
SAARLAND UNIVERSITY

Faculty of Mathematics and Computer Science
Department of Computer Science

MASTER THESIS

Improve CNN Performance Using User
Feedback

submitted by

Md Abdul Kadir
Saarbrücken
January 2022

Advisor: Dr. Fabrizio Nunnari
Cognitive Assistants
DFKI GmbH
Stuhlsatzenhausweg 3
Campus D3.2
66123 Saarbrücken
Germany

Reviewer 1: Prof. Dr. Antonio Krüger
DFKI GmbH
Stuhlsatzenhausweg 3
Campus D3.2
66123 Saarbrücken
Germany

Reviewer 2: Prof. Dr. Daniel Sonntag
DFKI GmbH
Stuhlsatzenhausweg 3
Campus D3.2
66123 Saarbrücken
Germany

Applied Artificial Intelligence
University of Oldenburg
Marie-Curie Str. 1 D-26129 Oldenburg
Germany

Submitted
28th January 2022

Saarland University
Faculty MI – Mathematics and Computer Science
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany

Declarations

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Acknowledgments

Foremost, I would like to convey my heartfelt appreciation to my advisor Dr. Fabrizio
Nunnari for his ongoing support of my Master’s research for his patience, encouragement,
and spirit. His advice assisted me in the research and writing of the thesis. I could not
have envisioned having a better advisor and mentor for my Master thesis.

Besides my advisor, I would like to thank Prof. Dr. Daniel Sonntag for giving me
guidelines and inspiration on the human-in-the-loop AI paradigm.

Furthermore, I would like to thank Prof. Antonio Krüger for his precious feedback on
the Master’s thesis seminar.

I would also like to thank my friend Omair Shahzad Bhatti and Chirag Bhuvaneshwara
for continuously motivating me.

Last but not least, I would like to thank my wife, Fatema Tuj Johura Tonny, and my
parents, Md Abdul Hasim and Ruhena Akter, for their continuous support.

Abstract

A convolutional neural network (CNN) is a special kind of neural network that got
massive attention in image classification and computer vision tasks. Nowadays, CNN
is deployed in real-life applications, for example, autonomous driving and disease
classification, although it is a black-box algorithm. One can train a CNN on a large
amount of skin cancer images and deploy it in real-life applications. Dermatologists
can use the classifier as a decision support system (DSS). However, its acceptance is
constantly challenged by critique when it is involved in making sensitive and risky
decisions. Due to the black-box nature of CNN, it is difficult to identify the reasoning
behind CNN’s decision. Similarly, the neural decision mainly depends on training on a
large amount of data and does not allow user interaction in the post-deployment phase.
CNN models are limited to making decisions only; they are not built to receive feedback
from users. One popular application of CNN is skin cancer classification. To overcome
this limitation, we propose user feedback-based fine-tuning. Our proposed method will
let users give feedback on CNN’s output. This thesis investigates the effect of providing
feedback on CNN’s visual explanation and classification in the skin lesion classification
task and observes how the algorithm reacts to the user intervention. More specifically,
the objective of the thesis is to visualize the reason for skin lesion classification, and
if the reasons are not correct, use user feedback to tune the CNN. We propose a novel
CNN architecture that integrates the Grad-CAM technique for explaining the model’s
decision in the training phase. We observe that fine-tuning our model using simulated
user feedback on explanation and classification improves the model’s performance in
providing visual explanation while retaining classification accuracy.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Machine Learning and Neural networks . 2

1.3 Evolution of ML methods . 3

1.4 Convolutional neural network . 5

1.5 Online machine learning . 7

1.6 Interactive learning . 8

1.7 Research goals and outline . 8

2 Related work 10

2.1 Explanation methods . 10

2.1.1 Input augmentation . 10

2.1.2 Class activation mapping . 11

2.2 Self-explaining neural networks . 13

2.3 Interactive and explainable AI . 13

2.4 Domain specific related work: skin cancer detection 17

3 Technical background 21

3.1 Transfer learning . 21

3.2 Base Architecture . 22

3.2.1 Training data . 22

3.3 Saliency map . 25

3.4 Thresholding saliency map . 26

3.5 Loss function . 27

3.6 Online and incremental machine learning 28

3.7 Optimization technique . 28

4 Method 30

4.1 Self explainable model . 30

4.2 Integrating the explanation with the original model 32

4.3 User feedback . 34

4.4 Implementation . 34

viii

5 Experiments and Results 36

5.1 Data description . 36

5.2 Data preparation . 36

5.3 Simulating feedback on the full simulation set 38

5.4 Simulation on slices of data . 39

5.5 Training on different loss functions . 40

5.6 Experiment using unbalanced data . 40

5.7 Experiment using reduced balanced data 41

5.8 Experiment using upsampled balanced data 44

5.9 Result of sliced simulation . 46

5.10 Training performance . 48

6 Conclusion 49

6.1 Summary . 49

6.2 Evaluation . 50

6.3 Future work . 50

Bibliography 52

ix

Chapter 1
Introduction

1.1 Motivation

A Convolutional Neural Network (CNN) [68] can detect malignant skin lesions; however,
it cannot produce the correct explanation behind a prediction all the time. As a result,
the acceptance of such algorithms in the medical domain is quite rare. In image clas-
sification, there are several ways to explain a prediction. Nonetheless, in some cases,
the explanations can be misleading, and the network does not provide the flexibility of
learning from a given correction on the misleading explanation. On the one hand, if we
put human decision-makers in that situation, they can learn from feedback. For example,
let us compare the decision-making approach of humans and neural networks. We see
that if humans make a wrong decision and explanation, they can perceive the reason for
the mistake and can take necessary action to avoid the same kind of mistake in the future,
given that there is an availability of correct feedback. On the other hand, CNN can only
give predictions and explanations but can not learn from feedback if the prediction or
the explanation is incorrect.

These limitations of neural networks fall under the categories of lack of interactivity. As
the domain of the experiment is image classification, here we focus only on the deep
convolutional neural network because it performs better than a fully connected neural
network in image classification [45]. The deep CNNs are deep in terms of layers. Each
of the layers contains many convolution kernels. They identify different features of an
image, and based on the detection of features; the neural networks classify an object on
the image. Nonetheless, the high performance of CNN, the explanations of classifications
are also required in the application domain. Researchers introduced visual explanation
techniques to introduce explainability in deep learning-based image classification. They
do nothing but visualization of the discriminatory regions of an image based on specific
class identity [90, 73, 114]. Highlighting class discriminative regions in an image is an
example of explainability. These approaches show a clear path to explainability in image
classification. However, what if the visual explanation wrongly identifies the location
of interest regardless of the classification result. How can we fix this problem? Imagine

1

2

that in the field of dermatology, if we show a wrong visual explanation of a skin lesion
classifier to a dermatologist, s/he could probably identify it and provide feedback. We
can leverage the feedback to update the classifier.

1.2 Machine Learning and Neural networks

CNN has an enormous impact on computer vision and image processing. Much research
in computer vision and image processing has reached a milestone due to the advancement
of CNN architectures. Many CNN models can classify objects as accurately as a human
[48]. In the past, image and video processing were critical tasks. They required a lot of
mathematical techniques to identify features in frames. Due to the advancement of CNN,
one can now easily apply a pre-trained CNN model in a variety of image and video data.
From home to large industrial, everywhere there are potentials for CNN. Home security
cameras now can use CNN to detect the known person in a house. Cars use a set of
cameras to detect objects nearby for safety. Self-driving cars use CNN to detect and map
roads. Detecting the number plate of cars is also an application. Smartphones use CNN
to detect the owners’ faces to unlock. Additionally, we can use CNN in industrial devices.
Anomaly and fault detection in products is one example. We can also use it to measure
the stress levels of industrial workers. It will increase productivity. Besides image data,
we can apply it to text and time-series data. CNN can improve disease diagnosis. As we
know, a large part of medical devices uses screening techniques, and doctors identify
diseases based on the screening image. Doctors can feed MRI, X-ray, skin lesion data
to CNN to find helpful information. It will reduce the medical cost by minimizing the
required time for diagnosing patients. Also, if a CNN can diagnose an acute disease,
patients with less acute diseases will not have to go to specialists or go for expensive tests
in the first place. As a result, it will save time and reduce the cost of high-priced tests. A
CNN can detect skin cancer by looking at images of skin lesions. Detecting malignancy
of skin lesions using a neural network is a cost-effective and handy alternative.

Machine learning (ML) is a subset of data-driven computer science, statistics, and arti-
ficial intelligence. It deals with the algorithms that utilize data to infer decisions and
predictions. The general purpose of ML algorithms is to infer information from data. The
task of an ML algorithm can be classification, object detection, or cluster finding. We can
divide ML algorithms into three main categories based on the task and data. Supervised,
unsupervised, and semi-supervised are these three categories. The supervised algorithm
deals with a task where ground truth is known. For example, we need a supervised
ML algorithm for object classification tasks. The requirement for training supervised
ML algorithms is ground truth data. By iteratively looking at ground truth, supervised
algorithms learn to do classification. This iterative approach is also known as training.
For example, in plant diseases prediction using a picture of a plant leaf, the disease name
is the ground truth, and the leaf’s picture is the feature. The feature is the information
from which an ML algorithm infers a decision.

Differently, an unsupervised algorithm deals with data where ground truth information
is unknown. Localizing clusters in a dataset is an example of an unsupervised algorithm.
The unsupervised algorithm looks at the features in the data and identifies boundaries
between different clusters based on the pattern of the data. Moreover, a semi-supervised
algorithm falls between supervised and unsupervised algorithms. In reality, there is a
limited amount of ground truth data. Many datasets have missing ground truth. In such
a scenario, we can utilize a semi-supervised algorithm. It learns from a small amount of
ground truth data and a vast amount of feature information. This thesis falls under the

3

Figure 1.1: This figure gives an overview of a hypothetical human-in-the-loop skin cancer
classification and explanation system.

hood of supervised machine learning.

Nowadays, the IT industry uses machine learning algorithms for business purposes. The
health sector is also looking forward to employing machine learning algorithms. Initially,
ML algorithms were rudimentary and explainable. However, over time researchers are
introducing more complicated algorithms. As a result, ML algorithms are becoming
less interpretable. For example, when an ML algorithm infers a decision, it comes from
mathematical reasoning. The ability to present this mathematical reasoning to a user
is explainability. Less complex ML algorithms are mathematically explainable. On the
other hand, more complex algorithms are less explainable because it is hard to identify
how they model input and output relations in specific situations. However, explainability
is the far-reaching attribute of an algorithmic model.

Besides this, models must ensure one more attribute; interactivity, for real-life applica-
tions. The interactivity of a model is the ability to provide and accept information from
the outside world. Generally, the ML algorithms lack interactivity because they are not
designed to get information from the outside world. Introducing interactivity is one of
the goals of this thesis. Figure 1.1 shows an interactive system where an image CNN
classifier classifies skin cancer images and explains them in front of a dermatologist.
The dermatologist uses the system as an assistive tool. However, if the result is not
convincing, s/he can provide feedback to the system.

