data.

Another issue is that out of all the data sets only two share the same file format. In
addition, only two of the data formats are officially standardized (JSON & SVG), therefore
individual parsers need to be implemented to convert the data samples into the format
of the digital pen features library. Furthermore, not all meta information (number of
samples, subject, etc.) about the data sets is the same between the original publications,
the specifications of the HBF49 benchmark experiments and the available data in the
downloaded data sets. For example, the LaViola data set has 11,602 samples according
to the HBF49 publication [25], but the official download only contains 10,655 samples.
This is why, table 4.1 contains numbers based on the downloaded data sets, which may
differ from the benchmark and original publication.
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Data set Classes Subjects Samples Timestamps Pressure
CVCsymb [87] 25 12 4,278 X X
HHReco [46] 13 19 7,410 v X
ILG [86] 21 27 4,704 X v
IMISketch [50] 13 - 1,871 X X
Ironoff-digits [105] 10 411 4,086 v v
LaViola [56] 51 11 10,655 X X
Niclcon [68] 14 34 24,441 v v
Sign [4] 17 21 33,154 X v
DFKI-symbols [76] 11 9 9,938 v v
How Humans Sketch [29] 250 1,350 19,995 X X

Table 4.1: Comparison of data sets for handwriting and sketch recognition ML experi-
ments (v/'= data available, X= no data available).

411 CVCsymb Data Set

The first data set considered for the experiments is the multi-stroke CVCsymb set pub-
lished by Romeu et al. [87]. It contains symbols used in architectural and electrical
blueprints, such as tables, beds, doors, sinks and TVs (see figure 4.1). The set was
recorded using a digital pen as part of a rule-based sketch recognition tool. It is composed
of 25 symbols drawn by 12 people, with a total of 4,278 samples (171 samples/class).
Compared to other data sets, the recordings have a high sampling rate with less noise.
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Figure 4.1: Symbols of architectural and electrical blueprints from the CVCsymb data set.
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4.1.2 HHReco Data Set

Published by Hse & Newton [46], the HHReco data set contains symbols commonly
used in office tools (e.g. UML diagram editors, slide drawing programs like Microsoft
PowerPoint, or electrical schematic editing tools). The set of shapes was selected based
upon the applications of interest, commonly used basic shapes, and the geometric
properties of shapes (e.g., shapes with lines, shapes with curves, shapes with mixed lines
and curves, and shapes with and without self-intersections). It contains samples from 19
users. Each user was asked to sketch 30 examples for each of the 13 symbols shown in
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figure 4.2. The data set contains a total of 7,410 recordings with 570 samples per class. A
Wacom Graphire2 Pen and Tablet was used for data collection [46].
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Figure 4.2: Symbols present in diagram editing tools are part of the HHReco data set.

4.1.3 ILG Data Set

Renau-Ferrer et al. published the ILGDB [86], a database of 4,704 pen-based gestures
(224 samples/class) that have been collected using a tablet PC. A total of 27 users were
asked to perform gestural single-stroke commands as part of a simulated picture editing
software, and visual feedback was offered to the users as soon as their gestures were
done (e.g., rotation of an image, application of a black & white effect, etc.). The data
set was recorded for two main reasons: firstly, to evaluate users capability to memorize
gestural commands according to different types of vocabulary (user-defined gestures,
predefined gestures, semi-customized gestures), and secondly, to gather realistic data
for constituting a reference benchmark for gesture recognition systems [86]. In the
application, 21 graphical shortcuts were defined, in seven groups of three commands:
edit (copy, paste, cancel), effect (apply a black & white, sketched or sepia effect), frame
(add a classic, funny or valentine frame), move (move to personal, professional or favorite
folder), send (send by email, MMS or chat), rotate (clockwise, counter-clockwise or mirror
rotation) and display (details, icons or normal display). Some samples of the ILG set
contain artifacts, which might be a result of a low recording resolution of the tablet PC.

Figure 4.3: A selection of single-stroke image editing gestures from the ILG data set.

41.4 IMISketch Data Set

Figure 4.4 shows the architectural symbols of the IMISketch data set [50]. A particularity
of this data set is the vectorized format of the samples. The samples originate from 50
hand-drawn architectural plans, which were afterwards analyzed with an architectural
plan analyzer that detects segments in the image data. Since the extracted symbols are
represented as a set of segments, there is no online information available (i.e., stroke order
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and number of strokes). In total, 13 types of symbols are included (144 samples/class),
ten of which are furniture symbols and three are types of openings.
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Figure 4.4: Architectural symbols of the IMISketch data set, vectorized from image data.

4.1.5 Ironoff-digits Data Set

Viard-Gaudin et al. [105] have collected data of isolated characters, digits and cursive
words as part of the Ironoff data set. They used a Wacom UltraPad A4 graphic tablet
to record input samples of A4-forms with predefined text boxes. Above each box, the
ground truth of the character or word to be written was provided. Each form has
been filled by a different writer, totaling in 4,086 samples from 411 participants (409
samples/class). Following the HBF49 benchmark experiment [25] only the data of forms
containing 0-9 digits is considered, resulting in ten classes (see figure 4.5).
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Figure 4.5: Samples of the 0-9 digits from the Ironoff-digits multi-stroke data set.

4.1.6 LaViola Data Set

LaViola et al. [56] collected handwriting samples from 11 subjects, recorded with a
Hewlett-Packard Laboratories (HP) Compaq tc1100 Tablet PC. The set contains 48 differ-
ent symbols including a-z, 0-9, %, (, ), —, v/, f ,{, <, >, +, # and else. Figure 4.6 depicts a
subset of these multi-stroke symbols. LaViola et al. chose to include mathematical sym-
bols as part of their set because it was designed to be part of a mathematical expression
recognizer. In total their data set consists of 10,655 symbols (209 samples/class).

Figure 4.6: Subset of multi-stroke sketch samples from the LaViola data set.



4.1.7 Niclcon Data Set

Niclcon by Niels et al. [68], is a set of 14 icons from the domain of crisis management and
incident response. The icons were designed such that they have a visual resemblance
to the objects they represent or correspond to well-known symbols (see figure 4.7). In
total, 32 people participated in the experiment, each of whom was asked to fill out 22
paper forms, using an inking stylus on paper. The paper forms contained seven rows of
five columns, resulting in 35 drawing areas. Each of the 32 participants had to fill in 22
paper sheets, resulting in 770 symbols per participant. Some participants skipped certain
gestures, so the total number of samples is 24,441 [68] with approx. 1,746 samples per
class.

Figure 4.7: The 14 Niclcon symbols from the domain of disaster response.

4.1.8 Sign Data Set

The Sign data set [4] contains 17 different handwritten gestures (see figure 4.8), drawn
by 20 participants on Tablet PCs. During data acquisition each participant performed
four sessions, where each session starts with drawing each gesture five times, and then
gestures to draw are presented in a random order to the participant, to simulate the
use of an application. Each gesture is drawn 100 times by each participant, resulting in
about 1,700 gestures per participant and a total of 33,154 gestures [4] with approx. 1,950
samples per class.

Figure 4.8: Gestures for commands in software applications as part of the Sign data set.

4.1.9 DFKI-symbols Data Set

Whereas the previously described data sets were chosen as part of the HBF49 benchmark
experiments, the next set is recorded as part of the cognitive testing use case. Based on the
design of sketching tasks in neurocognitive testing batteries, a set of 11 gestures is created.
These are gestures, which are commonly found in different cognitive assessments [76].
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The focus is on the geometric shapes of which cognitive tests are composed, e.g., the
CDT contains a circle (clock face) and lines (hands). The CERAD battery, MMSE and
MoCA contain several shapes like pentagons, diamonds and rectangles. Single shapes,
in turn, compose parts of other assessments, such as the ROCF, which contains several
sub-shapes, including, triangles, rectangles, lines and circles. Figure 4.9 shows the 11
classes of the DFKI-symbols data set. A total of eight shapes were chosen from the most
commonly used cognitive assessments: arrow, circle, rectangle, triangle, circle, diamond,
overlapping rectangles, cube and overlapping pentagons. Three additional gestures are
chosen based on a previously conducted user study, where participants were asked to
specify gestures that they would use to indicate completion of the current handwriting
task. Such symbols can be used in pen-based interfaces for assisted living, e.g., SMS
or e-mail writing applications for the elderly, to indicate that the message should be
sent [78]. Our symbol data set consists of 11 classes (shapes) with 100 samples per class,
recorded on an A4-sized Samsung Galaxy Note tablet with a stylus. Overall, nine subjects
have provided a total of 9,900 handwritten samples with 900 samples per class.

Figure 4.9: The 11 symbols of the DFKI-symbols data set.

4.1.10 How Humans Sketch Data Set

The last data set to be considered here was recorded by Eitz et al. [29] as part of a
large-scale exploration of human sketches. It contains a set of 250 categories based on
everyday objects, such as airplanes, alarm clocks, mugs, radios, animals and many more.
Figure 4.10 presents a selection of 21 sketches from these categories. The sketches were
recorded using crowdsourcing, with a total of 1,350 participants. This data set is relevant,
for this thesis, because it contains a large number of classes & participants, and each of
the sketches is composed of many strokes (approx. 13 strokes per sketch). A drawback is
the lack of temporal and pressure information from the input signal and the relatively
low fraction of 80 samples per class.
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Figure 4.10: A selection of 21 sketch classes from the How Humans Sketch data set.
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4.2 Cognitive Assessments Data Set

In the medical domain, pen-based neurocognitive testing is used to assess a wide range
of cognitive impairment, including dementia, Parkinson’s disease or traumatic brain
injury. Usually a trained professional observes the test and scores the final sketch based
on a scoring scheme, which takes up to a few minutes. An automatic scoring system
has several benefits. First, it significantly reduces the time caregivers have to invest in
administering the assessment. Second, it is likely to produce more objective scores and
potentially enables a more detailed analysis. Therefore, this section presents a cognitive
assessment tool that is used to record a sketch data set of cognitive assessments with the
goal to automatically analyze test performance based on digital pen features.

4.2.1 Interactive Cognitive Assessment Tool Architecture

Figure 4.11 provides a general overview of the automatic cognitive assessment tool for the
CDT, TMT and ROCE. It is fully implemented and currently being deployed in a geriatrics
daycare clinic in Berlin. As prerequisite, digital versions of the original assessment forms
are created by scanning and then overlaying the original with reference points and
bounding boxes, e.g., for each of the encircled nodes of the TMT. The Neo smartpen N27
and its Euclidean 2D coordinate space are used to record the sketch samples. With a
built-in infrared camera, the N2 digital pen tracks its position on the piece of paper, by
recognizing a micro-dot pattern, that is printed on the paper forms. The pattern is almost
invisible to the human eye and can be printed by standard laser printers, such as they are
present in hospitals, clinics and medical offices. This approach does not require special
software, the forms are printed directly from a PDF file. A physician connects the digital
pen via Bluetooth to a mobile application, which can be run off any common Android
smartphone or tablet and is connected to the hospital information system. Recorded
handwriting data is streamed in real-time to the tablet, where the digital pen strokes are
directly rendered on the screen, giving instant feedback to the physician. This setup has
the potential benefit that physician and subject do not need to sit close together, e.g., in
telemedicine applications or due to Covid-19 distancing regulations.

The raw pen data is exported to a backend service, which creates a digital copy of the
document for indexing and documentation purposes. The pen data processing server
analyzes the pen strokes as a series of time-stamped two-dimensional coordinates. In case
of the TMT, it matches the input to the reference template of the original TMT, thereby
reproducing the path taken by the subject (see figure 4.13b). During this process, the
algorithm produces transparent explanations for encountered errors and extracts missing
connections. The completion time, which is the major scoring criterion for the TMT, is
calculated for each sample by subtracting the timestamp of the first recorded pen stroke
point from the last recorded timestamp. For the CDT the strokes are segmented into
semantic classes, such as digits, helper lines, center point, hands etc. (see figure 4.12b).
Based on this segmentation the system generates scores following the 20-point CDIS
scoring scheme by Mendez [60]. Similarly, the ROCF sketches are segmented into the 18
sub-figures of the ROCF (see figure 4.14b) and scored according to the official scoring
scheme, whose score is based on the individual scores of the sub-figures [15, 28].