1.3 Evolution of ML methods

The history shows that the least square linear regression was the first machine learning
algorithm that finds a rough linear fit to a set of point. Legendre and Gauss used it for
predicting planetary movement in 1805 and 1808. Later, in the 1830s and 1840s, Verhulst
invented the logistic function under the guidance of Quetelet. It is the core of logistic
regression. It is predominant for classification. Similarly, Fisher proposed LDA (Linear
Discriminant Analysis) for classification for categorical variables in 1936. In 1951 Fix

4

and Hodges introduced a non-parametric classifier, k-NN (K-nearest Neighborhood).
For linear classification, Rosenblat proposed perceptron in 1958. It is the elementary
artificial neural network (NN) model. Initially, these algorithms were explainable, but
later more complex machine learning algorithms came. In 1992 Boser and colleagues
proposed SVM (Support Vector Machine) for classification and regression. A few years
later, the research community adapted the algorithm. It showed very high accuracy in
low-resolution image classification. It finds the separation line between two classes in a
dataset. It uses kernels to transform features to a linear plane from nonlinear data. Linear
SVM models are interpretable like other linear model. However, when we use nonlinear
kernels, they lose interpretability.

Although the idea of artificial neural networks is old, the application has become popular
at the end of the twentieth century. A neural network, also known as an artificial neural
network, is a set of artificial neurons connected in various fashions. An artificial neuron
mimics the neuron of the brain. The mathematical implementation does nothing but
calculate the inner product between inputs and weights and passes through nonlinear
activation to generate output. Weighs are just numbers that give priority to each in-
put. They are learned through training. Nonlinear activation is just a transformation
function for the inner product. Figure 1.3 illustrates the functionality of a neuron and a
neural network. Figure 1.3a is a neuron with two inputs, a1 and a2. These two inputs
get multiplied with weights and then pass through the activation to generate output.
Activation is essential for neural networks to introduce nonlinearity. Neural networks
are unable to find nonlinear separation lines between classes without nonlinearity. In
reality, features of different classes of objects are only nonlinearly separable. So neural
networks must ensure nonlinear separation capability. ReLU, Sigmoid, Thanh, and
other activation functions are only a few examples. ReLU is one of the commonly used
activation functions. Figure 1.3b is a small neural network with four inputs and one
output. Depending on the task, the number of inputs and output can be arbitrary. The
layers between the input and the output layers are called hidden layers. In this picture,
we see two hidden layers. The input and the hidden layers aim to change the feature
from one hyperspace to another. The output layer categorizes or forecasts the results.

A convolution neural network (CNN) utilizes convolution operation instead of an inner
product in the layers. The convolution operation has been a familiar term among the
signal processing community for a long time. However, it created an enormous impact
in deep learning after 2010. A convolution is simply moving the inner product of the
signal with a kernel. A kernel can be a vector or a matrix. A convolution operation
helps to reduce the number of weights in a neural network. Images have a large number
of features where each pixel is a feature. Because of the large number of pixels in an
image, a NN requires a vast number of weights. As a result, learning the value of these
weights takes a very long training time. Contrary, a CNN make it simple by replacing
all the weights with the kernel. For example, a CNN kernel consists of fewer weights.
It takes less time than NN during training. Figure 1.4 shows a simple convolution
operation. A cascade of a convolutional neural network and a fully connected neural
network shows good performance. We also interpret it a CNN. Next section, we will
discuss more on CNN. Moreover, recurrent neural network (RNN) is different from
the other two networks. It passes temporal information in the network and uses the
temporal connection between nodes. As it is out of the scope of this research, we do
not go into discussing details. In the previous paragraphs, we talked about CNN,
and we learned that deeper CNN is necessary for better performance. However, a
deeper model means there are millions of learnable parameters. Training such a model
requires a high computation power. Also, classifying high-resolution images requires a

5

Figure 1.2: This graph presents the growth of GPU from 2006 to 2020 [87]. The X-axis represents the years,
and Y-axis represents the power of GPU. The right column shows how much energy a GPU consumes.

(a) An artificial neuron (b) An artificial neural network

Figure 1.3: Pictorial description of a neuron and a neural network

powerful computer. Due to the advances in GPU technology, it became easier to train
very deep CNN on millions of images before twentieth-century computers were not
decisive. Hence, the growth in machine learning was not upward. However, machine
learning and deep learning advancement research skyrocketed at the beginning of the
current century [42]. Figure 1.2 shows the growth of GPU technology from 2006 to 2020.
CuDNN, Cuda-convnet, Caffe, Torch, Tensorflow, and a slew of additional GPU-based
CNN libraries have been developed to make CNN implementation on GPUs as efficient
as possible. This advancement also accelerated deep learning research.

1.4 Convolutional neural network

A convolutional neural network is a special kind of neural network that uses convolution
operations to extract features from data and, predominantly, deals with image data.
Convolution kernel is the main ingredient to extract features from images. Kernels are
nothing but weights of the CNN. We already discussed that neural network models learn
weight through training on a large amount of data. For CNN, this statement also holds.
One can train a CNN model on a large amount of image data. It iteratively updates the
kernel values during training to find an optimal value. Precisely, training a CNN is to
find kernels that can detect specific features from images. Traditionally, researchers used

6

Figure 1.4: A convolution operation of 2D image with a 3× 3 kernel

Figure 1.5: A convolutional neural network (CNN) block diagram by Saha [86]

predetermined kernels for feature detection from images. These predetermined kernels
are also known as filters. There are several kinds of filters for detecting features from
images. The Sobel operator [107] is one example of such a filter. In the past, researchers
employ filters for attribute detection from an image. Then, they passed these features into
an ML model (i.e., SVM) to detect objects on the image. It has a limitation; for example,
it can only identify known features. A CNN can overcome this limitation by learning
unknown attribute detection kernels. There are several layers in a CNN. The purpose of
each layer is to detect different kinds of features from images. A CNN can have multiple
fully connected neural network layers before the output layer. For example, figure 1.5
shows the architecture of CNN. There are three main parts in figure 1.5, convolution
layer, fully connected layer, and output layer. The purpose of convolution layers is to
detect task-specific features. Contrary, fully connected layers transform the features
into different hyperspace, and the output layers classify objects in the image using that
transformed feature. Besides the layers mentioned above, it has pooling and dropout
layers. The purpose of the pooling layer is to squeeze the information, and the dropout
layer randomly drops some information to reduce the training time and overfitting.

We have already discussed the convolutional neural network. Most of these architectures
deal with classification tasks. In this section, we will discuss "Very Deep Convolutional
Networks for Large-scale Image Recognition (VGG16)" [94] as it is the core architecture
used in this thesis. Before it, many architectures were published [45, 113, 91, 94]. The
general differences between VGG16 and the former architectures are that in VGG16,
kernel dimension decreased, and the depth of the architecture increased. However,
we must thank the original AlexNet [45] for showing the right direction in the very
beginning. After VGG16, many architectures came with higher accuracy [94, 98, 80].
They are more profound in the number of layers than the VGG16. We could choose one
of this contemporary architecture, but according to Nunnari et al. [67], VGG16 shows
great success in generating saliency maps.

7

Figure 1.6: Layout of VGG16 detecting skin cancer from dermoscopic image.

Let us get introduced to VGG16. It is initially designed for image size 224x224. The
images pass through a stack of convolution layers of size 3x3. The stride of convolution
is one pixel. Five max-pooling layers are applied after each convolution segment, per-
forming spatial pooling (not all the convolution layers are followed by max-pooling).
With stride 2, max-pooling is done across a 2x2 pixel frame. Three Fully-Connected (FC)
layers follow a stack of convolutional layers (which have varying depths in different
topologies). The first two fully connected layers have 4096 neurons, and the output
softmax contains 1000 channels for 1000 classes. Figure 1.6 shows the arrangement of
convolution, pooling, and fully connected layers. A fully connected layer is also known
as a dense layer. This thesis employs a modified version of this architecture. In the
implementation part, we discuss more on the modification.

The idea of CNN is not very old. There is plenty of research on the application of CNN in
different aspects of life. In the motivation section, we will look at some of the applications
and limitations of current CNN models.

1.5 Online machine learning

Another aspect of machine learning is online learning. Traditional machine learning
learns from a big chunk of data, but online learning algorithms learn from a stream
of data and update knowledge continuously. On the other hand, an offline learning
algorithm requires retraining the model on new data for knowledge updates. Naturally,
data is not abundant, so it is not convenient to collect a plethora of data at one time. As
a result, the offline learning algorithms are not robust. Online line learning algorithms
overcome this limitation by training sequentially. When new training data enters, an
online learner can promptly and efficiently update the model, which solves the short-
comings of traditional batch learning. For supervised learning tasks, online learning
algorithms can be developed. One of the most prevalent tasks is classification, which
aims to predict the categories to which a new data instance belongs previous training
data examples with labeled categories. In online supervised learning, a learner needs
complete feedback information. Many online learning problems can be expressed as an
online convex optimization problem that can be solved using the online gradient descent
OGD algorithm [37].

8

1.6 Interactive learning

Human-in-the-loop (HITL) machine learning is a potential subfield of machine learning.
A typical ML algorithm requires a large amount of data to train a model. However, we
know that the supervised data is limited. It is the biggest challenge for the ML algorithm
to advance. Similar to transfer learning, researchers explore HITL machine learning to
overcome data limitations [108]. Human-in-the-loop machine learning is also known as
interactive learning. According to Monarch [61], HITL machine learning is a strategy
that combines human and machine knowledge to ensure one or more of these criteria.

1. Improve a machine learning model’s accuracy.

2. Faster attainment of a machine learning model’s target accuracy.

3. To improve accuracy, combine human and machine intelligence.

4. To improve productivity, use machine learning to assist human jobs.

Other than overcoming data limitations, human-in-the-loop (HITL) machine learning
benefits the users in several ways. Most ML models present results to users, which
is not a very expressive way of helping humans. Humans seek the explanation and
reasoning behind every effect. Interactive machine learning overcomes this limitation.
Similarly, human likes to see how a system learns after giving feedback. Updating initial
decision based on feedback convinces humans how the system is learning. This kind
of interaction is possible in HITL machine learning. Using the HITL approach, one can
develop a user-friendly algorithm.

1.7 Research goals and outline

CNN does not learn from feedback, as discussed in the last part. This section explains
how user feedback can be incorporated into CNN models (Figure 1.1). This thesis aims
to investigate a way for incorporating user feedback into CNN training. We will look at
how user feedback keep the model up to date with new information. We are primarily
concerned with post-deployment training. A CNN model is trained on a vast amount of
data initially. It is deployed to conduct various activities following the evaluation process,
such as performance testing. A CNN model can be retrained on new data regularly once
deployed. However, after deployment, a model can make a wrong decision, and the
user can understand it by looking at the explanation. Figure 1.7 shows classifications
and explanations of a dog and husky classifier. Although classification performance is
good, the model classifies based on unrelated features. For example, if we look at the
explanation of the classifier, we see that model is looking at snow and classifies it as
a wolf. It concludes that the feature in the image model supposed to consider is not
considered.

There are four possible situations in the post-deployment phase of a model.

1. Classification and explanation both are correct.

2. Classification is correct, but the explanation is incorrect.

3. Classification and explanation both are incorrect.

9

Figure 1.7: An example of right classification for wrong reason. [81]

4. Classification is incorrect, but the explanation is correct.

For the first situation, we do not have to deal with anything. We keep the model as
it is. In the second possible situation, we must modify the model knowledge. The
model is doing the right classification, but generating the wrong explanation. Roughly
speaking, this kind of classification does not hold a value because the model is looking at
the wrong perspective. To solve this problem, we need to retrain the model by giving
correct feedback. The third scenario, model is classifying something that is not the task
of the model. The model learned to recognize features that were not at all similar to
the task’s features. For this case, we need to give information on the correct feature for
updating its knowledge. When the explanation is correct but the classification is wrong,
the model is not understanding the feature. For this case, we need more data to classify
features correctly. One way to solve these three problems is to retrain the model using
user feedback. However, CNN only retrains based on the only class label. They are not
originally built to learn from explanation because explanation data is very rare.