For each subject, the results of the scorings are summarized in a structured PDF document,
which includes the completion time, the original rendering of the recorded data, the
annotated version of the analyzed data and detailed information about the scoring

7https://www.neosmartpen.com
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Figure 4.11: Architecture of the interactive cognitive assessment tool. Data is recorded
using a digital pen and streamed to a backend service, where it is analyzed before being
loaded into the hospital information system and presented to the physician. ETL =
extract, transform, load; a general concept of automatic data processing.
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results. Providing a rendering of the unaltered sample serves both documentation and
transparency requirements: physicians need to be able to examine the original and to
have a clear understanding of what was generated by the system. To further increase
the transparency of the automatically generated scoring, the physician is presented with
a representation of what the algorithm detected, e.g., for the TMT the reference points
are indicated in green and strokes are colored in red when recognized as not connecting
any two nodes (see figure 4.13b). For the CDT and ROCEF, the segmented sketches are
included (see figure 4.12b and figure 4.14b). This kind of transparency is highly relevant
to the physicians, as they need to be able to judge whether the automatic scoring, they
are relying on, is accurate and can be trusted. Similarly, the focus of this thesis is on the
analysis of digital pen features to predict test performance using ML, which can be used
to produce models that can be explained by the features themselves.

4.2.2 CDT, TMT & ROCF Data Collection Method

The data set is collected during a repeated measures experiment with 40 participants,
who are recruited from the geriatrics daycare clinic of a large German hospital in Berlin.
Inclusion criteria for participants are a minimum age of 65 and the signed informed con-
sent. Exclusion criteria are severe cognitive disorders, mental diseases, severe auditive,
visual, linguistic, sensory or motor limitations, chronic pain or a legal representative. A
total of 40 older adults are included (age M=74.4+4.1 years, range: 67-85 years) in the
experiment, of which half are female. The majority of participants is well-educated (57.5%
high-level education) and right-handed (95.0%). A total of 25 participants (62.5%) rate
their health as rather or very good, whereas 22 participants (55.0%) report to suffer from
a chronic disease such as diabetes (N=8) or hypertension (N=5). When asked afterwards,
whether the type of pen influences their test performance, almost all participants (95.0%)
answer the question in the negative.
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(a) CDT original recording. (b) CDT with segmentation annotations.

Figure 4.12: Renderings of the original input (a) as recorded by the digital pen during the
data collection with a subject performing the CDT. The automated system analyzes the
input and segments the strokes into classes (b) (digits, helper lines, center point, hands
etc.). Using this segmentation the system automatically performs a scoring based on the
20-point CDT scoring scheme by Mendez [60].
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(a) TMT-B original recording. (b) TMT-B with annotations.

Figure 4.13: Renderings of the original input (a) as recorded by the digital pen during the
data collection with a subject performing the TMT-B. The automated system analyzes
the input and annotates the stroke data with the information relevant for the algorithm’s
final scoring decision (b). Green dots indicate the center points of the circles and green
stroke parts indicate that a circle has been successfully hit by a stroke, while red strokes
could not be identified as connecting two circles.
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(a) ROCF original recording. (b) ROCF with segmentation annotations.

Figure 4.14: Renderings of the original input (a) as recorded by the digital pen during
the data collection with a subject performing the ROCF. The automated system segments
the strokes into the 18 ROCF sub-figures, which are represented by different colors (b).
Based on this segmentation the algorithm scores the individual sub-figures, from 0 =
"not present", to 2 = "correct” [28].

The experiment has two conditions, paper-pencil and digital pen on paper. The versions
of the cognitive assessments are the same in both conditions, just the type of pen differs.
For each condition, participants perform a total of 6 tasks (CDT, TMT (A and B), and
ROCEF (copy, immediate recall and delayed recall)). To avoid order effects, the execution
order is balanced: half of the participants start with the paper-pencil version first and
the other half with the digital pen. Participants sit in a distraction-free room at a table
with the pen and the test in front of them (see figure 4.15). The physician sits on the
opposite side of the table and holds a tablet, to which the digital pen is connected and on
which the participant’s input can be tracked in real-time. The feedback is only visible
to the experimenter. The tablet records the data, which is streamed via Bluetooth by
the digital pen, for later analysis. An important factor for successful deployment is the
seamless integration of digital medical applications into everyday hospital processes.
The system supports this requirement in several ways. First, the tablet application and
digital pen are highly mobile and can directly be taken into the examination room, or to
the patient’s bedside, if necessary. Second, the application has access to a list of patients
from which the physician can choose and initiate an assessment, thereby directly linking
the digital test to the correct patient file. If required for the analysis, the backend service
can access patient data, such as demographic data (e.g., age) or previous assessments for
a comparison of cognitive performance at different points in time. Third, all structured
reports, generated during analysis, are sent to the hospital information system, these
include the generated PDF report, the same information in a structured file format for
direct use in database systems and a replay video of the digital pen recording. Lastly, the
physician can access and query all information in a web-based user interface.

Participants are given the original test instructions for each task [28, 34, 84]. For each
condition they are asked to first perform the ROCF (copy and immediate recall), then
the TMT-A and TMT-B (the order is given by the TMT’s test design), followed by the
CDT and finishing with the ROCF (delayed recall). By letting participants perform the
other tests in between the ROCF tasks, the physician makes optimal use of the time, as
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Figure 4.15: The data collection setup in the geriatrics daycare clinic. The subject (right)
performs the cognitive test (here TMT) using a digital pen, which is connected via
Bluetooth. The result can be monitored in real-time on the tester’s tablet (left).

the test design requires a pause between recall and delayed recall. The instructions for
the tests are given by a trained physician. In both modes (normal and digital pen) the
TMT task execution time is measured manually by the rater using a stopwatch. There is
a wash-out phase between the modes of approximately 30 minutes. During this phase,
participants complete a self-developed questionnaire to collect socio-demographic data
and a questionnaire to record the technology commitment [66].

The collected data set consists of a total of 240 sketches (40x CDT, 80x TMT and 120x
ROCEF). Four samples of the ROCF are discarded, in which participants did not sketch
anything and for which therefore it is not possible to calculate any features. After
removing noise (e.g., notes and scribble) from the sketches, the stroke coordinates are
translated to the origin of the Cartesian coordinate system (min(x) = 0, min(y) = 0). No
scaling or pre-processing is applied to the sketches to avoid influencing participants’
sketching characteristics. Each sketch is analyzed manually by a physician in accordance
with the medical guidelines. For the TMT the score is based on the measured execution
time in seconds [83], while the 20-point Mendez CDIS scheme [60] is applied to the CDT
and the original 36-point scoring system for the ROCF [28]. In the considered use case
of geriatrics, the scorings are used as an indicator to assess whether or not to schedule
further cognitive testing procedures. Therefore, each sketch is classified into one of two
classes, healthy and suspicious, based on the scoring results. Dependent on the execution
time the TMT-A and TMT-B samples are classified as suspicious if they take over a
minute or over two minutes respectively. Samples of the CDT are labeled as suspicious if
the score is 18 or less, whereas ROCF samples are considered suspicious with scores of
30 or less. In total 152 samples are labeled as healthy and 84 as suspicious.



Chapter 5
Evaluation

In this chapter, a series of four ML experiments is conducted to evaluate the performance
of digital pen features for sketch recognition and cognitive test performance classification.
First, the proposed set of 165 features is compared to the HBF49 benchmark (49 features)
on eight different sketch data sets and two ML methods. Second, the features are used
to compare the sketch classification performance of ten ML methods on ten sketch data
sets from various domains. The third experiment tests whether applying AutoML on
these ten data sets can improve the classification results. Lastly, the features are used
to classify cognitive test performance in the use case of neurocognitive assessments,
without performing content analysis, only based on the digital pen features. For each of
these experiments the methodology, results and discussions are provided individually.

5.1 HBF49 Benchmark Comparison

Digital pen features are most commonly used for the task of classifying a set of strokes as
belonging to a certain class. This can be for example as part of a handwriting recognition
system, where different letters and digits need to be distinguished, or in a multi-stroke
sketch recognition system, e.g., to differentiate symbols and gestures, or to predict com-
plex classes, e.g., whether a sketch represents an airplane or an alarm clock. As presented
in the related work section, various sets of features, sketch data sets and ML experiments
have been published for sketch recognition tasks. Unfortunately, only a small fraction
of these experiments presents reproducible feature definitions and repeatable ML ex-
periments. Delaye & Anquetil introduce the HBF49 (Heterogeneous Baseline Feature)
set [25], which contains 49 features and more importantly a transparently designed set of
ML experiments on eight publicly available sketch data sets. In order to compare the
here proposed set of 165 features to the 49 features of HBF49, the benchmark experiments
are repeated. The main hypothesis is that the accuracy of the ML classification increases
if a higher number of digital pen features is provided as input.
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51.1 Methodology

The HBF49 benchmark compares 1-Nearest Neighbor (NN) and Support Vector Machine
(SVM) classifiers on the following eight data sets: CVCsymb, HHReco, ILG, IMISketch,
Ironoff-digits, LaViola, Niclcon and Sign. A detailed summary of these data sets is
provided in section 4.1. For each of the data samples, a feature vector of 49 HBF features
is calculated and used as input to train the ML classifiers. The labels of the individual
data sets are used as the prediction targets, e.g., for the Ironoff-digits data set the classes
correspond to the ten digits. The results are then compared in terms of recognition
accuracy. All experiments are conducted as described by the HBF49 benchmark, with
one minor difference. The HBF49 publication uses the Weka [41] and LIBSVM [18]
frameworks, which were very popular at that time, whereas here the more modern
scikit-learn [75] library is used. Scikit-learn is a free software machine learning library
for the Python programming language [75]. It features various classification algorithms,
including SVM, random forests, gradient boosting, and many more. Scikit-learn is
designed for high-performance computation and seamless integration with popular
scientific libraries, such as NumPy and SciPy. In addition, the SVM in scikit-learn
is implemented through a wrapper for LIBSVM, which makes it an ideal choice for
conducting the HBF49 experiments.

In the context of ML, overfitting refers to a model that models the training data too well
and thus does not generalize well for unseen data. To avoid it, it is common practice in
supervised ML experiments to hold out part of the available data as a test set, on which
the prediction performance is measured. Ideally, the train and test sets are distinct. The
choice of how to split the data set into training and test data is vital for the performance of
most supervised ML algorithms. However, by partitioning the available data into subsets,
the number of samples which can be used for learning the model is drastically reduced,
and the results can depend on a particular random choice for the pair of train and test
sets. The HBF49 experiments solve this problem by employing a common procedure
called cross-validation (CV). In the basic approach, called k-fold CV, the training set is
split into k smaller sets and for each of the k folds a model is trained using k-1 of the folds
as training data. The resulting model is validated on the remaining part of the data (i.e.,
it is used as a test set to compute performance measures such as accuracy).

Due to the nature of the sketch data sets considered in the experiments, HBF49 utilizes
different partitioning methods per data set (some data sets have predefined partitions,
others have no writer information, etc.). For CVCsymb, HHReco, LaViola, and Sign a
writer-independent (WI) CV scheme is adopted, where each CV fold contains the data
from one writer. The global WI recognition rate is then averaged from k CV experiments,
where k is the number of writers [25]. For some data sets a predefined partitioning
into train, validation, and evaluation samples is provided. On LaViola, a predefined
train/evaluation (T/E) partition is available on the data of each writer, which is used
for writer-dependent (WD) performance evaluation. On CVCsymb, HHReco, and Sign
a 10-fold CV (10-CV) is run on the data from each writer and then the performance is
averaged over all the writers [25]. For IMISketch a 5-CV scheme is applied (as suggested
by the dataset partitioning) and for Ironoff-digits a 10-CV scheme is chosen for measuring
WI performance. In the case of Niclcon a predefined partitioning defines the CV scheme,
while ILG is only tested in WD mode, as each user was allowed to define custom gestures.
All sketches are normalized in terms of scale and offset as described by HBF49, with
a spatial re-sampling of the sketches to a dimension of 128 [25]. Missing values are
replaced by imputed mean values, and resulting feature vectors are normalized using
the mean and standard deviation.
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Due to minor differences in the obtained data sets, as discussed in section 4.1, and the
differences in the choice of libraries, feature implementation details and pre-processing,
the original HBF49 results cannot be used directly for comparison. The problem is that
the resulting performance measurements differ from the absolute values of the original
publication. Instead, the experiment is repeated in its original form, but using the above
described implementation. The SVM classifier is set to the same parameters as in HBF49,
with a Gaussian kernel, a gamma of 0.01 and a C of 100. In contrast, the INN classifier
has no additional parameters.

To summarize, the experiment in this section evaluates the classification accuracy of two
classifiers (NN vs. SVM), on each of the data sets (and their partitioning), depending on
the input feature set (49 vs. 165 features). During the first run, only the 49 features of the
HBF409 feature set are used. The resulting measurements are then compared to a second
run in which all 165 features are used as input. To test the hypothesis, that more features
provide a better recognition accuracy, a paired-samples t-test is conducted to test for a
significant difference in performance measurements.

5.1.2 Results

The results of both experiment runs are visualized in figure 5.1 and the measurements
are summarized in table 5.1. By using all 165 features for training the classifiers the
recognition accuracy improves for all data sets and conditions by up to +2.5%, except for
CVCsymb in WI-CV conditions and IMISketch with SVM classification. On average the
NN classification accuracy improves by +0.9% and SVM accuracy improves by +1.2%,
with the highest impact for NN on Niclcon (WI T+V/E) of +2.4%, and +2.5% for the SVM
approach on HHReco (WI-CV). The absolute recognition accuracy values reach 94.7%
for NN and 96.0% for SVM. In comparison, the HBF49 benchmark results with only 49
features as input reach an average of 93.8% accuracy for the NN and 94.8% accuracy for
the SVM approach. A slight decrease in accuracy is measured for both NN (-0.3%) and
SVM (-0.8%) on the CVCsymb data set (WI-CV), and on the IMISketch SVM with -0.1%.

In order to compare whether the improvements in accuracy have a significant impact, a
two-tailed paired samples t-test is conducted on the individual measurements. The com-
parison of NN classification accuracies shows a significant difference (M = 0.91, 5D =
6.68;t(12) = 4.39,p = .001). Similarly, the comparison of SVM classification accuracies
shows a significant difference as well (M = 1.2, SD = 10.04;¢(12) = 4.73,p < .001).

5.1.3 Discussion

The hypothesis that the set of 165 digital pen features provides a significantly higher
recognition accuracy than the 49 features of HBF49 is accepted due to the results of the
t-test. It was possible to improve almost all measures, except CVCsymb and IMISketch.
The difference for the latter one with -0.1% is almost negligible and could be the results
of several random factors, including the exact split of the CV folds. In turn, the difference
in the CVCsymb data set is a bit higher. The data set consists of 25 classes of architectural
drawings from 12 subjects, without timestamp and pressure information. Examining
the samples closer it appears that there is some variance in the way different subjects
drew certain symbols. The larger feature set may be more sensitive to the WD aspects
of the sketches. On the other hand, this assumption can be discarded as the other data
sets also contain WD and WI modes and do not show this effect. Certain aspects of
the ML experiments rely on the generation of random numbers, which includes the
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Figure 5.1: Visualization of classification accuracies for the HBF49 benchmark experiment.
NN-49 & SVM-49 are the original classifiers trained on the 49 features of HBF49, while
NN-165 & SVM-165 are trained on all 165 features presented in this thesis. NN = Nearest
Neighbor, SVM = Support Vector Machine, WI = writer-independent, WD = writer-
dependent, CV = cross-validation, T/V/E = predefined data set split into training (T),
validation (V) and evaluation (E) data based on the HBF49 benchmark experiment design.

Data set Experiment | NN-49 NN-165 SVM-49 SVM-165
WI-CV 91.76%  91.45% (-0.3) | 95.85%  95.10% (-0.8)
CVCsymb
WD 10-CV | 96.79% 98.17% (+1.4) | 97.99%  98.73% (+0.7)
WI-CV 85.64% 87.30% (+1.7) | 90.32%  92.81% (+2.5)
HHReco
WD 10-CV | 99.25% 99.47% (+0.2) | 98.27%  99.55% (+1.3)
ILG WD 94.64% 95.70% (+1.1) | 95.14%  95.49% (+0.3)
IMISketch WI5-CV 83.80% 84.66% (+0.9) | 87.81%  87.71% (-0.1)
Ironoff-digits ~ WI10-CV | 96.55% 97.36% (+0.8) | 96.91%  98.14% (+1.2)
) WI-CV 86.65% 88.15% (+1.5) | 87.11%  88.88% (+1.8)
LaViola
WDT/E 93.66% 94.15% (+0.5) | 93.77%  95.25% (+1.5)
. WIT+V/E | 94.54% 96.95% (+2.4) | 96.16%  98.20% (+2.0)
Niclcon
WD T+V/E | 97.44% 98.73% (+1.3) | 97.14%  98.99% (+1.9)
Si WI-CV 99.11%  99.39% (+0.3) | 97.70%  99.49% (+1.8)
ign
& WD 10-CV | 99.34% 99.49% (+0.2) | 98.19%  99.63% (+1.4)
93.78%  94.69% (+0.9)  94.80%  96.00% (+1.2)

Table 5.1: Comparison between the HBF49 benchmark classifiers (NN-49 & SVM-49)
with 49 features as input against the set of 165 features introduced in this thesis (NN-165
& SVM-165). NN = Nearest Neighbor, SVM = Support Vector Machine, WI = writer-
independent, WD = writer-dependent, CV = cross-validation, T/V/E = predefined data
set split into training (T), validation (V) and evaluation (E) data based on the HBF49
benchmark experiment design.
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function for splitting data as part of the CV and the SVM classifier itself. A fixed value is
used to initialize the pseudo-random number generation, to produce the same results on
multiple runs. A quick test reveals that this parameter indeed can have an impact on
the final recognition accuracy. To avoid over-fitting the value is left at the default, which
unfortunately leads to slightly worse recognition results for the CVCsymb data set.

A common approach in pre-processing feature vectors for ML algorithms is to replace
missing values and normalize the feature vectors before training. Missing values can
occur for a number of reasons, in this case, not all data sets include timestamp and
pressure information, so all features that rely on this input cannot be calculated. It can
also happen that certain values cannot be calculated for certain samples, e.g., angles for
overlapping points. Unfortunately, the HBF49 benchmark does not describe which of
pre-processing steps were taken on the calculated feature vectors. Also, the number of
samples and classes in the data sets as described in HBF49 varies from the statistics in the
official data set publications and the downloaded data sets used here. This could indicate
that the authors of HBF49 left out certain samples or only considered a subset. For the
above reasons therefore the results of the experiments were not directly compared to
the published results in HBF49 [25]. Instead, the experiment with the 49 features was
repeated as closely as possible and then compared to the set of 165 features.

5.2 Comparison of ML Methods for Sketch Recognition

With the previous experiment results showing that using more digital pen features
can have a positive impact on classification accuracy, the next experiment tests the
performance of ten popular off-the-shelf supervised ML algorithms trained on all 165
features. The goal is to investigate which types of ML algorithms work best on a wide
variety of data sets from different domains. For this experiment, the eight data sets from
the HBF49 benchmark are reused. In addition, the DFKI-symbols data set and the How
Humans Sketch data set are added to the selection. In the context of neurocognitive
testing, the DFKI-symbols data set represents symbols, shapes and gestures which
are commonly found in cognitive assessments, while the How Humans Sketch data
set contains 250 classes with sketches from 1,350 unique participants. With a total of
almost 20,000 sketches, it is a very complex real-world data set worth including into the
selection. Overall, the selection of ML methods and data sets is motivated by the aim to
create a baseline for future feature-based sketch recognition experiments, and to guide
researchers in the selection of ML algorithms for particular sketch recognition tasks.

5.2.1 Methodology

In this experiment ten of the most common ML classifiers are compared against each other.
These include linear SVMs, Gaussian SVMs, Logistic Regression, Nearest Neighbors,
Naive Bayes, Decision Trees, Random Forests, AdaBoost, Gradient Boosted Trees and
Deep Learning. Details about these algorithms are provided in section 2.2 - Machine
Learning on page 5. The HBF49 benchmark from the previous experiment selects very
specific hyperparameters for the ML classifiers and custom data splits for training and
test data. Although this approach may result in improved recognition accuracies, it also
bears the risk of selecting a combination that is a local optimum (overfitting). To provide
a more generalized approach, no specific train test split is used in this experiment and all
hyperparameters are set to their default values. While this may lead to lower recognition
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accuracies, it also provides a more generalizable and unbiased view on the classifiers’ out-
of-the-box recognition performance. In turn, the impact of hyperparameter optimization
is explored as part of the next experiment in section 5.3.

As in the previous experiment the scikit-learn library is used as the ML backend. For the
linear SVM, the LIBSVM version is used with a linear kernel, a C parameter of 1.0 and
a scaling gamma that is dependent on the number of input features. Similarly, the RBF
kernel is used with the same parameters for the Gaussian SVM. The Logistic Regression
is set to the default solver Ibfgs, with I2 penalty and a C of 1.0. A 5-Nearest Neighbors
approach is used with uniform weights, a leaf size of 30, and Euclidean distance (/2) for
the Minkowski metric. The only hyperparameter of Naive Bayes, the variance smoothing
is set to 10~°. For Decision Trees, the Gini impurity is used with best split selection and
an unlimited number of leaf nodes. The Random Forests approach is set to the same
values with bootstrap enabled. A Decision Tree is used as the base estimator for the
AdaBoost algorithm, with a learning rate of 1 and the SAMME.R real boosting algorithm.
The Gradient Boosted Trees are set to deviance (logistic regression) for classification with
probabilistic outputs, a learning rate of 0.1, 100 estimators and the FriedmanMSE criterion.
A multi-layer perceptron is used as a feedforward Deep Learning network with an alpha
of 1, 1000 hidden layers, a learning rate of 0.001, ReLU activation and Adam optimizer.

As in the previous experiment, the sketches are first normalized in terms of scale and
offset, before all 165 features are used to calculate the feature vectors. Normalization
in this context means that each sketch is first translated to the origin of the Cartesian
coordinate system (0, 0) and then scaled to a maximum x/y of 1.0 while keeping the
aspect ratio. This ensures that no information from the sensor input is lost and all feature
functions produce comparable results. The scaling and resampling of sketches to a
dimension of 128, as in HBF49, is not performed, as it is an uncommon practice that
is not motivated nor explained by the authors of the HBF49 publication [25]. Writer
information is removed from the input to create equal conditions between all data sets.
A randomized 10-fold CV scheme is adopted for each pair of ML method and data set,
and the accuracy is averaged over the ten executions.

5.2.2 Results

The averaged classification accuracies are visualized in figure 5.2. Overall, the best
results are achieved by Deep Learning (89.8%), followed by Random Forests (89.5%) and
Gaussian SVMs (89%). Naive Bayes, Decision Trees and AdaBoost perform worst with
just above 80% average accuracy. A more detailed summary of the results is provided in
table 5.2. It shows the top 5 ML classifiers per data set sorted by accuracy and includes
precision, recall, and the F1 score. Precision is the fraction of classification predictions
produced by the model that were correct. The number displayed here is the micro-
average precision across all classes. Similarly, recall is the fraction of classification labels
that were successfully predicted by the model, which is also micro-averaged across all
classes. The F1 score is the harmonic mean of precision and recall. It is a useful metric
when looking for a balance between precision and recall for uneven class distributions.
For all three metrics, the best possible value is 1.0 or 100%.