Here, we are exploring a way to update the model’s knowledge based on user feedback.
User feedback can be of different types. We considered only classification and explanation
feedback. We modify the loss function of the original model and integrate both of the
feedbacks as ground truth when the model makes a wrong decision. For the simplicity of
the simulation, we feed the user feedback to the model regardless of the model’s decision
because the model only learns when it makes a wrong decision. In a practical application,
users can draw the contour around the critical region of skin lesion using interactive
tools to generate feedback. Firstly, this thesis presents a way to modify a pre-trained
model to introduce explainability (e.g., self-explainable model). Secondly, we integrate
explanation loss with the original classification loss. In this modification, we ensured that
the pre-trained model performance sustains. Thirdly, we evaluate the performance on
classification, explanation. This evaluation shows us the effect of integrating explanation
in the loss function.

Chapter 2
Related work

This section presents the researches related to explainability and interactivity in machine
learning and the deep learning domain. At the beginning phase of the development,
machine learning and deep learning algorithms were black-box models except for linear
and tree-based models. Black-box models only predict, but they do not explain the
prediction. It is the main reason behind the slow growth in the deployment of this kind
of algorithms. Many researchers tried and are still trying to find out ways to explain
the decision of ML/DL algorithms. There are two ways to explain them, explaining the
model itself, or explaining the reason for a specific prediction. They are known as global
and local methods. In this thesis, we will only focus on the local methods because the
thesis aims to improve the explanation of a sample-based prediction. First, we will cover
the different explanation generation techniques of CNN-based and typical ML-based
image classifiers. After that, we will explain the existing interactive method where users
provide feedback to NNs/AI algorithms to improve accuracy. We will also present the
limitation of these methods.

2.1 Explanation methods

There are generally two ways to locally explain a neural network’s decision. The first
way includes augmenting attributes, and the second way involves calculating the class
activation map (CAM) for a prediction. Here, we will explain the research related to the
augmentation-based explanation technique and the CAM technique.

2.1.1 Input augmentation

Ribeiro et al. [81] propose LIME, which can explain the prediction of any black-box
classifier. In elaborate form, LIME is Local Interpretable Model-agnostic Explanations.
They use textual or visual representations of reasons of classifiers’ decision by explaining
a prediction. To explain a prediction, the LIME first creates an augmented dataset from
the original data and predicts what is in the original data . Then, it calculates the distance
between the original data and the augmented data. To explain a black-box model, it feeds

10

11

the augmented dataset to the model and observes the output. It only selects m number
of augmented features based on the likelihood of the most probable output. Here, the
most probable output is the prediction for the original feature. The authors say that the
distance between the top m augmented features and the original feature represents the
importance of the top m features for the prediction. To see how accurate an explanation
is, they use two explainable modes (Sparse logistic regression and decision tree) and
train on a toy data set with a maximum of 10 essential features (gold features). During
the test, they calculate the fraction of the ten golden features present in the explanation
of LIME. The more significant the fraction, the higher the explainability of LIME. It only
focuses on generating an explanation but does not give a solution if it is wrong.

Similarly, RISE [73] is another technique that utilizes the feature augmentation method
to explain black-box classifiers. It identifies the class-specific essential regions of an
input image by predicting a masked version of the input. The mask is random, not the
choice. They calculate the confidence score of the target class for each masked version
and then do a linear combination of the confidence scores with the masks. This linear
combination defines the importance of specific image pixels during the classification.
The value of pixels determines the crucial pixels in the explanation (saliency map). RISE
can be used with any classification algorithm for generating explanations. The authors of
RISE also propose an automatic evaluation metric to check the quality of an explanation.
By removing the pixel from the image based on an explanation, they can determine
which image areas explains the image better. This metric requires the insertion and
deletion of essential pixels in an image for a specific classification task. They assume the
AUC (Area under the curve) for classifying an image is a function of the importance of a
pixel in the image. Removing necessary pixels reduces the AUC; meanwhile, introducing
important pixels increases AUC.

Lundberg and Lee [57] propose SHAP (SHapley Additive exPlanation) for explaining
prediction. SHAP assigns an ’importance’ parameter to each input feature for a specific
prediction. SHAP unifies six existing explanation methods, LIME [81], DeepLIFT [93],
Layer-Wise Relevance Propagation [6], Shapley regression values [53], Shapley sampling
values, and Quantitative input influence. The reason for unification is that all the
methods mentioned above use a linear representation of a complex model for generating
explanation. According to the authors, the methods mentioned above do not always
comply with three important properties of estimating SHapley [106] values in game
theory: local accuracy, missingness, and consistency. The three properties are very
desirable for assigning the importance of features during classification. So, they propose
one unique solution that complies with the three properties. Although finding a unique
solution is an NP-hard problem, the authors propose some surrogate functions for finding
the unique solution. This unique solution is called SHAP. SHAP can explain any machine
learning model without knowing the internal structure. However, It can be a little slower
for some models than others.

2.1.2 Class activation mapping

Class activation technique generally works in CNNs. In this technique, the discriminatory
classification features are extracted from the activation of any convolutional layer.

Generating class activation map (CAM) is a technique for localizing class-specific signifi-
cant features used in explaining convolutional neural networks. CAM has a remarkable
localization capability. Zhou et al. [114] describe a procedure for generating CAM using
global average pooling (GAP) on convolution layers. GAP is the weighted sum of the

12

convolutional feature map. In some CNN, a neural decision is made from the weighted
sum of the GAP outputs. According to the authors, we can spot important image re-
gions by linearly combining the weights of the output layer with the activation of the
last convolution layer. CAM can be used to localize objects during classification. They
evaluate the localization performance of CAM on weakly-supervised object localization
on the ILSVRC [84] benchmark. They found that CAM can do accurate object localization.
Although these methods perform well, there are some limitations. CAM only works
on fully connected CNN. It does not work if there are fully connected layers before the
output softmax layer. Most of the high-performance CNN model has more than one fully
connected layer [66, 94, 35].

Selvaraju et al. [90] propose an explanation technique known as Grad-CAM, which is an
extended version of CAM. It utilizes any target class flow gradients through the final
convolution layer. The gradients of the target class in the last convolution layer represent
and localize the important regions or features for identifying the target class. They
extract the gradient in the last convolution layer because the spatial gradient information
vanishes in the fully connected layer. The authors assume that the last convolution layer
extracts semantic class-specific information necessary for a specific class localization.
The Grad-CAM method splits into two steps. The first step calculates the activation of
the last convolution layer. This activation has information about all classes. The second
step removes information about other classes and only keeps the information about the
class with maximum probability from the activation output. To do so, it calculates the
weight of each activation based on the gradient of the most probable class. Using a linear
combination of the activation and the weights identifies necessary pixels of an image in
the same resolution of the last layer for a classification. Later, the resolution increases to
the original input image size of the network for better presentation. The resultant output
is known as a saliency map. The authors also test the method using weakly-supervised
localization. In this method, they binarize the saliency map by thresholding at 15% of
the maximum value of each pixel and compare the most significant connected segment
with the bounding box ground truth of the object by calculating the intersection over the
union. We see Grad-CAM generate a local explanation, but it does not provide a way to
fix a CNN when the explanation is wrong.

Grad-CAM++ [12] is an extended version of Grad-CAM. In "Improved Visual Explana-
tions for Deep Convolutional Networks", Chattopadhay et al. [12] propose this gener-
alized method. It can produce improved visualization behavior of CNNs’ predictions
and performs better in visualizing multiple instances of an object during a classification.
It produces an explanation similar to how Grad-CAM produces an explanation, but
the only difference is that it only considers the positive gradient of the output class.
We descibed the two steps for producing a saliency map in Grad-CAM in the previous
section. In Grad-CAM++, the first step is the same to calculate convolution activation.
However, in the second step, it calculates the gradient of the output class concerning
the last convolution layer, passes it to a ReLU [1] function, and multiplies it with a
weight-coefficient to calculate the weights. Weight-coefficient calculated from the inverse
of the sum of the output of the ReLU. Finally, multiplying the activation with the weight
produces an explanation (a saliency map).

There are other works related to the CAM, SmoothGrad [95] and Smooth Grad-CAM++
[69]. These methods are similar to previously motioned two mentioned, but the only
difference is that these methods add Gaussian noise with the input image. Introducing
noise in these methods reduces the noise in the saliency map. Barata et al. [5] proposed
a hierarchical CNN-LSTM attention model that uses hierarchical information about
classes and then produces attention mapping and hierarchical classification results. The

13

attention map hints at how the classification algorithm looks at the objects in an image.

2.2 Self-explaining neural networks

Alvarez-Melis and Jaakkola [2] suggest that there are three prerequisites for ensuring
the correct explanations from neural networks. The requirements are explicitness, faith-
fulness, and stability. The authors proclaim that the existing interpretable models do
not assure the specifications. They advocate a self-explaining neural network (NN)
framework and scrutinize its performance to validate the prerequisites to overcome these
limitations. According to the authors, a linear model is self-explainable. If someone can
generalize the coefficients of a complex model to a linear model, the complex model
becomes a self-explainable one. This generalization is possible because the parameters
of a complex model can be a function of input features. They propose a learnable en-
coding function that encodes the raw input feature to human-understandable atomic
feature units. This encoding helps the network to produce explanations. Furthermore,
they introduce a gradient-regularized penalty with the objective function to ensure its
correctness. Moreover, to establish the robustness of explanations, they add a regularizer.
They also evaluate the performance of the framework in four datasets, MNIST digit
recognition [46], benchmark UCI [25], Propublica’s COMPAS Recidivism Risk Score [77],
and CIFER10 [44]. The classification test gives 99.11% test accuracy in MNIST, 82.02% in
COMPAS, and 78.56% in CIFER10.

The second test compares the visual explanation with other frameworks, e.g., LIME
[81], SHAP [57], OCCLUSION [113], and GRAD×INPUT [93], and so on to check the
explicitness. They qualitatively prove their model performs better than others. The third
experiment is indirect due to the deficiency of ground-truth explanations. It analyzes the
effect of removing input features on the prediction. In comparison with SHAP and LIME,
their model outperforms. In the robustness test, they observe the explanation change
while adding noise with the features. Using a local stability function, they calculate the
distance between the original and the noisy version and find that model’s performance
exceeds the other state-of-art models. This framework fulfills the prerequisites. However,
the additional encoder requires extra memory space to store, and training the encoder is
an additional load in a GPU. The network is not interactive. So, we might not achieve
the user’s faith on the model’s decision.

2.3 Interactive and explainable AI

Teso and Kersting [100] argue that interactive learning places the user into the loop, but
the learner stays as a black-box for the user. Here the user is an agent (e.g., human) who
can interact with the learner (e.g., a machine learning model). They also suggest a novel
explanatory interactive learning (XIL) framework that can overcome the limitation of
interactive learning. Moreover, it can help the user gain trust in the learner by introducing
completeness, directability, and understandability. In XIL, a user gives feedback to the
learner’s output in an active learning manner when required. The proposed framework
utilize LIME [78] as a local explainer and an additional component. They call the frame-
work Caipirinhas (CAIPI). They use three functionalities, labeling the unlabeled data
using user input, fitting the model on labeled and unlabeled features, and explaining
a prediction using the local explainer. By including an additional component known
as ToCounterExamples, authors allow CAIPI to learn from the user’s feedback on the

14

label and the explanation. ToCounterExamples generate counterexamples from explana-
tion correction to teach the network to avoid irrelevant features. Counterexamples are
nothing but original input images with randomized irrelevant regions. There are three
scenarios during the interaction between the learner and the user: the prediction and the
explanation are correct, both are wrong, or only the label is correct. CAIPI focuses mainly
on the last. It trains itself from the user’s feedback. It converts it into counterexamples
and then retrains the LIME again.