Based on the results in table 5.2, the prediction performance for the CVCsymb data set,
which includes 25 types of symbols from 4,278 architectural drawings, is exceptionally
good, with the top 2 classifiers reaching 100% accuracy. HHReco (13 classes/7,410
samples), Niclcon (14 classes/24,441 samples) and Sign (17 classes/33,154) reach close
to perfect performance as well. Performance metrics on Ironoff-digits (10 classes /4,086
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Figure 5.2: Sketch recognition classification accuracies averaged over all ten data sets.

samples) and DFKI-symbols (11 classes/9,938 samples) are around 98% for the top 5
classifiers, while LaViola (51 classes /10,655 samples) and IMISketch (13 classes/1,871
samples) are at around 94% and 90% accuracy respectively. The average accuracy for
the writer-dependent ILG data set (21 classes/4,704 samples) is at 80% and less. Only
the How Humans Sketch data set (250 classes/19,995 samples) is notably below chance
level. Precision and recall scores are on par with classification accuracy. High scores
for both show that the classifier is returning accurate results (high precision), as well as
returning a majority of all positive results (high recall). The lower-performing classifiers
on data sets like IMISketch, ILG and How Humans Sketch have fittingly lower values.
Noticeably, the results for NN and SVM differ from the HBF49 benchmark, due to the
writer-independent data split and the inclusion of two additional data sets.

Table 5.2 also includes the area under the curve (AUC) for the receiver operating char-
acteristic (ROC) curves in figures 5.3 and 5.4. ROC curves feature the true positive rate
on the y axis and the false positive rate on the x axis. This means that the top left corner
of the plot is the "ideal" point, it has a false positive rate of zero and a true positive
rate of one. This is not very realistic for most examples, but it does mean that a larger
AUC is usually better. The steepness of ROC curves is also important since it is ideal
to maximize the true positive rate while minimizing the false positive rate. Classifiers
like the Gaussian SVMs and Deep Learning produce rather steep curves with high AUC
measures for all ten data sets, while algorithms such as AdaBoost, which on average
perform worse, also produce flatter ROC curves. Furthermore, it is noticeable that all
models struggle with the prediction of the ILG and How Humans Sketch data sets, as
can be seen by the lower ROC curves and smaller AUC values.

5.2.3 Discussion

Considering the popularity and recent advances in deep learning it is noteworthy that
even a simple feedforward network, such as used in this case, can be trained to make
predictions with high accuracy. In general, this process requires a lot of training data,
but as can be observed from the results even small data sets, like IMISketch with less
than 2,000 samples can be used to train models achieving accuracies of almost 90% with
solid precision and recall. Same as all other methods deep learning still struggles with
the Sign and the How Humans Sketch data set judging from the performance metrics
and ROC curves. For How Humans Sketch it produces the highest measures amongst
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Data set ML method \4 < & < A4
Logistic Regression ~ 100.0% 100.0% 100.0% 1.000 1.000
SVM (Linear) 100.0% 100.0% 100.0% 1.000 1.000
CVCsymb Deep Learning 99.9%  999%  99.9%  0.999 1.000
SVM (Gaussian RBF) ~ 99.8%  99.8%  99.8% 0.998 1.000
Random Forest 99.2%  992%  99.2% 0.992 1.000
Random Forest 99.8%  99.8%  99.8% 0.998 1.000
SVM (Gaussian RBF)  99.4%  99.4%  99.4% 0.994 1.000
HHReco SVM (Linear) 99.2%  99.2%  99.3% 0993 0.999

Gradient Boosted Tree  99.2%  99.2%  99.2% 0.992 1.000

Nearest Neighbors 99.2%  992%  99.2% 0.992 0.995

Nearest Neighbors 80.7%  804%  80.2% 0.801 0.898

Random Forest 794%  797%  784% 0.788 0.972

ILG Deep Learning 759%  759%  74.7% 0.749 0.970
SVM (Gaussian RBF)  73.3%  73.3% 71.3% 0.717 0.966

Gradient Boosted Tree  65.7%  65.3%  63.3% 0.635 0.939

Random Forest 91.5% 90.7%  84.7% 0.865 0.993

Gradient Boosted Tree  91.2%  90.2%  82.7% 0.851 0.989

IMISketch Logistic Regression 89.1% 87.5% 81.6% 0.838 0.989

Deep Learning 88.8%  86.7%  839% 0.848 0.993

SVM (Gaussian RBF)  88.8%  90.3%  77.8% 0.820 0.988

Deep Learning 985%  98.6%  985% 0.986 0.999

Logistic Regression 98.5%  98.6%  98.5% 0.986 0.999

Ironoff-digits SVM (Linear) 982%  982%  982% 0982 0.997

Gradient Boosted Tree  97.7%  97.8%  97.6% 0.977 0.999
SVM (Gaussian RBF)  97.7%  97.8%  97.6% 0.977 0.999

Logistic Regression 94.5%  93.7%  93.6% 0.936 0.999
SVM (Gaussian RBF)  94.2%  92.8%  92.7% 0.926 0.998

LaViola SVM (Linear) 93.8%  925%  93.0% 0.925 0.998
Random Forest 93.7%  924%  92.2% 0.922 0.998
Deep Learning 93.6% 94.5% 92.6% 0.928 0.999

SVM (Gaussian RBF)  99.5%  99.5%  99.5% 0.995 1.000

Logistic Regression 99.4%  994%  994% 0994 1.000

Niclcon SVM (Linear) 99.3%  99.3%  99.3% 0993 1.000
Nearest Neighbors 99.2%  99.2%  99.2% 0.992 0.996

Gradient Boosted Tree  99.1%  99.1%  99.1% 0.991 1.000

Logistic Regression 99.7%  99.7%  99.7% 0.997 1.000

Random Forest 99.7%  99.7%  99.7% 0.997 1.000

Sign SVM (Linear) 99.7%  99.7%  99.7% 0.997 1.000
Gradient Boosted Tree  99.7%  99.7%  99.7%  0.997 0.999

Deep Learning 99.6%  99.6%  99.6% 0.996 1.000

Random Forest 98.9%  99.0%  98.9% 0.989 1.000

SVM (Linear) 989%  989%  98.9% 0.989 0.998

DFKI-symbols  Logistic Regression 98.8%  98.9%  989% 0.989 0.999
Gradient Boosted Tree  98.8%  98.8%  98.8%  0.988 0.999

Deep Learning 985%  98.6%  985% 0.985 0.999

Deep Learning 447%  46.9%  44.7% 0430 0.938

Logistic Regression 424%  421%  42.8% 0.414 0964

HHS* SVM (Linear) 41.7% 40.3% 42.0% 0.397 0.952
SVM (Gaussian RBF) 395%  409%  40.2% 0.390 0.950

Random Forest 36.7%  36.4%  372% 0.350 0.882

Table 5.2: Top 5 sketch recognition classifiers per data set (*HHS = How Humans Sketch).
The reported measures are average values (10-CV).
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Figure 5.3: ROC curves for sketch recognition classifiers per ML method.
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Figure 5.4: ROC curves for sketch recognition classifiers per ML method (continued).

the tested ML algorithms, but with 44.7% accuracy, it stays below chance level. Part of
the reason can be explained with the small fraction of samples per class, which for How
Humans Sketch is about 80 samples per class, while other data sets like DFKI-symbols
have around 900 samples per class. Deep learning networks are susceptible to this, as all
weights of the hidden layers need to be adjusted per class to make an accurate prediction.

The second-best average accuracy is achieved by Random Forests, which is also interest-
ing since the other decision tree based approaches achieve considerably lower measures.
Vanilla decision tree approaches achieve the lowest accuracy with 80.9%, which is to be
expected, since the other variations are designed to avoid the potential pitfalls of decision
trees. Accordingly, boosting improves their performance by 5% and the ensemble of
decision trees used in the Random Forests approach achieves even better performance.
In the scikit-learn framework used here, the AdaBoost approach uses a simple decision
tree as the default estimator, which could be the reason why it does not measurably
improve its accuracy. In general, decision tree based approaches benefit a lot from differ-
ent data preparation techniques, such as feature selection, and hyperparameter tuning.
The choice not to fine-tune any of the algorithm’s parameters was made on purpose, to
avoid overfitting and provide an unbiased view on the classifiers. However, preliminary
testing showed a clear improvement of accuracy measures for different hyperparameters
in decision tree based approaches. The effect of hyperparameter optimization is therefore
explored in the next experiment. The Nearest Neighbors approach falls into the same
category, as its performance relies heavily upon choosing the right & for the data at hand.
But, as in the HBF49 benchmark, it still performs rather well.

Naive Bayes is an extremely simple classifier and it is not unexpected that it produces
rather weak results. Its Gaussian estimators are probably very good (as can be seen for
the SVM approach), but the naive assumptions are the problem (e.g., that all the variables
in the data set are not correlated to each other). As such, the Naive Bayes approach can
be viewed as the baseline accuracy for the other, more sophisticated classifiers.

Logistic regression and the linear SVM produce very similar results, which can be
attributed to the basic concept behind these approaches, which is to separate the data
linearly. As shown this can work well for many data sets, but it can be improved by
reducing the overall feature space, e.g., by applying feature selection or dimensionality
reduction techniques. The Gaussian SVM with RBF kernel solves this problem by design
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through an embedded mapping of the input vectors into other dimensions. This might
be one of the reasons why the Gaussian SVM consistently produces better results for
the high dimensional input of 165 features compared to the linear approaches. Notably,
SVMs belong to the category of parameterized ML classifiers and are therefore likely to
be susceptible to hyperparameter optimization.

Overall, the off-the-shelf ML classifiers perform very well using the presented feature set
on a variety of different data sets. The lower-performing data sets ILG and IMISketch
are special cases, because the ILG set contains user-defined gestures, whose sketch
characteristics cannot be generalized between different users, and the IMISketch data
set, with its 1,800 samples is the smallest data set in the selection. Similarly, the How
Humans Sketch presents a challenge for the feature-based classifiers, because of its high
number of classes and low ratio of samples per class.

5.3 AutoML for Sketch Recognition

The first experiment showed that using more digital pen features can produce better
results than using fewer features. The second experiment then demonstrated that off-the-
shelf ML methods with default settings can recognize sketches from various data sets
with varying degrees of accuracy. In this last sketch recognition experiment, AutoML is
utilized to automatically build and fine-tune state-of-the-art ML models with optimized
hyperparameters. The experiment aims to show that feature-based ML methods for
sketch recognition can be optimized on individual data sets to produce better results.

5.3.1 Methodology

Google AutoML Tables® is used as the framework to conduct the experiments. It is
a cloud-based, codeless end-to-end ML platform that provides common feature engi-
neering tasks, such as normalization of numeric features, and one-hot encoding and
embeddings for categorical features. First, the feature vectors for each sketch of each data
set are calculated offline using the digital pen features library presented in chapter 3. The
resulting data is then exported and uploaded into the cloud. A regional server selection
allows compliance with European data privacy laws. After selecting the target column
and input features, AutoML Tables pre-processes the data set and starts training for
multiple model architectures at the same time. This approach enables AutoML Tables
to determine the best model architecture quickly, without having to serially iterate over
the many possible model architectures, which is one of the reasons why it was selected
for the scope of this thesis. Training the same amount of models and performing hy-
perparameter optimization on them using a standard issue GPU desktop machine is
time-consuming and therefore not feasible. Other approaches, such as RapidMiner [61]
and auto-sklearn [31, 32] were tested as well. RapidMiner struggled to produce better
results than presented in the previous experiment and provided very little configuration
options, while auto-sklearn did not converge even after letting it run overnight on a high-
performance desktop machine. Because of this, Google AutoML Tables was selected,
which includes several model architectures, including linear models, feedforward deep
neural networks, gradient boosted decision trees, AdaNet and ensembles of various
model architectures.

8https://cloud.google.com/automl-tables
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For each data set, the feature vectors are calculated in the same way as in the previous
experiments. The AutoML training is started on each data set individually with all 165
features selected as input. A default automatic split of 80% training data, 10% validation
data and 10% test data is selected. Since the framework is currently in the beta phase
the only optimization criterion available is to optimize for log loss. Log loss is the cross-
entropy between the model predictions and the label values. This ranges from zero to
infinity, where a lower value indicates a higher-quality model. Each model training is
started with a budget of one node hour per model, which is the recommended value for
data sets with less than 100,000 rows of data. A node hour describes a unit of computing
time on the cloud computing cluster. Early stopping is enabled for model training, which
ends model training when it detects that no more improvements can be made.

5.3.2 Results

Unfortunately, in the current state of the framework, the choice of options for exporting
the model is very limited, which is why the following figures and tables differ from
previous experiments. Table 5.3 summarizes the results of the AutoML experiments,
including the accuracy averaged over all classes, the F1 score, the log loss, precision, recall
and the AUC values of ROC curves and precision-recall (PR) curves. The corresponding
curves are visualized in figures 5.5 and 5.6. The precision-recall curve shows the trade-off
between precision and recall at different classification score thresholds. A lower score
threshold results in higher recall but typically lower precision, while a higher threshold
results in lower recall but typically higher precision. Similar to the ROC AUC, the area
under the precision-recall curve ranges from zero to one, where a higher value indicates
a higher-quality model.

The results in table 5.3 show very promising model performance for almost all data sets,
except How Humans Draw. Several models produce near-perfect results. Log loss values
of below 0.1 indicate high-quality models for CVCsymb, HHReco, Ironoff-digits, Niclcon,
Sign and DFKI-symbols, while LaViola still achieves 0.149 with solid precision, recall and
AUC values. The IMISketch results are a bit worse with a log loss of 0.3 and precision and
recall values of about 90%. The writer-dependent ILG data set still achieves an accuracy
of 98.3% with 88.8% precision and only 74.4% recall. Despite the 99.7% accuracy, the
log loss of the How Humans Sketch data set is very high with 2.09 and a very low F1
score, recall and PR AUC, indicating a bad model quality. This is further supported by
the appearance of the corresponding curves in figure 5.6. In contrast, the higher quality
models produce near-perfect ROC and PR curves with high AUC values.

5.3.3 Discussion

The AutoML approach achieves superior recognition performance on all data sets except
one. How Humans Sketch is an excellent example of a deceptive accuracy measure,
if considered standalone without its corresponding precision and recall values. The
recall reveals that the number of truly relevant results is very low. A very high log loss
value in the context of AutoML indicates that the optimization process was suboptimal
during training the model. To rule out that the model training was stopped too early, the
experiment was repeated using a higher budget for training. Nevertheless, the results
stayed the same. This might indicate that the How Humans Sketch data set is not well
suited as input for feature-based, supervised ML algorithms.
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CVCsymb 99.9% 0.995 0.015 99.5% 99.5% 0.999 0.999
HHReco 99.9% 0.997 0.006 99.7% 99.7% 0.999 0.999
ILG 98.3% 0.809 0.603 88.8% 74.4% 0.896 0.988
IMISketch 985% 0.904 0300 91.3% 89.5% 0958 0.993
Ironoff-digits 99.7% 0.986 0.048 98.8% 98.3% 0.998 0.999
LaViola 99.7% 0942 0.149 94.7% 93.6% 0.988 0.999
Niclcon 99.9% 0.994 0.017 99.5% 99.4% 0.999 1.000
Sign 99.9% 0.997 0.024 99.7% 99.7% 0.998 1.000

DFKI-symbols 99.7% 0987 0.037 99.1% 98.4% 0.999 0.999
How Humans Sketch  99.7% 0.417 2.090 82.1% 28.0% 0.523 0.979

Table 5.3: Results of the AutoML experiments for sketch recognition with all 165 digital
pen features as input. Data split: 80% training, 10% validation and 10% testing.

Notably, the accuracy on the writer-dependent ILG data set and the small IMISketch
data set improves considerably in comparison with the off-the-shelf ML classification of
the last experiment. Although the log loss for ILG is higher than for the other data sets,
all other metrics, including precision, recall and AUC values are satisfactory. Even for
the small IMISketch data set AutoML achieves high performance metrics and improves
recognition accuracy by 7% compared to the unoptimized ML classifiers.

From a user perspective, the AutoML approach drastically reduces the human effort
necessary for applying machine learning. The input is provided as a comma-separated
values (CSV) file, where each row represents the feature vector of one sketch. After
uploading the file using the web interface, a model training can be started by the push
of a button, without writing a single line of code. Unfortunately, the number of options
and parameters available for modifying the training process is very limited. Users can
allocate a certain amount of computing resources for training and receive an email once
the model has finished training. A limited overview of the performance measurements
is provided in the web interface together with the curve visualizations. However, no
export function for these metrics is provided, nor is there any additional explanation
about how the underlying trained model looks like. The model can be exported within
the Google cloud infrastructure to run online and batch predictions at additional costs.
Unfortunately, the only available download format for the models is a proprietary file
format, which could not be closer examined with available tools.

5.4 ML-based Cognitive Performance Classification

The last set of experiments is concerned with the ML-based classification of cognitive
test performance. Cognitive assessments are commonly used in medicine to either
diagnose disease (e.g., dementia, Parkinson’s, etc.) or to screen for signs of cognitive
impairment, e.g., as part of large-scale community screening programs. In both use
cases, the underlying task is to categorize subjects either as healthy or as suspicious, the
latter of which would indicate to conduct additional testing or medical interventions.
Traditional approaches for digitalizing cognitive assessments are discussed in sections
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2.4 and 3.3. These methods are proven to be successful for a wide variety of cognitive
assessments, but they are also highly dependent on the specific test and often analysis
components include task-related semantic knowledge that needs to be modeled manually
for each type of test. The next big step in analyzing digital cognitive assessments is
to predict cognitive performance independently of the test content, by looking only
at the writing and sketching behavior of users. This approach allows us to generalize
the classification of cognitive performance independently of the considered task and
opens up new approaches for transparent behavior analysis in pen-based intelligent user
interfaces. Users do not longer have to perform specific tests, instead, their handwriting
and sketch input can be analyzed transparently during common pen-based tasks like
sketching, taking notes or writing messages. In the future, such a prediction of cognitive
performance can be used in interactive pen-based systems to adapt task difficulty and
content in real-time, depending on the cognitive state of the user. This is why the last
experiment aims at predicting cognitive performance by only considering the syntactic
digital pen features, which are applicable independent of the task, without performing
further content analysis.

5.4.1 Methodology

For the experiments of this section, the cognitive assessments data set is used, which
was collected as part of the Interakt project described in section 4.2. It contains a total of
236 sketch samples of the CDT, TMT and ROCEF. The samples were manually scored and
annotated by experts, who labeled each sample as either healthy or suspicious. In total
152 samples were classified as healthy and 84 as suspicious (14/40 CDT samples (35.0%),
14/80 TMT samples (17.5%), and 56/116 ROCF samples (48.3%)). The data was collected
from 40 elderly subjects, who participated in a study at a geriatrics daycare clinic. More
details on the subjects and the collection method are provided in section 4.2.2 - CDT,
TMT & ROCF Data Collection Method on page 33.

Based on the task design all previous experiments considered only sketch-based digital
pen features, meaning that the entire sketch was used as input for each of the feature
functions to produce the feature vector. However, many features, especially all of
Rubine’s features [88] can be applied on a stroke-level as well. Taking into account
stroke-level features as well serves a double purpose. Firstly, many gestures and symbols
consist of only one stroke anyways and the research question arises, whether or not one
can predict cognitive performance from the sketching behavior of as little data as single
strokes, or if entire sketches are required. Secondly, due to unforeseen circumstances
in regard to the global pandemic, the data collection had to be cut short, resulting in a
rather small number of overall sketch samples, but ML approaches usually require a
larger data set as input. In fact, several of the related sketch recognition publications in
section 2.2 (Machine Learning) are focused on the stroke-level rather than entire sketches.
Dividing the data set into labeled strokes results in a total of 6,893 strokes (508/1,211
CDT (41.9%), 117 /438 TMT (26.7%), and 2,175/5,244 ROCF (41.5%)).

Three feature subsets are considered the set of all 165 features, a set of 11 features
from related publications from the field of analyzing cognitive assessments, and the
combination of both (176 features). The set of 11 features collected from literature that
focuses on the evaluation of cognitive performance [21, 24, 107], and includes number
of strokes, sketching time, stroke distance, duration, average pressure, average velocity,
variation of velocity, number of pauses, average pause duration, the ratio between
sketching and pausing, and average lift duration.
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The set of experiments conducted here is concerned with the binary classification of sam-
ples as healthy or suspicious, on a combination of sketch-level vs. stroke-level features,
the three feature subsets, and the same ten ML methods from above experiments. This
results in a total of 60 experiment runs, where each classifier is trained individually on
each of the data and feature sets in a 10-fold CV scheme. Simple iterative hyperparameter
optimization is employed to find optimal settings for each of the ML classifiers. The
SVMs are set to a C of 1.5 with a maximum number of iterations of 10,000. Logistic
Regression is set to a C' of 8.0 with newton-cg as solver. A 7-Nearest Neighbors approach
is used, and Naive Bayes is set to a smoothing value of 1072. All decision tree based
approaches are left at default settings, only the learning rate of AdaBoost is set to 0.5.
The Deep Learning network is set to 1,000 hidden layers with an alpha of 1, a learning
rate of 0.001, Adam as solver and tanh activation function.

In addition, AutoML experiments are conducted to verify whether the prediction ac-
curacy can be improved for this problem as well. As in the previous experiment the
Google AutoML Tables framework is used to conduct the experiment. Unfortunately,
the approach requires at least 1,000 rows of data, which is why only the stroke-level
conditions are considered for each of the feature subsets.

5.4.2 Results

The most accurate top 5 ML methods for the classification of cognitive test perfor-
mance are summarized in table 5.4. A differentiation is made between sketch-based and
stroke-based calculation of features. Sketch-176 includes all 165 sketch-based digital pen
features, plus the 11 features related to cognitive testing, whereas Sketch-165 only in-
cludes all 165 features and Sketch-11 only includes the cognitive features. The Stroke-176,
Stroke-165, and Stroke-11 are their equivalent stroke-based feature subsets. All reported
measures are averaged as part of the applied 10-fold cross-validation scheme.

AdaBoost achieves the highest accuracy with 87.5% on the set of all 165 sketch-based
features, followed by the linear SVM with 85.4%. A similar accuracy of 85.4% is achieved
by Random Forests and the linear SVMs on the set of 176 features. Considering only
the 11 features related to cognitive testing, the prediction accuracies drop below 80%
with the highest accuracy achieved by the Deep Learning approach with 77.1%. Stroke-
based approaches stay above the chance level with a maximum of 65.0% recognition
accuracy for Gaussian RBF SVMs for all 176 features and 64.8% for the 165 features
set. The corresponding ROC curves in figures 5.7 and 5.8 support this observation. All
stroke-based approaches produce a flat ROC curve with a maximum AUC of 0.598 for
the Gaussian RBF SVMs. In contrast, the ROC curves of their sketch-based equivalents
are much steeper with the highest AUC achieved by the AdaBoost approach with a value
of 0.877, followed by 0.861 for the linear SVMs.