The authors carry out four experiments. The first one is to check how the user’s trust
increases/decreases in the model due to an explanation, and the other three evaluate
model performance. They check the impact of three different kinds of interactions
between the CAIPI and the user in the first experiment. In the first scenario (S1), they
only allow the test subject to see the label from CAIPI. In the second (S2), the test subject
can also see the explanation. The third (S3) is the same as S2, but the only difference
is that S2 converges to the correct rule, but S3 does not. In all of these scenarios, the
user can only give feedback on the label of CAIPI’s output. In each case, the test subject
answers three-question whether CAIPI eventually learned to classify images correctly,
the correct classification rule and whether test subjects prefer to see further performance
of CAIPI. After the evaluation, the authors see that the trust/distrust of the user increase
based on the interactions. In the second experiment, the authors find that CAIPI is robust
to the input noise when it learns from explanation feedback. The base accuracy for noisy
input is 48% when there is no correction. It increases to 82% when there is at least one
counterexample. In the case of more of that, it outperforms the input-gradient (IG) [83].
The last two experiments are in the textual domain. Here the framework also performs
steadily better in terms of explanation quality. CAIPI’s performance increases due to the
feedback explanation. However, the counterexample requires more disk space to store
and GPU performance to retrain the model.

The main difference between CAIPI and this thesis is how we train the network on
feedback. CAIPI augments the original training data based on user feedback and then
fine-tune or train a new model. There is no change in the objective function of the model.
Also, storing original training data is necessary for retraining. However, the approach
we follow in this thesis only requires post-deployment test images and feedback. Initial
training data is unnecessary as the model already learned from the original training data.

In "The Skincare project, an interactive deep learning system for differential diagnosis
of malignant skin lesions." Sonntag et al. [96] describe the functionality and interface
of an interactive decision support system for differential diagnosis of malignant skin
lesions. They used the baseline deep learning system that trained on ISIC [14] data.
They implement a web interface for introducing interactiveness in understanding the
explanation of neural classification. It uses U-Net [82] to extract the location, shape,
and features of the lesions in an input image and overlap them with the input image
to show the significant part of skin lesions. They show that based on the shape of
features of a lesion, an expert can easily compare them with ABCD [33] rules and find a
conclusion. The methods in the report give some generic ideas for interactive machine
learning; however, there are some limitations too. They use two different architectures
for classification and feature extraction. The classification architecture (VGG16) is only
involved in classification results, and the feature extraction architecture (U-Net) is only
involved in feature extraction. As a result, it is hard to conclude that all the features
extracted by the U-Net influences the classification result. A combined network that only
classifies the relevant features and uses Grad-CAM as a feature extractor is worth trying.

According to Teso [99], the Explanatory Active Learning (EAL) [100] algorithm depends

15

on a post-hoc explainer, and it can generate a fragile and unfaithful explanation. He says
the self-explainable active learning model is a solution to that. It is a combination of
active learning and self-explainable neural networks (SENNs) [2]. He names it Calimocho
or CALI. More specifically, during active learning, the CALI proposes a decision and an
explanation to a user. The user gives feedback (correction) if that explanation is wrong,
and based on the feedback, the model learns. This model contains two different loss
functions, classification and explanation loss. Also, a regularizer introduces stability and
robustness when there is a pixel-wise local change in the input. The classification loss is
the classical neural network loss function. However, the explanation loss is a ranking loss
that minimizes the square Euclidean distance between the model’s current explanation
and user feedback while maximizing that distance between the former and wrongly
predicted explanation. This ranking loss only contributes when the user gives feedback.
The author runs two main experiments on CALI. The first experiment is to check if it
learns from user feedback. It shows that classification loss and explanation loss decrease
significantly. The author also shows that the classification loss converges fast due to the
contribution of explanation loss. Moreover, the author experimented on the number of
SENNs’ explanation module layers. He sees that if it increases, the classification loss
decays faster.

Although this method works in synthetic data, the author does not perform any experi-
ment on a real dataset. This model uses SENNs’ architecture which has two combined
interdependent models. As a result, it requires more parameters to learn.

Ghai et al. [29] introduce Explainable Active Learning (XAL) in An Empirical Study
of How Local Explanations Impacts Annotator Experience in 2020. XAL is an Active
Learning method that also includes the explanation of the learning algorithm’s prediction
for the training sample it wants to learn. Here Active Learning (AL) is a machine learning
algorithm with human-in-the-loop for training from un-labeled data by querying a label
from a human. It means XAL is nothing but a paradigm of explaining the evolving
model during active learning. A similar paradigm, coactive learning (CL), in which
a user provides annotation on the prediction, and the model learns from that. In the
mentioned paper, the authors also conduct user studies in AL, CL, and XAL to see which
methods users prefer when it comes to the application. They studied 37 participants to
find the empirical answer of mainly three pre-defined questions. Firstly, how does an
explanation impacts the learning algorithm and its outcome? Secondly, how does an
explanation affect users’ trust, satisfaction, engagement, and cognitive workload? Thirdly,
is there any difference in the conclusion of the above two questions during the early
and the later learning stages? As a result of the experiment, it is evident that the three
models learn relatively on the same scale, but at the early stage, learning is faster than
that of a later stage. The accuracies of the three models are the same after learning during
the process. However, user trust in the model increases in the early stage of learning.
Moreover, during the later stage of learning, XAL increases the user’s engagement while
AL decreases that. Similarly, the workload on users decreases in the later stage of XAL,
but it remains the same on the user in the later stage of AL. It concludes that introducing
explanations in process active learning increases user experience. However, the authors
do not provide feedback on explanation if the model gives a wrong explanation.

Ross et al. [83] propose an idea of training differentiable machine learning models by
constraining its explanation. They show that their approach produces faithful explana-
tions of classification. The input gradient is not the perfect way of explaining neural
networks’ decisions in all use-case scenarios. So, in their approach, they regularized the
loss function using the sum of the square of pixel-wise multiplication of annotation and
input gradient. Here, annotation is a binary mask representing each pixel’s importance in

16

the input image. The latter is the gradient of the model’s output probability concerning
its input. The annotation matrix is possible to get from experts. However, in the absence
of that, the algorithm can generate multiple models based on an iterative annotation
update. There will be a correct model and corresponding explanation among them. A
domain expert can choose the best model suitable for the right reason.

We see "Clever Hans" behavior in machine learning [89]. This behavior happens due
to the less significant features in a dataset. Due to this reason, one model can show
high performance. This high performance is not valuable at all. It is also known as
"Right for the wrong scientific reasons" [89]. Schramowski et al. [89] propose a XIL
approach to overcome "Clever Hans" behavior in a plant phenotyping research task.
They introduce a human-in-loop framework to involve scientists revising a model using
a feedback loop. Their result shows that embracing the user in the learning loop can
overcome the "Clever Hans" problem. To include users’ feedback, the authors propose
a multi-purpose loss function. The loss function has two main parts: Right answer
and Right reason. The "Right answer" loss is there to train the model to improve the
classification accuracy. Similarly, The "Right reason" loss is to train the model to increase
explanation performance. It calculates the difference between the explanation and user
feedback. Here, the explanation is nothing but a gradient-weighted class activation map,
and the ground truth explanation is a mask localizing the vital region in the input image.

There is a high potential of combining local explanation with active learning to supervise
black-box algorithms. These algorithms can misjudge the quality of the model’s knowl-
edge. The online learning algorithm manifests its belief by classifying and explaining
the label of the query. If the machine performs artificially well on query instances that it
chooses, then the model is not misrepresenting its performance. This behavior can bias
machines when they present narratives to the user. Popordanoska et al. [76] propose
an approach to overcome these narrative biases. Their proposed method allows users
to choose query instances. Moreover, it shows the global explanation so that users can
choose challenging query instances.

Stuntebeck et al. [97] propose a human-in-loop machine learning framework. This
framework collects data from the patient using health sensors and trains a machine
learning model on that data. Sometimes, due to the inefficiency of the sensors, the
model prediction becomes wrong. To overcome this problem, they involve the user
in the learning loop. Occasionally, the model gives the prediction, and the user gives
feedback on the prediction by comparing what they are experiencing. Based on the
feedback, the model tune itself. This framework is similar to this research involving
humans in the learning loop. However, the feedback in this framework is only a yes or no
decision. Holzinger et al. [38] argues that automatic ML suffers in performance because
of insufficient training data; on the other hand, interactive ML has the flexibility to allow
a user to select suitable features heuristically from a vast search space. As a result, it
can reduce the complexity of NP-hard using outside knowledge (Human intervention).
The authors demonstrated the effectiveness of interactive machine learning and showed
how to open a black-box technique to a glass-box one, enabling humans to interact
with an algorithm. The authors demonstrate the interactive machine learning method
in Ant Colony Optimization (ACO) [38]. It is a solution to the shortest pathfinding
problem. According to the author, a human can interact with the algorithm using Human
Interaction-Matrix. A matrix allows the user to control ACO’s decisions while finding
the shortest path. It is an example of human interaction in classical AI problems, but in
the same manner, we can involve user interaction in modern AI problems.

17

Figure 2.1: This figure [48] gives an overview of the segmentation network. A lesion image is passed
through the network on the left side, and on the right side, it generates a segmentation mask.

2.4 Domain specific related work: skin cancer detection

Skin cancer analysis using deep learning is an emerging research field. There is a limited
amount of research published in this field. There are only 24 research papers published
on skin cancer segmentation and 36 articles published on skin cancer classification using
deep learning from 2015 to 2019 [47].

Segmentation is the method of dividing a picture into discrete sections containing pixels
with similar properties. Skin disease diagnosis relies on segmentation since it allows
physicians to see the boundaries of lesions. Figure 2.1 shows an example of skin lesion
segmentation using a neural network. Several factors make lesion image segmentation
difficult such as skin tones, air bubbles, non-uniform lighting, the physical location of
lesions, and lesion variations in respect to texture, shape, size, and location in the image
[9]. The physical variances complicate skin disease segmentation in the appearance of
skin lesions [48]. Image processing techniques can remove unwanted features from skin
lesions [51]. Then deep learning algorithms can be applied to perform segmentation.

There are plenty of deep learning methods used in skin lesion segmentation, and they
showed good performance [40, 111, 7, 31, 4]. These researches used modified versions
of fully connected CNNs (FCNs), U-Nets, GANs, or encoder-decoder architectures.
Several pieces of research were published skin segmentation where the core architecture
FCN. For benign nevi, melanoma, and seborrhoeic keratoses pictures, Goyal et al. [31]
suggested a multi-class segmentation approach based on FCN. The authors found dice
coefficient indices of 55.7 percent, 65.3 percent, and 78.5 percent for the three classes,
respectively, on the ISIC dataset. The authors used several architectures, FCN-AlexNet,
FCN-32s, FCN-16s, and FCN-8s architecture, for assessing their performance. The first
one is the variant of AlexNet, and the remainings are variants of VGG16. They also
used the transfer learning approach to overcome the data limitation. The initial data
to train the models were ImageNet [19], and Pascal-VOC [28]. Among the architecture
mentioned above, FCN-Alexnet and FCN-8s have superior performance. Phillips et
al. [74] propose a new multi-stride FCN architecture for segmenting prognostic tissue
features in cutaneous melanoma images. Multiple networks were pre-trained on the
PascalVOC segmentation dataset and fine-tuned on the prognostic tissue image. The
results demonstrated that the proposed method could attain a high degree of accuracy.
Yuan et al. [112] proposed a fully automated solution for skin lesion segmentation that
uses 19-layer deep convolutional neural networks that are trained end-to-end and do not
require previous data knowledge. Their strategy ensured effective and efficient learning
with limited training data. Additionally, they used Jaccard index-based loss function
instead of the cross-entropy loss function. They trained and evaluated their model on
ISBI 2016 and PH2 datasets, and they found their proposed method outperformed other

18

state-of-the-art algorithms on these two databases. Li et al. [47] suggested a dense
deconvolutional neural network based on residual learning. Dense deconvolutional
layers (DDLs), chained residual pooling (CRP), and hierarchical supervision are all
parts of the proposed network. It was trained from the beginning to end, with no prior
knowledge or sophisticated postprocessing methods required. Extensive trials using
the public ISBI 2016 and 2017 skin lesion challenge datasets show that their suggested
strategy outperforms state-of-the-art methods in terms of segmentation.

U-Net is a famous architecture for semantic segmentation [82]. The network was built
using FCN, and its design has been tweaked and expanded in several studies that have
shown superior segmentation results [22, 115, 39]. Moreover, there have been many
studies that have used U-Net to segment skin lesions [65, 55, 64]. They also showed
an increase in the performance. Chang [11] proposed skin Inceptions V3 NN, a newly
constructed transfer learning-based deep neural network that aids in high prediction
accuracy. For skin lesion categorization, the author inputs both the segmented pictures
and the original dermoscopic images to a deep network made up of two Inception
V3 networks. Lin et al. [52] compare U-Net segmentation performance with the C-
Means cluster algorithm. C-Means is a clustering algorithm works fast in a CPU. On
the other hand, U-Net requires enormous computational power (i.e., computers with
GPUs). Compared to the clustering strategy, U-Nets produced a much higher Jaccard
Index. U-Net gives a 0.62 average Jaccard index, and C-Means give 0.44 average Jaccard
index. To tackle the segmentation of lesions in skin pictures, Ji et al. [41] suggested a
binary segmentation approach called HCDS based on salient objects. This approach
follows U-Net. The original U-Net model has various issues in its application to skin
image segmentation: non-pathological area information remains in the segmentation
results. Ji and colleagues extended U-Net to overcome the limitation by adding a
hybrid convolution module to the direct connection between the down-sampling and up-
sampling. The scientists improve segmentation by deepening the abstract comprehension
of input characteristics in shallow layers and removing information interference from
non-pathological areas. Test on a portion of ISIC 2018 segmentation data show HCDS
method gives an IoU of 0.62 and U-Net gives IoU of 0.56. Codella et al. [15] offer a
system that integrates current advances in deep learning with well-established machine
learning methodologies to create ensembles of methods capable of segmenting skin
lesions and assessing the detected region and surrounding tissue for the identification
of melanoma. They used an ensemble of 10 U-Nets with joined RGB and HSV channel
inputs for skin lesion segmentation to get the best result. Their method gives 0.841
average Jaccard index comparable with the state-of-art result, 0.843. Canalini et al.
[8] propose an architecture that combines multiple pertained feature extractor CNN
models and encoder-decoder models. Ensembling multiple models’ decision gives an
IoU of 0.845. According to Tschandl and colleagues, transferring encoder weights from a
network trained on a classification job on pictures from the same domain might provide
helpful information for segmentation [101]. They train a fully convolutional network
using ResNet34 layers as encoding layers in a U-Net architecture. The model with the
transferred information was then trained using the official ISIC 2017 challenge dataset
for a binary segmentation. According to the results, the model with fine-tuned weights
attained a better Jaccard index than the network with random initializations. People
adopted the notion of residual block or dense block into existing image segmentation
architectures to construct effective deep networks for skin lesion segmentation, owing to
CNN classifiers’ exceptional performance in image classification tasks [48]. According
to Yu et al. [111], deep networks (more than 50 layers) can acquire richer and more
discriminative characteristics for more accurate recognition. They started by building a

19

fully convolutional residual network (FCRN) for skin lesion segmentation that included
multi-scale feature representations. The learned FCRN was then used to extract patches
from skin scans containing lesion locations, then used to train an intense residual network
for melanoma classification. Finally, they construct a two-stage framework by smoothly
integrating the proposed FCRN (for segmentation) with other extremely deep residual
networks (for classification). Experiments on the ISBI 2016 Skin Lesion Analysis Towards
Melanoma Detection Challenge dataset show that the proposed framework outperforms
the competition, placing first in classification and second in segmentation among 25 and
28 teams, respectively.

Besides the method mentioned above, GANs are becoming very popular in medical
image segmentation [3, 49, 109, 23]. However, limited research occurred using GAN in
skin lesion segmentation [75, 70, 21]. GANs showed potential in lesion segmentation.
Udrea and Mitra [102] propose a GAN-based skin lesion segmentation method that can
detect lesions with 92% accuracy in pigmented and non-pigmented images. For low-
power computers, Sarker et al. [88] propose a lightweight GAN model known as SLSNet.
SLSNet employs a GAN model to integrate 1-D kernel factorized networks, position and
channel attention, and multiscale aggregation techniques. The 1-D kernel reduces the
2-D filtering cost. The model can discriminate between the lesion and no-lesion features
with the help of the position and channel attention module. It showed a Jaccard index
coefficient of 90.63% in testing on ISIC2018 data. Peng et al. [72] proposed an adversarial
U-Net for semantic segmentation of skin lesions. They connect a discriminator network
with U-Net by a particular convolutional layer and train both networks alternatingly.
They found that this architecture improved the segmentation accuracy to 0.94 (dice score).
Besides FCN and U-Net, and GAN, there are other approaches used. For example, Ünver
et al. [103] propose an innovative and successful pipeline for dermoscopic skin lesion
segmentation that combines a deep convolutional neural network called ’You Only Look
Once (YOLO)" and the "GrabCut" algorithm. They follow four steps for segmentation,
post-processing, detection of the lesion, lesion segmentation, and post-processing of
segmentation mask. The model gives a close result to other contemporary approaches.

Besides segmentation, several pieces of research are published in skin lesion classification
[18, 56, 110, 58, 60, 50]. Some of them used shallow architecture, but some utilized
deep architecture. This section will go through some impactful research on skin cancer
classification. According to Esteva and colleagues, classifying cancer in human skin
lesions is a challenging task due to fine-grained features in lesions [27]. They show
how a single CNN can classify skin lesions using only pixels and disease labels as
input and can be trained end-to-end using lesion images. The number of images was
129,450 and contained 2,032 disease labels. The compare the performance of CNN with
21 certified dermatologists and result shows that CNN’s performance is comparable
to the dermatologists. The CNN model used in this research is Inception v3, trained
on 1.28 million images with 1000 classes. Dorj et al. [24] propose an CNN and SVM
based model for skin lesion classification. Before training, they crop and pre-process the
training images to remove unnecessary information. Then they use pre-trained AlexNet
for feature extraction. After that, they pass the feature to an SVM for classification.
The algorithm shows comparable performance with the state-of-art. Hekler et al. [36]
experient combined performance of skin lesion classifier and dermatologists. They
measure the classifier’s performance, dermatologists’ performance, and dermatologists’
and classifier’s combined performance. They found that combined performance is better
than individual performance. Furthermore, they found a classifier defeat dermatologists
in detecting skin cancer. Adjobo et al. [10] integrate Gabor filter with CNN to improve the
accuracy. They found that integrating the Gabor filter improves the accuracy by 2.37%.

20

Gabor filtering can effectively extract spatial information such as edges and textures,
thereby alleviating the strain of feature extraction on CNN. Saba et al. [85] propose
a cascaded system that uses contrast enhancement, boundary extraction, and transfer
learning together for image classification. Firstly, they transform images to HSV color
space and enhance the contrast using the first local Laplacian filtering. Secondly, they
use color CNN and XOR operation to extract the lesion from images. In the third stage,
they use fine-tuning in the Inception V-3 pre-trained (ImageNet) network for feature
extraction from the fully connected and average pooling layer. They combine the features
using hamming distance in the final stage and pass it to an MLP network (multi-layer
perceptron module) for classification. This approach gives an accuracy of 98.4%, 95.1%,
and 94.8% in PH2, ISIB, and ISIC 2017 datasets, respectively. Kawahara and colleagues
use CNN feature extractor and linear classifier for lesion classification [43]. They extract
features from the pre-trained AlexNet and use these features to train a linear classifier.
This approach had superior results compared to the other methods of that time.

We see that there are several approaches for skin cancer classification. Many of the
methods have human-level accuracy. However, the application of these methods is
constantly challenged by critique for legitimate reasons; for example, the proposed
classifiers are black-box models, need training updates on new data, and lack interactivity
with humans and the environment. So, in this thesis, we explore the interactive side of
skin cancer classification.

Chapter 3
Technical background

In this chapter, we will look at the basic building blocks of this research. There have
been several research works followed to build the experiment setup. As we know,
transfer learning is prevalent in deep learning research; this research also utilizes transfer
learning. For explaining convolutional neural networks, the saliency map has become
very popular. In the related work chapter, it is already mentioned that there are several
methods for explaining neural decisions—many of these research leverage the saliency
map for explainability. For example, CAM, Grad-CAM, Grad-CAM++ are few among
them. For this research, the Grad-CAM algorithm is followed. Here we will discuss how
we integrate the Grad-CAM algorithm for generating the explanation in the interactive
loop. The saliency map has a continuous pixel value, and it gives us how effective a
pixel in an image is for belonging to a class. We need the ground truth saliency map to
integrate the saliency map with the loss function. However, there is no available ground
truth saliency map for experimental purposes. There are only binary masks available
as ground truth. We need to convert the saliency map to a binary mask to adapt to the
ground truth. In the thresholding section, we will discuss more on that. There are two
kinds of loss functions, classification loss and explanation loss, used for training the
model. We will discuss the background of this loss function. For optimizing the network,
an online gradient descent algorithm is used.

3.1 Transfer learning

Training CNN from scratch requires a lot of data. It is the biggest challenge in deep
learning. In machine learning, it is necessary to be consistent in data during training and
testing. For example, if training data of an ML model whether data, the test data must be
weather data. However, in deep learning, this statement does not hold. Deep learning
necessitates many labeled data, making it difficult to train a model from scratch.

Transfer learning (TL) is the solution to this problem. Unlike machine learning, in deep
learning one can transfer knowledge from different domains. Data scarcity is extreme in
the medical domain. Medical data is sensitive. Due to these reasons, hospitals do not
publish data in public databases. As a result, transfer learning has many potentials in

21

22

the medical domain. According to Morit et al. [62], the information gathered from vast
amounts of non-medical data can be transferred to solve a specific medical problem using
TL. For example, To tackle a medical imaging problem, parameters from well-trained
CNN models on non-medical ImageNet data containing natural images (e.g., AlexNet
[45], VGG [94], and ResNet [35]) can be transferred to a CNN model. It is a recent trend
that researchers use non-medical data for medical image analysis. According to a survey
by Litjens et al. [54], there are around 300 papers on medical image analysis using
deep neural networks. In the deep learning community, transfer learning is a popular
approach to utilize knowledge from one task to another.

In the previous paragraph, we discuss feature extraction using a convolution kernel.
Here we discuss how one can use this learned convolution kernel in different tasks. The
use of learned convolution kernels in different tasks is known as transfer learning. For
example, one can train a model in a general object classification task1 and use the learned
CNN kernel in the skin disease classification task. Although the domains of the tasks
are different, the transfer-learning still works very well. Kernels learn how to detect
coarse features, for example, edge and texture. Coarse features generally exist in every
kind of image. As a result, the models do not have to learn kernels for detecting coarse
features.As a result, training time and data demand are reduced. We do not train the
transferred kernels, but we only train additional kernels. If we train the transferred
kernels, we call it fine-tuning. In fine-tuning, the transferred kernels initialize the model,
and we train the model and update the kernels for better performance.