The highest precision and recall scores are achieved by AdaBoost as well with 86.0% and
87.7% respectively. In general, the sketch-based feature sets with 165 and 176 features
perform best, and stroke-level feature approaches are just above chance level. Similarly,
the F1 scores are above 0.8 for the bigger sketch-level feature sets, which indicates a
good balance between precision and recall. In contrast, the F1 scores for the stroke-level
conditions are all below 0.6.

To help understand why the results are rather poor, a visualization of the underlying
decision boundaries for the individual ML classifiers is provided in figure 5.9. The
t-distributed stochastic neighbor embedding (t-SNE) algorithm presented by Van Der
Maaten [103, 104] is used to map the high-dimensional feature space of 165 dimensions
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Feature subset ML method YSJ Lol & o Ao
Random Forest 85.4% 85.5% 82.1% 0.833 0.821
SVM (Linear) 85.4% 83.9% 86.1% 0.846 0.861
Sketch-176 Gradient Boosted Tree 83.3% 83.7% 79.1% 0.806 0.791
AdaBoost 81.2% 79.7% 78.8% 0.792 0.788
SVM (Gaussian RBF)  81.2% 81.9% 76.2% 0.778 0.762
AdaBoost 87.5% 86.0% 87.7% 0.867 0.877
SVM (Linear) 85.4% 83.9% 86.1% 0.846 0.861
Sketch-165 Gradient Boosted Tree 83.3% 83.7% 79.1% 0.806 0.791
Random Forest 83.3% 824% 80.5% 0.812 0.805
SVM (Gaussian RBF) 81.2% 81.9% 762% 0.778 0.762
Deep Learning 771% 754% 73.0% 0.738 0.730
Random Forest 771% 75.4% 73.0% 0.738 0.730
Sketch-11 AdaBoost 729% 71.9% 73.7% 0719 0.737
SVM (Gaussian RBF) 729% 71.8% 65.7% 0.665 0.657
Decision Tree 70.8% 715% 73.4% 0.704 0.734
SVM (Gaussian RBF)  65.0% 64.5% 59.8% 0.588 0.598
Random Forest 63.7% 62.2% 59.2% 0.586 0.592
Stroke-176 Gradient Boosted Tree  63.5% 62.2% 58.3% 0.571 0.583
AdaBoost 61.6% 59.5% 56.1% 0.542 0.561

Logistic Regression 61.5% 59.1% 57.0% 0.563 0.570
SVM (Gaussian RBF)  64.8% 64.4% 59.6% 0.585 0.596
Gradient Boosted Tree  63.8% 62.5% 58.9% 0.579 0.589

Stroke-165 Random Forest 63.7% 62.5% 585% 0.573 0.585
AdaBoost 61.8% 59.8% 56.1% 0.541 0.561
SVM (Linear) 614% 59.0% 56.8% 0.560 0.568
SVM (Linear) 61.6% 59.5% 55.7% 0.534 0.557
Logistic Regression 61.3% 59.1% 55.6% 0.535 0.556
Stroke-11 Deep Learning 61.3% 59.2% 55.1% 0.523 0.551

Gradient Boosted Tree 61.2% 58.7% 55.9% 0.544 0.559
SVM (Gaussian RBF) 61.2% 59.3% 54.6% 0.511 0.546

Table 5.4: Top 5 ML methods for cognitive test performance classification per feature
subset. The reported measures are average values (10-CV).
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Figure 5.7: ROC curves for cognitive test performance classification per ML method and
feature subset. The jagged curves are a result of the binary classification.
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Figure 5.8: ROC curves for cognitive test performance classification per ML method and
feature subset (continued).

(the digital pen features) down to the two-dimensional Euclidean space. In data sciences
and ML, t-SNE is commonly used as a nonlinear dimensionality reduction technique,
which is well-suited for embedding high-dimensional data for visualization in a low-
dimensional space of two dimensions. Using standard techniques such as principal
component analysis (PCA) or multi-dimensional scaling for dimensionality reduction
results in crowded plots, where many data points fall close together in the mapped
two-dimensional space, resulting in unhelpful layouts [29]. In contrast, t-SNE specifically
addresses this problem by computing a mapping of distances in high-dimensional space
to distances in low-dimensional space such that smaller pairwise distances in high-
dimensional space (which would produce the crowding problem) are mapped to larger
distances in two-dimensional space, while still preserving overall global distances [29].
The first two plots of figure 5.9 show the raw digital pen feature vectors for each sketch
after being mapped using t-SNE (components set to 2, a perplexity of 30, early exaggeration
set to 12.0 and a learning rate of 200.0 with a maximum of 1,000 iterations). Different
classes are indicated by color (red = healthy, blue = suspicious), solid points are training
samples, whereas semi-transparent points are used for testing. The Sign data set is
included as a reference, because the experiments in section 5.2 show that its classes
can be easily separated by the ML classifiers. The corresponding plot shows 17 almost
completely separated clusters, one for each of the classes of the data set. All remaining
plots of figure 5.9 show the decision boundaries of the ML classifiers for the prediction of
cognitive test performance.

The results of the AutoML experiment on the stroke-level feature sets are summarized in
table 5.5, with the corresponding precision-recall and ROC curves presented in figure 5.10.
Due to the binary classification, the framework does not provide additional precision-
recall score thresholds like for the previous AutoML experiment. The results show only
a minor improvement in accuracy of 65.8%, with comparably high log loss and low
precision, recall and F1 score. Similarly, the ROC curves are rather flat with the highest
AUC ROC value of 0.671.
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Figure 5.9: A visualization of decision boundaries for the ML classifiers. The feature
space of 165 dimensions (features) is mapped to the 2d Euclidean space using t-SNE
dimensionality reduction. Each dot represents the input feature vector of one sample
from the data set. Classes are color-coded (red = healthy, blue = suspicious), solid points
are training samples, while testing samples are semi-transparent. The Sign data set with
its 17 classes is included as reference, to give an example of an easily separable data set.



58

Stroke-176

Precision
True positive rate

0% 100%

Recall False posilive rate

Stroke-165

P recision
True positive rate

0% 100% 0% 100%
Recall False posilive rate

Stroke-11

Precision
True positive rate

False posilive rate
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Feature subset X < N Lol & X A4
Stroke-176 65.5% 0.735 0.630 68.3% 79.6% 0.581 0.671
Stroke-165 65.8% 0.486 0.631 60.5% 40.6% 0.582 0.668
Stroke-11 64.2% 0.395 0.646 604% 29.3% 0.527 0.641

Table 5.5: Results of the AutoML experiments for cognitive test performance classification
with different feature subsets used for training. Data split: 80% training, 10% validation
and 10% testing. Only stroke-based features are considered, because the AutoML ap-
proach requires at least 1,000 rows of data.

5.4.3 Discussion

Interestingly, the AdaBoost approach works best on this classification problem, whereas
its results on the sketch recognition problems in previous experiments were rather
unremarkable. It is suspected that this is due to two circumstances. First of all, the
here considered problem is a binary classification problem instead of the multi-class
classification in the previous experiments. In addition, a simple fine-tuning of the
AdaBoost hyperparameters drastically improved the prediction accuracy. An accuracy
of 87.5% with similar precision and recall values is not perfect, but it outperforms all
previous approaches on the cognitive tests considered [21, 24, 91, 107].

It seems that the 11 additional features for cognitive assessments are not providing
any added value. The best results are achieved on the here presented set of 165 digital
pen features. An interesting observation is, that the SVMs and the Gradient Boosted
Tree models seem to have found an optimum on their own for both Sketch-176 and
Sketch-165, as the measurement results are the same in all six cases, only the ROC
curves differ slightly. Figure 5.11 shows the top 10 averaged feature weights for the
linear SVMs. All ten most important features are similar between both feature sets,
only their weights differ. This might indicate that the classifiers do select more relevant
features on their own during training and that providing the highest possible amount
of features can be a good choice. Further investigation into this direction might be
necessary to confirm or dismiss this hypothesis. Judging from the importance of features
in figure 5.11, the HBF49 feature compactness and Willems & Niels feature average velocity
are among the most important decision factors. Compactness models how close the
sample points are to each other, which together with the average velocity leads to the
assumption that cognitively impaired subjects tend to sketch noticeably slower than
their healthy counterparts. This finding is supported by related work, which shows
that patients with cognitive impairment experience loss of fine motor performance and
that temporal measurements are higher in the cognitively impaired groups [91, 107].
However, analyzing figure 5.11 it is clear that the other top 10 features likewise have a
high influence. Hence, it is not enough to look exclusively at the temporal features.

A closer look at figure 5.9 gives an intuition on the reason why the ML classifiers were
able to achieve higher accuracies in previous experiments. Based on the visualization
of the samples’ feature vectors the reference Sign data set is separated more easily in
the high dimensional space than is the case for the cognitive assessments data. Some
of the healthy samples form clusters in the upper right, while the majority of points is
intermixed in the middle and lower left, making it difficult for several classifiers to divide
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Figure 5.11: Average weights assigned to the input features of the linear SVMs (top 10).

the data appropriately. This might be an oversimplification of these complex models, but
it nevertheless provides some perspective on how the models work internally.

Considering both the ten off-the-shelf ML classifiers as well as AutoML, it is clear that the
stroke-level approach does not work in this setting. This could be due to several reasons.
Firstly, not all of the digital pen features are necessarily well defined on single strokes,
e.g., average lift duration, pen-up/pen-down ratio or straight-line ratio. Secondly, it is
possible that the effects of cognitive impairment do not show equally well in all types of
pen strokes, or that the features are not sensitive enough to detect this information from
as little input as single strokes. Also, it might be necessary to include a more fine-grained
annotation of the data. Currently, entire sketches are labeled as healthy or suspicious
based on the scoring result of the entire sketch. For the stroke labeling, this sketch-wise
annotation is propagated to each individual stroke. Instead, it might be more sensible to
annotate individual strokes which are part of a specific error made by the subject.



Chapter 6
Conclusion

In this thesis, a state-of-the-art set of 165 digital pen features was defined, categorized,
implemented and made publicly available. A comparison of this feature set against the
HBF49 benchmark showed a significant improvement of sketch recognition accuracies on
several data sets. Furthermore, the results of the evaluation of ten modern off-the-shelf
ML classifiers showed the feature set’s potential to generalize on a wide selection of
data sets from different domains. In addition, the AutoML experiment proved that a
proper fine-tuning and optimization of feature-based ML approaches can lead to superior
recognition accuracies of up to 99% on most data sets.

Two approaches showed the utility of digital pen features for the analysis of paper-
pencil-based neurocognitive assessments in the medical domain. A traditional approach
showed how cognitive assessments can be analyzed as part of an interactive cognitive
assessment tool using content analysis and medical scoring schemes, thereby reducing
manual scoring effort and producing unbiased, explainable results. A second, innovative
approach showed how cognitive test performance can be predicted by only looking at the
sketch characteristics modeled by the digital pen features, without performing further
semantic content analysis. Using standard ML techniques, the feature set outperformed
all previous approaches on the cognitive tests considered, i.e., the Clock Drawing Test, the
Rey-Osterrieth Complex Figure Test, and the Trail Making Test. It automatically scored
cognitive tests with up to 87.5% accuracy in the binary classification task of categorizing
sketches as healthy or suspicious. This supports more automatic, more objective and
accurate diagnostics of pen sensor input, which can be used in hospitals and retirement
homes to transparently evaluate cognitive performance (i.e., without explicit testing), to
guide medical interventions, and to adapt cognitive training in a personalized manner.

Future work could evaluate whether this approach can be used in various intelligent
user interface frameworks to evaluate and improve multimodal human-computer in-
teraction through pen-based analytic capabilities in domains such as healthcare and
education [70, 73]. For example, some approaches show how digital pen features can
aid in predicting math expertise [71, 117], task difficulty and user performance [6]. This
includes analyzing which features have the highest impact on the recognition results,
thereby producing more transparent recognition results. Explanatory interactive machine
learning (IML) [101] could be used to create interfaces which provide direct feedback to
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the user and allow for the inclusion of expert knowledge into the ML process (human-in-
the-loop). A prototypic example of such a system for sketch recognition was presented
as part of the MIT Media Lab course on IML’ using the Gesture Recognition Toolkit [36].