3.2 Base Architecture

A pre-trained VGG 16 model is the basis of this research. The VGG16 was trained initially
on ImageNet. For this experiment, we have a minor modification of VGG16. First,
we remove all the fully connected layers and the output layer. Then we added two
fully connected layers followed by two dropout layers consecutively of 2048 neurons
each. Finally, the output layer contains eight-way softmax. Moreover, we use half of
the neurons in each fully connected layer and two dropout layers to reduce the training
time. We get the idea of using dropout layers from the original AlexNet. Listing 3.1 is an
overview of the modified model. After the model modification, we train on ISIC2019
classification data. In the table 3.1 we describe the detailed description of fine-tuning of
modified VGG16.

3.2.1 Training data

In may 2019, The International Skin Imaging Collaborator (ISIC) published skin lesion
classification data. We use this data for training and testing the initial model. This data
contains eight classes: melanoma, melanocytic nevus, basal cell carcinoma, actinic ker-
atosis, benign keratosis, dermatofibroma, vascular lesion, and squamous cell carcinoma.
We name them MEL, NV, BCC, AK, BKL, DF, VASC, and SCC in the same order for ease
of reading. We used 20273 images to train the model, 2529 images for validation, and
2529 for testing. Table 3.1 gives a short description of training and testing. We use this
fined tuned model for the main task of the thesis. Let’s call this Skin Care VGG16 Model,
and it is developed using the Keras framework.

1https://image-net.org/challenges/LSVRC/

23

Listing 3.1: An excerpt of the VGG16 architecture used for the multi-label classification
task.

Layer (type) Output Shape Param #
===
input_1 (InputLayer) (None, 227, 227, 3) 0

block1_conv1 (Conv2D) (None, 227, 227, 64) 1792

block1_conv2 (Conv2D) (None, 227, 227, 64) 36928

block1_pool (MaxPooling2D) (None, 113, 113, 64) 0

block2_conv1 (Conv2D) (None, 113, 113, 128) 73856

block2_conv2 (Conv2D) (None, 113, 113, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 2048) 51382272

dropout_1 (Dropout) (None, 2048) 0

fc2 (Dense) (None, 2048) 4196352

dropout_2 (Dropout) (None, 2048) 0

predictions (Dense) (None, 8) 16392
===
Total params: 70,309,704
Trainable params: 70,309,704
Non-trainable params: 0

24

Skin Care VGG16 model
Training properties Value Details
Task Fine tuning Fine tuning 0n ISIC2019

classification data
Training samples 20273 A large portion of

ISIC2019 data
Validation samples 2530 A small portion of

ISIC2019 data
Test samples 2529 A small portion of

ISIC2019 data
Number of classes 8 -
Classes MEL, NV, BCC, AK, BKL, DF,

VASC, SCC
melanoma, melanocytic
nevus, basal cell car-
cinoma, actinic kerato-
sis, benign keratosis, der-
matofibroma, vascular le-
sion, and squamous cell
carcinoma

Class weights 0.178, 0.508, 0.131, 0.034,
0.104, 0.010, 0.010, 0.025

-

Color space RGB Red green blue; no color
augmentation

Image size 227 x 227 -
Image resizing filter Nearest -
Augmentation Horizontal flip, 24 rotations 24 rotations over 360 de-

gree
Epoch 20 -
Train accuracy 0.475 Global
Test accuracy 0.850, 0.819, 0.926, 0.962,

0.894, 0.992, 0.996, 0.976
Order: MEL, NV, BCC,
AK, BKL, DF, VASC, SCC

Test sensitivity 0.608, 0.743, 0.765, 0.651,
0.649, 0.739, 0.920, 0.613

Order: MEL, NV, BCC,
AK, BKL, DF, VASC, SCC

Table 3.1: Fine tuning description of modified VGG16 ImageNet model

25

(a) Picture of a cat and a dog (b) Saliency map for cat (c) Saliency map for dog

Figure 3.1: Saliency map generated using Grad-CAM [17]. The original picture is on the
left, and the two pictures on the right show the saliency map of the cat and the dog.

3.3 Saliency map

In the introduction, we told that saliency maps could explain CNN’s, and we also found
that there are multiple researches on explaining neural networks using saliency maps. In
this section, we focus on the saliency map in depth. Generally speaking, in computer
vision, a saliency map is a picture that emphasizes the region on which people’s eyes focus
initially [105]. The purpose of a saliency map is to highlight important characteristics
of an image. Each pixel in a saliency defines how vital that specific pixel is for the
image’s subject. Salience maps can be used in numerous subfields of computer vision,
such as image and video compression, video and image quality assessment, and object
detection. Moreover, explaining CNN’s decision saliency map is becoming very popular
nowadays [114, 90, 12, 95, 69, 5]. Generating saliency maps from CNN’s classification
highlights discriminatory regions for different classes. In the figure 3.1, we show how
the Grad-CAM saliency maps look like. Grad-CAM generates the two saliencies on the
right (3.1b and 3.1c). The CNN model used in this task is VGG16. VGG16 predicts both
cats and dogs (Figure 3.1a) with two probabilities.The Grad-CAM algorithm marks the
cat’s location using the first saliency map when we consider the cat picture. On the other
hand, Grad-CAM locates the dog’s face when it is the dog. In this example, the saliency
map explains the prediction visually. This kind of saliency map is also called a class
activation map.

Grad-CAM saliency map can be generated from any convolution layer of a CNN. In
the picture mentioned above, they consider the last convolution layer. Let us consider
the output (Receptive field) of the last convolution layer as Ak, and k is the number of
kernels in the last convolution layer. For each kernel, we get one output. That means
we have k number of outputs. These k outputs detect general features from the input
image. We can multiply the k number of coefficients (wk) with the outputs to generate
class specific saliency map. These k coefficients tell us which output has more influence
on the classification. After that, we sum up all of the output to get the saliency map. The
mathematical definition of wk and saliency map is equations 3.1 and 3.2. We can also
visually understand how to generate a saliency map by looking at figure 3.2 [90].

wc
k =

1

Z

∑
i

∑
j

δyc
δAc

i,j

(3.1)

26

Figure 3.2: An overview of the Grad-CAM algorithm [17].

Figure 3.3: Saliency map from Figure 3.2 is converted to binary masks (Left to right)
using threshold value from 0% to 100% of max pixel value of the saliency map with an
increment of 10%. [67]

wc
k is the class specific gradient (cth) of the input image in the kth convolution layer.

Saliency map = ReLU

(∑
k

wc
kA

k

)
(3.2)

3.4 Thresholding saliency map

We use simulated user feedback where the feedback comes from previously-stored
dermatologist-annotated attribute maps. The attribute maps are binary masks. We
already know that we can generate saliency explanations using the Grad-CAM. However,
we cannot compare them with the feedback. We must adapt the explanation to binary
mask pattern. To adapt the explanation, we can make a thresholded saliency map.
However, we can not use a random threshold value for that. For using a random
threshold value, we could lose some information. Nunnari et al. [67] show that choosing
a threshold value for converting a saliency map to a binary mask is data-dependent. We
could cut a saliency map at 40% of the maximum pixel value for some data; for others,
the value could differ. They propose that thresholding at 50% of the max pixel value is
a good approximation for the ISIC2018 task to attribute detection data. As our data is
the same, we also use 50% of the max pixel value for the threshold. Figure 3.2 shows a
melanoma image with its corresponding grey and saliency maps, and figure 3.3 shows
how different threshold values affect the saliency map. The saliency map is scaled to
[0.0− 1.0], so 0.5 is the threshold value.

27

Table 3.2: A melanoma sample image with gray map and saliency map [67]

3.5 Loss function

The loss function is also known as cost function or objective function that maps the
difference between the prediction and ground truth in deep learning. By reducing the
loss value, we optimize the neural network. In this thesis, we have two kinds of loss
functions. The first kind is the classification loss function, and the second is the explanation
loss function.

The classification loss function is used to optimize the model on classification data. It
compares the difference between classification ground truth and calculates the gradient
of the loss to update the model weights. In the thesis, we use the same classification loss
of the Skin Care VGG 16 model: cross-entropy loss (Equation 3.3) [63].

Classifications Loss: Lcls = −
M∑
c=0

yo,clog(po,c) (3.3)

Where M is the number of classes, y is the binary indicator (0 or 1), the class label c and p
is the predicted probability.

Similarly, explanation loss is used to optimize the model on explanation data. One can
use an inverse similarity function for calculating the distance between the predicted
and the ground truth explanations. This thesis will use the Jaccard index to formulate
loss function. Several papers used the Jaccard index to develop loss function [26, 79].
Jaccard loss comes from the idea of "intersection over union (IoU), which is also known as
Jaccard index". [79]. The IoU score is a typical performance metric for the object category
segmentation issue. The equation 3.4 defines the IoU measure. For an object detection
task, it gives the similarity between the predicted region and the ground-truth region.

Jaccard index: J =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A| × |B|
(3.4)

Jaccard index is zero if the two predicted region and ground truth region does not match.
The maximum value of the Jaccard index is one. IoU is generally used for boolean
variables. To utilize it for a continuous variable, we can modify it to a continuous version
[79]. Equation 3.5 gives the mathematical definition of IoU for continuous variables.

J(y, ŷ) =
y × ŷ

y + ŷ − y × ŷ
(3.5)

28

We can modify the Jaccard index to Jaccard loss using equation 3.6, which is a quadratic
equation.

Explanation loss: JL(y, ŷ) =
(
1− y × ŷ

y + ŷ − y × ŷ

)2

(3.6)

3.6 Online and incremental machine learning

Many machine learning and deep learning methods face challenges due to the lack of
available data at training time, and some data changes sequentially (e.g., stock market
data and environment data); as a result become uninformed on new data. Moreover,
day-by-day new sensors and devices are being developed. They have better performance
than the former versions in their respective task. For example, current camera technology
is more accurate than in the past. Similarly, humans also gather more experience and
knowledge over time; as a result, human feedback also can change due to the underlying
experience. So, when our training data is limited or comes in sequential order, or has
the possibility of periodic updates, we must follow incrementally or online machine
learning methods to keep the model up to date on new information. According to
Hazan et al. [34] in many practical application, modeling and utilizing classical theory
and mathematical optimization is infeasible; however, considering optimization as a
process can model systems that are related to our daily lives. Learning from continuous
observation is the same as optimization as a process. The framework deals with it is
known as online convex optimization (OCO). OCO is the generic idea behind online and
incremental machine learning. The term "online machine learning" refers to a machine
learning approach in which data is made accessible sequentially and is used to update
the best predictor for future data at each step [104]. On the other hand, offline learning
algorithms learn from data collection. Online learning methods can update the model’s
knowledge iteratively on new data. Also, online machine learning algorithms have
less computational power demand due to the limited amount of data. Contrary, offline
algorithms require more computational power for optimization. So, online learning is
commonly used when the training on a large amount of data is infeasible. A very similar
approach is called incremental learning. The incremental learning method continuously
feeds the data to the existing model for knowledge update. Incremental learning is
included in many standard machine learning methods such as decision trees, artificial
neural networks, and SVM [20].

Formally we can define incremental learning as follows. A hyperspace, H , contains all
possible models; we search for a function f where f ∈ H . f creates the relation f : X−Y ;
where X is the feature space, and Y is the output space. f predicts the joint probability
p(x, y) where x ∈ X and y ∈ Y are training instances. However, the learner does not
know the instances’ distribution p(x, y). A loss function L : X → Y ∈ R measures the
distance between the f(x) and y. The ideal goal is to choose an f that minimizes the
overall distance of all instances. This thesis assumes that the data comes from users in a
continuous manner. So we use online gradient descent to optimize the model.

3.7 Optimization technique

Previously we talked about loss function. The absolute value of loss tells us how poorly
a model is performing. The optimization target is to learn the model’s weight that

29

generates a minimum loss. A neural network loss function is multidimensional and
difficult to visualize. There are plenty of local minima and one global minimum. The
optimization technique tries to find out the global minimum in the hope of increasing
the model’s performance. But it is not guaranteed whether we can reach the global
minima. It is impossible to tell the exact number of local minima in a loss function.
The gradient descent technique can search for the global minimum in the loss function
hyperplane. After an extensive search, we choose the weights of a model based on the
minimum loss. We can visualize the hyperplane for quadratic function and see only one
minimum. Gradient descent guarantees that reaching minima is possible. We also need
to consider a fine weight initialization to optimize neural network loss. Without a good
weight initialization, optimizing a neural network might take a long time.

"Training deep models is a sufficiently difficult task that most algorithms are
strongly affected by the choice of initialization. The initial point can

determine whether the algorithm converges at all, with some initial points
being so unstable that the algorithm encounters numerical difficulties and

fails altogether."- Goodfellow et al. [30]

Transfer learning reduces the amount of work for choosing weights for a model. There
are several gradient-based algorithms for minimizing loss and improving the model
performance. We follow the online gradient descent algorithm, which is stochastic
gradient descent with batch size one.

Stochastic gradient descent is an iterative approach to updating the weight of the neural
network. In this iterative approach, one can update the weights of a network based on
small batches of samples. It is called mini-batch gradient descent. The size of a batch
influences the computation requirement neural network. A larger batch of samples
requires more computational power and memory than a smaller batch. The batch size
can not be large for image data due to the huge amount of information single image.
For the initial training of the classifier, we used a mini-batch algorithm. But for training
the final model, we use SGD with batch size one, which reduces memory demand. The
pseudo code for the stochastic algorithm is presented below.

Algorithm 1 Stochastic gradient descent

Require: x, y ∈ X × Y
Require: λ ▷ Learning rate
Require: e ▷ Number of epochs

Initialize w
while loss is not optimal do

while n < N do ▷ N is the number of total samples
L(w)← f(x, y) ▷ w is the weight
w ← w − λ∇L(w) ▷ ∇L(w) is the gradient of the loss

end while
end while

Chapter 4
Method

This thesis aims to build an architecture that explains decisions to users and gives them
the possibility to perform corrections that improve the model’s performance. We know
that convolutional neural network architectures are available, but they have limitations.
They are trained on large amounts of data, but they do not have a built-in structure
for generating explanations. In most cases, we need to use an explanation algorithm
to explain the decision of these classifiers. This research proposes a self-explainable
model that can be trained individually using explanation loss and classification loss. We
can also train this model by combining both losses. Moreover, the model will interact
with a simulated user, which will give feedback on classification and explanation, and
the model will learn from the feedback. Figure 4.1 provides an overview of the system.
From the left side, we see a skin lesion is fed into a convolution neural network. The
convolution neural network detects the class of the lesion and explains the classification
to a dermatologist (on the right side). The dermatologist is not convinced with the
explanation, so s/he gives it a feedback. Based on the feedback, we re-train the model.
In this chapter, we will discuss how to generate the explanation from a simple VGG16
convolutional neural network and how to integrate the explanation with the loss function
of the neural network. Moreover, we will also discuss how to simulate a dermatologist.

4.1 Self explainable model

The Skin Care VGG16 model is originally trained using the Keras [13] framework. The
Human-in-the-loop model was not in the plan at the first time. So for modifying the
network and adapting the human-in-the-loop interface, we converted the model from
Keras framework to PyTorch [71] framework. The PyTorch framework is more flexible to
architectural modification than the Keras framework [59]. We use the MMDnn1 library
for model conversion. It is a verified library for converting deep neural network models
to convert from one framework to another. We compared the performance of both
versions on skincare test data. Without small numerical changes, both versions showed
the same characteristics in classification. Tables 4.1 and 4.2 show the performance of

1https://github.com/microsoft/MMdnn

30

31

Figure 4.1: Method overview: interactive learning is a way of training the model using
user feedback. In our case, the model produces two kinds of output: explanation and
classification. So, the idea of interactive training is to retrain the model if any of these
outputs is wrong.

the Keras version and the PyTorch version. Looking at the tables, we see no significant
differences between the values. So we proceed to the next step, adapting the model for
generating a saliency map.

Class Accuracy Specificity Sensitivity F1 AUC
MEL 0.85 0.90 0.60 0.59 0.87
NV 0.82 0.89 0.74 0.81 0.92
BCC 0.93 0.95 0.76 0.73 0.96
AK 0.96 0.97 0.65 0.54 0.96
BKL 0.89 0.92 0.65 0.56 0.91
DF 0.99 0.99 0.74 0.62 0.98

VASC 1.0 0.99 0.92 0.81 0.99
SCC 0.98 0.98 0.61 0.55 0.96

Table 4.1: Performance of the Original Model (Keras)

Requirement: We have to extract saliency maps while training, and the implementation
must be differentiable to allow the backpropagation.

Hence, we can not use an independent GradCAM algorithm because we need a gradient
of the saliency map for our next task. So we have to integrate the grad cam functionality
with the architecture. We already know that we have to generate CAM from the last
convolution layer, so we modify the architecture to get the receptive field of the final
convolution layer. Let us name the architecture SkinCare VGG16. The SkinCare VGG16
architecture has two outputs: intermediate output from the last convolution layer and
the last layer (softmax output), and we name the intermediate output as activation map
(AM). We can generate CAM from AM during training and testing. We know from

32

Class Accuracy Specificity Sensitivity F1 AUC
MEL 0.84 0.89 0.60 0.57 0.86
NV 0.81 0.89 0.73 0.80 0.92
BCC 0.93 0.95 0.79 0.74 0.96
AK 0.96 0.97 0.62 0.52 0.95
BKL 0.89 0.92 0.64 0.55 0.90
DF 0.99 0.99 0.90 0.61 0.97

VASC 1.0 1.0 0.92 0.87 0.99
SCC 0.98 0.99 0.58 0.55 0.96

Table 4.2: Performance of the Original Model (PyTorch)

equation 3.2 that we can multiply Ak with the wk and pass with the ReLU function to
generate the CAM. In this case, Ak is the AM. Our next task is to get wk while training.
We will utilize a simple approach to get wk during the training. We know that wk is
related to the class-specific gradient. Therefore, we need to calculate the gradient for a
given image in the last convolution layer. But there is another challenge: during training,
we also need to calculate the gradient of each layer and update the model using online
gradient descent (OGD).

Technically, calculating the gradient two times destroys the model knowledge. So we
created copy of the model: gradient instance. Gradient instance calculates the gradient of
the model in the last convolution layer. We calculate the gradient instance’s gradient (wk)
with respect to the ground truth class and only store it in the memory. After generating
wk, we delete the gradient instance and keep the primary model for training. We get two
outputs during the forward pass, AM and sigmoid output. We multiply the AM (Ak)
and wk and pass it to a ReLU to generate CAM (saliency map).

After generating CAM, our next task is to create an explanation from the CAM. The
explanation is a binary mask. We use a threshold function that converts the CAM to an
explanation map. As a result, our model has two outputs, explanation and classifica-
tion, each time passing an image through the network. Figure 4.2 shows the graphical
overview of generating explanations and classification output.

During training, before each forward and backward pass, we update the gradient instance
of the model from the updated primary model. It allows keeping track of weight update
in each instance.

4.2 Integrating the explanation with the original model

In a real-life situation, we get feedback from users as ground truth. Therefore, we can
create two loss functions for the model: explanation loss and classification loss. As we
said before, there will be no user input. We will use the previously annotated attribute
map to mimic the user. We will discuss the interactive loss function in the method chapter.
But before that, we talk about generating a saliency map in the interactive training. For
interactive training, we consider a single sample in each training loop. A bigger batch
size increases the workload on the GPU. So batch size one is consistent in this study.
Practically, we get data from the data loader: input image, ground truth attribute map,
and ground truth class. Our target is to increase the similarity between predicted and
ground truth explanations. We use the Jaccard index to find the similarity. And we also

33

Figure 4.2: Flow of input image through the network.

predict the class and using the cross-entropy loss between predicted class and ground
truth we reduce the classification error.

In this experiment, we are using VGG16. VGG16 can be split into two individual
networks: convolution and fully connected layers. In general, any CNN architecture
with fully connected layers at the end can be considered a base architecture for this
experiment.

We can partition a CNN into two functional blocks, convolutional layers (CL) block
and fully connected layers (FCL) block. In the figure 4.2, we see that the input images
(X) feed into the CL at first, and the outputs of CL pass through the FCL to generate
the output (y). In general, the CNN model is non-explainable, but using the idea of
Grad-CAM, we can produce a class-specific saliency map at the end of CL. The block T
can modify the saliency map into an explanation map or a feature map (yexp) according
to the designer’s choice. Here we use the pre-trained CNN’s weights, but for introducing
interactivity during online learning, we modify the loss function of the whole network.
The loss function has two components, classification loss and explanation loss. The
classification loss is the loss of a pre-trained network. However, the explanation loss is
a newly introduced function, and it punishes the overall cost based on the difference
between generated explanation and user feedback on explanation.

The loss function can be written as

L = (1− λ)Lcls(y, ŷ) + λLexp(yexp, ŷexp) (4.1)

Here Lcls and Lexp are the classification and explanation loss respectively. λ is the
hyper-parameter that can be search during the parameter tuning.

34

Lcls(y, ŷ) = −
∑
i

ŷi log(yi) (4.2)

Lexp(yexp, ŷexp) =
∑
i

J(yexpi , ŷexpi) (4.3)

yexp = T (Ay) (4.4)

Ay = ReLU(
∑

ackA
k) (4.5)

Where Ak is the activation in a convolution layer, Ay is the output of Grad-CAM and ack
is defined as

ack =
1

Z

∑
i

∑
j

∆yc

∆Ak
ij

(4.6)

4.3 User feedback

In general, user feedback is the information users provide to an agent for a future update
of agent knowledge. Getting user feedback for an experiment is very costly and time-
consuming especially in the medical domain. However, if we have user annotated data,
we can consider it as feedback. ISIC 2018 [16] published data on skin lesion attributes.
This data contains images of skin lesions and masks of five different attributes, pigment
network, negative network, streaks, milia like cyst, and globules, of the lesion. These
attribute maps are binary masks locating the different attributes. Union of all of these
attribute maps can provide generalized information on skin lesions. So, we consider the
union of the attribute map as feedback from the user. We call this explanation feedback
and consider the ground truth class label as classification feedback. We keep 10% of the
data untouched to check the model performance and to see if the model learns from
feedback. More details on the data will be presented in chapter 5.

4.4 Implementation

The architecture and the proposed explainable model are built using the PyTorch frame-
work. PyTorch is a powerful python deep learning framework. The self explainable
VGG16 model uses GPU for computation. We need to classify the input image, generate
the explanation, and compare it with user feedback during the simulation. The loss
function makes the comparison. In modeling the loss function, we must consider that
generating an explanation requires calculating the gradient. So we have to calculate
the gradient of the model with respect to the model’s prediction. In PyTorch, we can
use the backward() function to calculate the gradient in each layer. We only store the
gradient of the last convolution layer. To keep the main model safe from unexpected
weight updates, we create a clone and use that cloned model to get class-specific weight.
After that, we forward the image to the main model and get the activation of the last
convolution layer. We get the Grad-CAM saliency map by multiplying the activation
and class-specific weight. Next, we convert the saliency map to a binary mask. Finally,

35

compare the feedback image with the binary mask using Jaccard loss. Algorithm 2 shows
the training steps for the self-explainable model.