Another promising topic that is currently being investigated is to link the digital pen
features directly to the individual scoring results. Together with our colleagues at the
Charité in Berlin we aim to further evaluate this aspect as part of an interactive user
interface. The transparent feedback about which features contribute to which item in the
scoring result helps physicians to understand why the model makes certain predictions
and can therefore increase trust in the system. It might also help physicians to discover
new approaches for the analysis of cognitive assessments. Furthermore, by taking
into account the knowledge of domain experts as part of an IML system, trust and
explainability of the underlying ML models could be further improved.

As discussed briefly in the related work section, several deep learning networks are
currently emerging for various sketch related recognition tasks [16, 40, 43, 52, 62, 116].
The major challenge, to collect vast amounts of high-quality pen input required for
training deep learning models, remains an open topic. Transfer learning for sketch
recognition has been introduced only recently [92], but already shows a positive impact
on the recognition accuracy of the How Humans Draw data set, whose classes are
difficult to predict using digital pen features alone. Further investigation in that direction
could improve performance for deep learning approaches on smaller data sets. Although
the Google Quick Draw data set was not used in this thesis, because it only contains
low-resolution finger input, it shows a viable approach for using gamification as the
means to collect large sketch data sets via crowd-sourcing. Another interesting approach
worth mentioning is active learning, which can be used to reduce the amount of manual
annotation required to achieve a certain sketch recognition accuracy [114].

https://vimeo.com/76839534
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Appendix A
Rubine’s Feature Set

Features from this section are implementations of the described features by Rubine [88].

A.1 Cosine of initial angle

(962 - 960)

\/($2 —20)” + (y2 — v0)*

fi=

A.2 Sine of initial angle

(2/2 - yo)
V@ —20)* + (52 — 90)°

fa=

A.3 Length of bounding box diagonal

f3 = \/(xmar - 5177n,in)2 + (ymax - ymin)Q
A.4 Angle of the bounding box diagonal

Ymax — Ymin
f4 = arctan ———

Tmax — LTmin
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A.5 Distance between first and last point

fs = /@1 = 20)* + (a1 — o)’ (A5)

A.6 Cosine of the angle between first and last point

fo = (‘T”};%) (A.6)

A.7 Sine of the angle between first and last point

f7 _ (yP}r_ yO) (A7)

A.8 Total gesture length

Let Az; = %11 — %4, AYs = Yit1 — Vs

fs = Z Az® + Ayi2 (A.8)

A.9 Total angle traversed

Let Azx; A A A
LiRAYi—1 — ATi—12Y;
P = A9
b arctcmAIiAxi_l + Ay Ay (A9)
n—2
Jo= Z 0; (A.10)
i=1

A.10 Sum of the absolute value of the angle at each point

n—2

fro=">_16il (A.11)

i=1

A.11 Sum of the squared value of the angle at each point

n—2
fu=Y307 (A.12)
i=1
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A.12 Maximum speed (squared) of the gesture

Let At, = ti+1 —t;

fi2 = ok 7A$i2 +Ay?
12755 At

A.13 Duration of the gesture

fiz =tn—1 —1to

(A.13)

(A.14)



Appendix B
Willems & Niels Feature Set

The features described in this section are implementations based on the feature set
described by Willems and Niels [108]. For this section we use the following notations:

Let ¢ be center of the bounding box around the gesture defined by the co-ordinate axes.

o ( ) _ ( Tmin + 3 (Emaz — min) ) (B.1)

Ycenter Ymin + 2 (ymam - ymin)

While the ratio of the co-ordinate axis is not rotation independent, the ratio of the
principal exes is. To determine the principal axes Principal Compnent Analysis is used
[108]. Let p; and p; be the normalized principal component vectors of the set S. And
let ¢ be the center of the box enclosing the trajectory and along the principal component
vectors. The lengths of the major axes along the principal component vectors are

— (e —s8)l, =9 <(c—s; B.2
a 2Orgia<xnlpz (c—si)l, B Orgiagnlpl (c—si)| (B.2)

B.1 Length of the gesture

n—2
fr=>"llsiv—sil (B.3)
1=0

B.2 Area

The area around the gesture is calculated using Graham’s convex hull algorithm [38].

fa=A (B.4)
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B.3 Compactness
Let [ be the the length of the perimeter of the convex hull, then compactness is defined as

l2
I (B.5)

fa=
B.4 Ratio between co-ordinate axes

The lengths along the two co-ordinate axes (a, along the x-axis, and b along the y-axis) as
given as

_ R B.6
T 0, i = 4] (B-6)
h— . B.7

O§I?<ajx<n ‘yz yjl ( )

Eccentricity is a measure for the ratio between the co-ordinate axes.

h=y1- 2 (B)

a’?

wherea’ =aAb =bifa >belsea’ =bAY = a.

B.5 Ratio between co-ordinate axes

The ratio of the co-ordinate axes, which is very much related to eccentricity, is denoted
as follows

fo=1 ®9)
B.6 Closure
n—2
f6 _ @ _ Zi:o ||Si+1 - S’i|| (BlO)
f1 Hsn—l _SOH
B.7 Circular variance
n—1 2
n- f68

B.8 Curvature

Let angle between sequenced samples be:

s, = arccos { (5 = si1)-(si01 = 51) } (B.12)

i — si—1ll[si+1 — sl
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then curvature will be:

n—2
fs=> v, (B.13)
i=1
B.9 Average curvature
1 n—2
fo= 5t (B.14)
i=1

B.10 Standard deviation in curvature

n—2
i=1

n—2
fio = J LS @ - o (B.15)

B.11 Pen up/down ratio

Let G = {So, S1, ..., Sn—1} be the set of strokes composing a gesture of n strokes. The
duration of stroke S of length m is given by
P(S) = tm-1(5) — to(S) (B.16)

where ¢;(5) is the j-th timestamp of stroke S. The duration of all strokes S with |S| =n
is then defined as

P(S) = X_: o(S:) (B.17)
=0

and the duration of the entire gesture is given by

#(G) =tis,,_,|-1(Sn—1) — to(So) (B.18)
The ratio of pen up/down is the ratio between the time spent writing (pen down) and in

air (pen up)
i = airtime  $(G) — ¢(S) (B.19)
U writetime ?(S) '

B.12 Average direction

n—2
fi2 = Z arctan M (B.20)
n—1 =0 Tit+1 — T4

B.13 Perpendicularity

n—2
fiz =) sin® (B.21)
=1
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B.14 Average perpendicularity

n—2

1 .
fia = Z sin? wsi
=1

n—24

B.15 Standard deviation in perpendicularity

n—2
fi5 = \l 5 Z (sin2 Vs; — f14)?

=1

B.16 Centroid offset

The principal axes are used to calculate the centroid offset:

fi6 = py - (1 — <)

B.17 Length of first principal axis

Based on the principal axis, its length is another feature

fir =«

B.18 Sine orientation of principal axis

The orientation of the principal axis ¢ is given by

Jis =siny =py,

B.19 Cosine orientation of principal axis

fi9 = cosy =p,

B.20 Rectangularity

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

Based on the lengths pf the major axes along the principal component vectors and the

area of the convex hull A, the rectangularity is defined as:

A

fQOZW

(B.28)
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B.21

B.22

B.23

B.24

B.25

B.26

B.27

Maximum angular difference
f21 = max ’lﬁi

1+k<i<n—k

Average pressure
1 n—1
f22 = E ;pz

Standard deviation of pressure

i=0

n—1
f23 = J % > (pi— f)’

Duration

foa =tn—1 —to

Average velocity

v, = I3t = sill +lsi = sia

tiyr —ti—1
1 n—2
fos = n_2 21 [[vi
1=

Standard deviation of velocity

=1

n—2
f26 = \J ﬁ Z (lvill = f25)2

Maximum velocity

for = | Jnax ||vil|

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)
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B.28 Average acceleration

a; = Vi+1 — Vi—1 (B.37)
tiy1 — i1
1 n—3
fos = —— Z; llaill (B.38)

B.29 Standard deviation of acceleration

n—3
oo = $ > (lail |~ fs? (B.39)

=2

B.30 Maximum acceleration

f30 = max 3 Hai H (840)

2<i<n—

B.31 Minimum acceleration

far= min_[lai (BA41)

B.32 Number of cups

This feature counts the number of cups in the gesture [108]. Using a sliding window
approach with window size t,, and a threshold t,, the number of cups is computed as
follows:

nCups = 0;
pos = 0;
for i =1 to N - t, do:
if a; > tq and (pos == 0 or pos < i— ty):
pos = i;
nCups++;

return nCups;

f32 = nCups (B.42)

Si % 8; + tyw

P B.43
PECESAL (B43)

a; = arccos(

t, is the minimal angle between the first and last segment of the window:
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¢ Let v; be the directional vector between s; and s;1.

* Let vy be the directional vector between s;;;, and s;1¢, 1.

(B.44)

# = arccos(—*"2_
- Goal ol
|16 > 90:
o _ 360—(t}#2)
a — 2
else:
ta =t

B.33 Offset of the first cup

Based on f3; the first cup offset is computed.

faz = firstCupOf fset

B.34 Offset of the last cup

Based on f32 the last cup offset is computed.

f34 = lastCupOf fset

B.35 Initial horizontal offset

Lo — Tmin
fas = ———
a

B.36 Final horizontal offset

_ Tp—1 — Tmin
fao=—"—"+
a

B.37 Initial vertical offset

f37 _ Yo _bymin

B.38 Final vertical offset

fSS _ Yn—1 ;ymin

(B.45)

(B.46)

(BA47)

(B.48)

(B.49)

(B.50)
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B.39 Number of straight lines

Based on the definition of straight lines by Willems & Niels [108], we denote the set of
straight lines L; inside a gesture as £ = {Lg, L1, ..., L;_1 } and the number of straight
lines as

fao = |L] (B.51)

B.40 Average length of straight lines

Let || L;|| be the length of a straight line, then the average length of straight lines is

calculated as
|£|-1

fio = %' S (B52)
=0

B.41 Standard deviation of straight line length

Zl—1
fa = $ % > (Ll = fa0)? (B.53)
=0

B.42 Straight line ratio

S 2] I
Jaz = — == | Ll (B.54)
; it lsi— sl N ;
B.43 Largest straight line ratio
fi3 = max — IL:] = — max ||L| (B.55)
Osisn=1 37000 llsj —sjall - S osi<n<i]

B.44 Number of pen down events

Let G = {So, 51, ..., 5,1} be the set of strokes composing a gesture of n strokes. The
number of pen down events equals the number of strokes

faa =G| (B.56)
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B.45 Octants

n—1
1
J1ato = o1 ; Wio (B.57)
where
wig= 41 Halo— 1< <go (B.58)
0 ifv;<Flo=1)Vy>TJo
and where
dy;
v; = arctan (B.59)
dl‘i
and
dr; = x; — Teenter (B60)
dyz = Yi — Ycenter (861)

B.46 Number of connecting strokes

We define the set of connected components as C = {Cy, C1,...,Ci—1}. A connected
component C; is a part of a gesture that consists of one or more strokes that touch each
other, and that do not touch any other strokes [108].

fss =|C]| (B.62)

B.47 Number of crossings

n—2 n—1

fsa= Z Z Kij (B.63)

i=1 j=i+1
where
Kij = 1 lf Si — Si+1 N S5 = Sj+1 7& @ (864)
0 lfSi—>Si+1ﬂSj—>Sj+1 =0
B.48 Cosine of initial angle
To — T
fos = T (B.65)
l[s2 = soll
B.49 Sine of initial angle
fop = 2 Y0 (B.66)

lls2 — soll



86

B.50 Length of the bounding box diagonal

Given the two co-ordinate axes the length of the bounding box is given as

fs1 = Va?+b? (B.67)
B.51 Angle of the bounding box diagonal

Js8 = tan g (B.68)

B.52 Length between first and last point

fs9 = ||5n—1 - 50|| (B.69)

B.53 Cosine of first to last point

foo = —nL 20 (B.70)
l[$n—1— soll
B.54 Sine of first to last point
for = —on=t Y0 (B.71)
l[$n—1 = soll
B.55 Absolute curvature
n—2
for=> |ths,] (B.72)
=1
B.56 Squared curvature
n—2
fo3 = Z o3, (B.73)
=1

B.57 Macro perpendicularity

Let angle between sampled points be:

P = arccos { (5i = 5i4)-(5itk — 5i) } (B.74)

si — si—kllllsivs — sill
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then macro perpendicularity will be:

n—=k

foaa= Y sin®yf (B.75)

i=14+k

B.58 Average macro perpendicularity

n—k

1 .

fos = —p D s’y (B.76)
i=1+k

B.59 Standard deviation in macro perpendicularity

n—2k
1=1+k

n—k
f%:J ! > (sin® 9k — feo)? (B.77)

B.60 Ratio of principal axes

Based on the lengths pf the major axes along the principal component vectors, the ratio
of the principal axes becomes:
B

for = — (B.78)

«

B.61 Average centroidal radius

The average distance of sample points from the centroid is a feature called average

centroidal radius.
n—1

1
fos == llsi—ul (B.79)
=0

B.62 69 Standard deviation of the centroidal radius

n—1
feo = $ % > (llsi = ull = fos)? (B.80)

i=0
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B.63 Chain codes

Let the chain code be defined as

if 0 <9y <
if 7 <9 <

if § < < 2F
if?ﬁT7T <Ys<m
ifr <, < %
if 5F < ¢y < F
€ 3T 7
lfT Sws < =
8 if I <4y <2m

(B.81)

N O Ot e W N

then the average angle of the chain code will be

(Cs — %)ﬂ'

Yo, = 7]

(B.82)

then
fes42s = sintc, (B.83)

and
f69+23 = COS ’(/)CS (884)

B.64 Average stroke length
If S; € S is a stroke with n sample points, then let L; be the length of that stroke:
n—2
L= llsj+1— sl (B.85)
=0
Assuming |S| = m the average stroke length is given by

m—1
Js6 = % Z L; (B.86)

=0

B.65 Standard deviation in stroke length

fir = J - ; (Li — fis)? (B:57)

B.66 Average stroke direction

If S; € S is a stroke with n sample points, then let ; be the direction of that stroke:

n—2
Yir1 7Y (B.88)

Tj+1 — T

<Pi=

7=0
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Assuming |S| = m the average stroke direction is given by

m—1
1
fss = - ; ©i (B.89)

B.67 Standard deviation in stroke direction

m—1

fso = $ (pi — fss)? (B.90)
1=0

3=



Appendix C
HBF49 Feature Set

The features described in this section are implementations based on the feature set HBF49
described by Delaye and Anquetil [25]. For this section we use the following notations:

Let B be the rectangular bounding box defined by Zyin, Tmaz: Ymin, Ymaz- The width w
and height h of this box are defined as

W = Tmaz — Tmin, h = Ymaz — Ymin (Cl)
Coordinates ¢, and ¢, are the coordinates of the center point ¢ of bounding box B.

Let L; ; be the length of the path between sample points s; and s;, then L is the total
length of the path of the gesture.

Let S be the set of strokes composing the gesture.

C.1 Horizontal position of first point

Let I = maxz(h,w) be the side of a square box centered on c. The normalized position of
the first point is then given by

- Trog — Cy 1
= — t3 (C2)

C.2 Vertical position of first point

:y()*cy 1

2 ) (C3)

C.3 Horizontal position of last point

o Tp—1 — Cg 1
f3= — + 5 (C4)

90
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C.4 Vertical position of last point

_yn—lfcy 1
e

C.5 First point to last point vector length
v = S05n1

fs = vl

C.6 Sine of first point to last point vector

Let u, be the unit vector co-directional with the x axis.

Vg + Ug

fo = 7.

C.7 Cosine of first point to last point vector

Let u, be the unit vector co-directional with the y axis.

Uy - Uy

="

C.8 Closure

C.9 Sine of initial angle

Our initial vector between the first and third point is given by w =

Wy * Uy

fo =

]l

C.10 Cosine of initial angle

Wy - Uy

fro=
[[w]

(C.5)

(C.6)

(C.7)

(C.8)

(C9)

(C.10)

(C.11)

(C.12)
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C.11 Horizontal inflexion

Let s,, be the middle-path point with respect to the middle point of segment s¢s,_1.

fu= - (xm G x") (C.13)

w 2

C.12 Vertical inflexion

1 Y1+ Yn
= |y, - T+— C.14
fi2 h <y 2 > ( )

C.13 Downstroke proportion

Downstrokes are portions of drawing trajectories oriented towards the bottom of the
writing surface, i.e. oriented towards increasing values in dimension y.

fi3 = Z Ly {VkeS§]|kisadownstroke} (C.15)
k=0
C.14 Number of strokes
f1a =S| (C.16)

C.15 Angle of the bounding box diagonal

fis = arctan h (C17)
w

C.16 Trajectory length

Jie =1L (C.18)

C.17 Ratio between bounding box and trajectory length

+h
fir == (C.19)

C.18 Deviation

n—1

1
fis = > llsinl (C.20)
1=0



93

C.19 Average direction

n—2
1 Yi+1 — Yi
= t —_ 21
it n_liz:;arc an<xi+1_xi) (C.21)
C.20 Curvature
f; = arccos Fiz1% " %841 (C.22)
l[si—1sillllsisi+ill
n—2
Jao = Z 0; (C.23)
=1
C.21 Perpendicularity
n—2
for =Y sin®(6;) (C.24)
=1

C.22 k-Perpendicularity

Si—kSi * SiSit+k

Gf = arccos (C.25)
[si—ksillllsisitill
n—k—1
fa2 =Y sin®(6f) (C.26)
1=k
C.23 k-Angle
fas = "max’ oF (C.27)

C.24 Dominant direction

Let ng be the number of segments in S (n, = n — K, with K the number of strokes).

h1+ hs
fu=—"2 (C.28)
Ng
ho + h
fos = =8 (C.29)
Ng
hs + h
fog = ———" (C.30)

Ng
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hy+h
far = 7411 2 (C.31)

a

C.25 Local changes in direction

Local angle benefit from smoothing by linear combination of 6; and OF (refer to f14 and

f16):
YF =0, + (1 —7)0F (C.32)

In the HBF49 feature set [25] the values are set empirically to v = 0.25 and k = 2. The
contributions of ¥ angles are accumulated in four histogram bins uniformly distributed
in [0, 7]. Contributions to the histogram are weighted by the inverse of their angular
distance with the central direction of the two neighboring bins. The features are obtained
from the histogram & divided by n, (see fas-for).

fos = @ (C.33)

J29 = ) (C.34)
N

fs0= hi2) (C.35)
N

f31= i3] (C.36)
N

C.26 2D histogram

For the 2D histogram we divide the rectangular bounding box around the figure into
3 x 3 partitions of equal size. Sampling points are sorted into the 9 cells resulting
from partitioning [49]. For each sample point a fuzzy weighted contribution to the 4
neighboring cells is computed, where the weights depend on the distance from the point
to the cell centers [5].

n—1

fa2 = % ; pa1(sq) (C.37)
1 n—1

fa3 = n Z pa2(si) (C.38)
i=0
1 n—1

faa = ma(si) (C39)
i=0

n—1
1
3= ; t21(8;) (C.40)
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1 n—1

f36 = 5 ;NQQ(Si)
1 n—1

Jar = ﬁ ;M%(Si)
1 n—1

f3s = -~ ;M:ﬂ(si)
1 n—1

f39 = - ;%2(81)

n—1

fao = % ; M33(Sz‘)

C.27 Hu moments

(C.41)

(C.42)

(C.43)

(C.44)

(C.45)

Let 4 = (e, f1y) be the center of gravity, then the central inertia moments are computed

as follows .

Mpg = Y (@i — pa)’ (Yi — py)?,  for0<p,g<3
=1

In order to guarantee scale independence the moments are normalized:

m . p+q
qu:mig,z, Wlth")/:l—'—T

The seven Hu moments [47] are computed as:

fa1 = vo2 + 120
faz = (20 — vo2)” + 402,
fas = (30 — 3v12)% + (Bva1 — 1s)?
faa = (V30 +v12)” + (Va1 + v03)°

fas = (30 — 3v12)” (V30 + v03) {(Vgo +v12)? — 3 (var + V03)2]
+ (3v21 — 103) (Vo1 + 103) {3 (v30 + v12)* — (va1 + 1/03)2}
fa6 = (V20 — v02) {(Vgo +v12)? = (var + V03)2]
+ 4v11 (V30 + vi2) (Va1 + vo3)
far = (3va1 — wo3) (V30 + 112) [(Vgo +v12)? =3 (va1 + l/og)ﬂ

— (v30 — 3v12) (V21 + 1p3) {3 (v30 + V12)2 — (vo1 + V03)2}

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)
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C.28 Normalized convex hull area

Let H be the convex hull around the gesture, then Ay denotes the area of the convex
hull.
Ap

— (C.55)

fas =

C.29 Compactness

fag = — (C.56)
H



Appendix D
Sonntag et al. Feature Set

The features described in this section are implementations based on the 14 features
described by Sonntag et al. [96]. For this section we use the following notations:

A stroke is a sequence S of samples,
S={5lic0,n—1],t; <tiy1} (D.1)
where n is the number of recorded samples. A sequence of strokes is indicated by
S={Sili € [0,m —1]} (D.2)

where m is the number of strokes.

The centroid is defined as

S|

n—1
== 5 (D3)
=0

where n is the number of samples used for the classification, the mean radius (standard
deviation) as

1 n—1 B .
=~ 115 — il (D4)
i=0
and the angle as
@5, = COS { (5i = 8i-1) (51 = i) } (D.5)
[si = si—1ll l|si+1 — sil

D.1 Number of Strokes

fr=18 (D.6)

97
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D.2 Length
n—2
fo=>_lIsi = sital (D.7)
1=0

D.3 Area

The area covered by the sequence of strokes S is defined as the area of the bounding box
that results from a sequence of strokes. We calculate the area of the convex hull A based
on Graham’s algorithm[38]

f3 = Area(Conv(S)) = A (D.8)

D.4 Perimeter Length

The length of the path around the convex hull

fa=Conv(S)]| (D.9)
D.5 Compactness
_ lIconu(s)|?
fo="——0 (D.10)

D.6 Eccentricity
Let a and b denote the length of the major or minor axis of the convex hull, respectively
b2

fo=y\1-% (D.11)

D.7 Principal Axes

(D.12)

Q| o

fr=

D.8 Circular Variance

Let 41, denote the mean distance of the samples to the centroid p. The circular variance is
then computed as follows

n—1
o= —— 3" (lsi — ull - ) (D.13)

e 5
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D.9 Rectangularity

D.10 Closure

fro = llso — sall

Ja

D.11 Curvature

Let ¢(s;) be the angle between the 5;-75; and ;5,71 segments at s;.

fu = z_: o(s:)
D.12 Perpendicularity
fi2 = Z_: sin (i0(s4))”
D.13 Signed Perpendicularity
n—2 )
fis =Y sin (p(5))°
i=1

D.14 Angles after Equidistant Resampling

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

For this feature we do an equidistant resampling with 6 line segments. The five angles
between succeeding lines are considered to make the features scale and rotation invariant

(normalization of writing speed).

4 4
fia = Z sin(q;), Z cos(«)
i=0 i=0

(D.19)
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