Algorithm 2 Training the self-explainable model

Require: e ▷ e: number of epoch
Require: m = F (θ) ▷ m: pre-trained model
Require: X,Y, Z ▷ X : input sample, Y : label , Z: binary mask (i.e. explanation ground

truth)
Require: N ▷ N : total samples
Require: Lcls ▷ Lcls: classification loss function
Require: Lexp ▷ Lexp: explanation loss function
Require: γ ▷ γ: learning rate
i = 1
while i ≤ e do

n = 0
while n ≤ N do

mg ← deepcopy(m)

ack ← 1
R

∑
p

∑
q

δmg(x)[c]

δAk
ij

▷
δmg(x)[c]

δAk
ij

: class-specific gradient on layer k for
image x

Ak, ŷ ← m(x) ▷ Ak: receptive field of layer k, ŷ: predicted class
S ← ReLU(Ak × ack) ▷ S: saliency map
ˆyexp ← th(S, t) ▷ t: threshold value

L(θ)← (1− λ)Lcls(y, ŷ) + λLexp(z, ˆyexp) ▷ λ: hyper-parameter for loss balance
θ ← θ − γ∇L(θ) ▷ ∇L(θ): gradient with respect to loss

end while
end while

Chapter 5
Experiments and Results

5.1 Data description

In this thesis, we experiment with the data from ISIC 2018 and 2019: Skin Lesion Analysis
Towards Melanoma Detection [32]. ISIC is a skin cancer detection challenge on dermo-
scopic images. ISIC 2019 data is used for training and ISIC 2018 task 2 data is used for
simulation. Every year they publish dermoscopic data and arrange a challenge. In 2018
ISIC published three kinds of data: segmentation, attribute detection, and classification.
In this thesis, we only experiment on attribute detection data (ISIC 2018 task 2 data),
because the attribute ground truth is human annotated. It contains images of lesions.
The lesion images were collected with different types of dermoscopy from many parts of
the human body. Each image includes a primary lesion and other marks, e.g., secondary
lesion, fiducial marker, or other pigmented regions. On the other hand, response data
(ground truth data) contains five binary masks locating five kinds of attributes in each
lesion image. The binary masks are pigment network, negative network, streaks, milia
like cyst, and globules. The mask dimension is the same as the decimation of the lesion
image. They are 8-bit binary images in PNG format. The pixel value 0 indicates the
dermoscopic attribute is absent, pixel value 255 means the dermoscopic attribute is
present. Also, the image has a ground truth label for classification. There are only three
available classes in this dataset: nevus, melanoma, and benign keratosis. Figure 5.1
describes the three samples from the data. We combine this ground truth attribute to
generate explanation feedback using union (Figure 5.2) operation.

5.2 Data preparation

ISIC2019 data was used to train a baseline classification model, and ISIC2018 attribute
detection data was used for simulation. Before the experiment, we checked the data
overlap between ISIC2019 and ISIC2018 attribute detection data. One can raise the
question of why is 2018 Task 2 data (attribute detection data) simulation data. ISIC

36

37

(a) Nevus (b) Melanoma (c) Benign keratosis

(d) Globules (e) Globules (f) Globules

(g) Milia like cyst (h) Milia like cyst (i) Milia like cyst

(j) Negative network (k) Negative net-
work

(l) Negative network

(m) Pigment net-
work

(n) Pigment network (o) Pigment network

(p) Streaks (q) Streaks (r) Streaks

Figure 5.1: Sample images and ground truth attribute of nevus, melanoma, and benign
keratosis. They are the only available classes in the ISIC2018 task 2 dataset

38

Figure 5.2: The union of the feature maps.

2019 has a sufficient number of samples for classification data, but doesn’t have lesion
attribute maps. So we used ISIC2018 ground truth lesion attribute maps as simulation
data. ISIC data archive has a unique ID for each of the images. Due to that, the overlap
checking was effortless. There is an overlap of 627 samples between the 25k+ images of
ISIC2019 and the 2595 images in ISIC 2018 task 2 training data. Although the overlap
will not affect the simulation, simulation test data must be overlap-free. So we kept those
627 samples out of the simulation test and the simulation validation dataset. We keep
them in the simulation training data. Figure shows the distribution of the data. The
images and attribute maps’ original size were the same and are high-resolution images.
To adapt to the network, we reduce the images and attribute maps to 227 × 227. The
nearest neighbour filter is used for resizing them.

5.3 Simulating feedback on the full simulation set

The ISIC 2018 task 2 dataset has a total 2595 samples. Let’s call this dataset SimSet. The
goal is to measure if the model improves at on providing a "big" quantity of corrective
data. We use a 10% SimSet for testing and a 10% SimSet for validation, and the remaining
80% samples are used for fine-tuning the model as if doctors are giving feedback to the
model. We use training ground truth samples as feedback information to the model. The
model learns from the feedback and update the knowledge. We had to tune the model
for a maximum of 40 epochs during the simulation. From the first epoch model starts
optimizing. However, between 10 to 14 epochs model gives the best performance. We
use the validation data for choosing the best model. First of all, we feed one sample to
the model. The task of the model is to classify and explain each instance. We also get
feedback on classification and explanation output. We follow the same approach for all

39

Figure 5.3: Figure shows the distribution of ISIC2018 attribute detection data.

training samples for several epochs. After each epoch, we use validation data to check
the model performance by calculating the accuracy and average Jaccard index. We use
classification accuracy for observing how well the model classifies. Similarly, we use the
average Jaccard index to see how well the model explains its decisions. After 40 epochs,
we retrieve the best model based on the highest average Jaccard index. We evaluate the
model’s classification accuracy and average Jaccard index on the test data.

5.4 Simulation on slices of data

In this approach, we mimic that dermatologists give feedback in smaller chunks, and
the model learns from the small chunk of feedback. In this experiment, we divide the
data into three parts. 80% of the data is for training the model, 10% data for validation,
and 10% data for test. Additionally, we divide 80% of the data into 20 slices. Each of the
slices contains 4% data. We train the model on all the slices iteratively. However, we
select the best model from one slice using validation data and train it again on the next
one. We follow the approach iteratively on all the slices. For example, the model learns
from one slice at a time. During learning, the model gets one image at a time, similar
to the simulation on total data. It optimizes based on combined loss for 20 epochs. We
select the best model using the validation data and test explanation performance on test
data. Then we take the next slice and train, validate and perform the test on the model
trained on the previous slice.

40

5.5 Training on different loss functions

We use three different loss functions in the experiment: classification loss, explanation
loss, and combined loss. The purpose of training the model on classification loss is to
see how models perform when feedback is given only to classification data. During
the training on classification, the model gets feedback only on classification output.
So, the loss function only contains the classification part. We observe training and
validation loss and average Jaccard index during the tuning process. On the other hand,
the objective of using explanation loss is to see how the model performs when there is
only explanation feedback. The explanation loss is the Jaccard loss which compares the
predicted and feedback explanations. Similarly, the combined loss combines both losses
by a regularization parameter λ, which balances the two losses. The purpose is to see
how classification and explanation feedback improve model performance. The target is
to compare how the model behaves when adding explanation feedback and compare the
performance with only explanation feedback.

5.6 Experiment using unbalanced data

We know that our data is unbalanced. In real-life scenarios, data is also unbalanced. If we
look at figure 5.3, we see that there are many nevus samples and a moderate number of
melanoma samples. The amount of images from benign keratosis is less than the amount
of images in other two classes. We perform the first simulation and test to see how
our model performs in this unbalanced data. Table 5.1 shows the result from our first
experiment. We compare the result with the baseline performance. Figure 5.4 shows the
loss plot for three loss functions. We see that loss is decreasing slightly while the epoch
is increasing. However, when we simulate the model on the explanation loss, the loss
suddenly increases. Most probably, this happens due to gradient overflow [30]. Gradient
overflow occurs due to unexpected high value of gradient and diverges from current
minima in the loss surface. Similarly, in figure 5.5 and 5.6 we see there is not much
improvement in accuracy. In the last plot, we see that the model lost the knowledge it
learned previously due to the divergence from the local minima. On the other hand, we
see a sudden increase in the average Jaccard score in figure 5.6 when we train the model
on explanation loss. However, the average Jaccard loss dropped suddenly due to the
gradient overflow. For performance measures, we look at three criteria, accuracy, average
Jaccard score, and class-specific sensitivity of each class. The first column in the table
5.1 represents the baseline performance of the model. The second column described the
model’s performance when simulated training was only on classification loss. Similarly,
the third column shows the test performance of the model trained on explanation loss.
The fourth column presents the test result corresponding to the combined loss training.
The classification test result tells us how good the model is in classifying images in this
experiment. The average Jaccard index shows how good the model is explaining its
decision. From the table, we see that the test accuracy of the model does not change
in three different tests from the baseline. We see that accuracy slightly decreases while
signing only explanation loss or combined loss. On the other hand, there is a huge
increase in the average Jaccard index while using explanation loss or combined loss.
However, if we notice the class-specific sensitivity of the model, we see that during the
training the model become biased to classifying melanoma only. Mainly, the unbalanced
data is biasing the model. One of the reason being that due to GPU RAM limits, we have
to train with batch size 1. To check if it’s the main reason, we train the model on only

41

Figure 5.4: An overview of loss vs epoch plot for unbalanced simulation.

Figure 5.5: An overview of accuracy vs epoch plot for unbalanced simulation.

a balanced portion of the training data. We found that the data imbalance is biasing
the model. We balance the training data and rerun the experiment to overcome this
challenge.

5.7 Experiment using reduced balanced data

To overcome the data unbalance bias, we reduced the number of nevus samples and
removed the BKL class from the simulation training data. BKL class has a few number
of samples. Figure 5.7 shows the modified distribution of the data. We have only 437
melanoma. So we randomly retained 437 samples of nevus. And the red cross mark
means that we removed the BKL data from the experiment. However, we keep the
validation and test data unchanged for NV and MEL classes. We run the previously
mentioned experiment again for only 20 epochs. The result of the investigation is
presented in table 5.2. In this experiment, we only use NV and MEL classes for testing.
We see that per-class sensitivity after simulation does not become zero. This means that
our model does not become biased due to the class unbalance. We also see that our
simulation improves the performance of the model in comparison with the baseline
model. Simulation-based on explanation loss increases the accuracy from 0.71 to 0.72.
The average Jaccard index increased from 0.06 to 0.274.

42

Figure 5.6: An overview of average Jaccard score vs epoch plot for unbalanced simulation.

Baseline Classification
loss

Combined
loss

Explanation
loss

Accuracy 0.71 0.71 0.70 0.70
Average Jaac-
ard index 0.10 0.165 0.473 0.447

Per-class
sensitivity
[NV, MEL,
BKL]

[0.534, 0.772,
0.885] [0.05, 1.0, 0.0] [0.0, 1.0, 0.0] [0.0, 1.0, 0.0]

Table 5.1: Test performance of model in unbalanced data. A strong bias can be noticed by
observing the per-class sensitivities.

Figure 5.7: An overview of reducing samples from the original data.

43

Figure 5.8: An overview of loss vs epoch plot for reduced balanced simulation.

Figure 5.9: An overview of accuracy vs epoch plot for reduced balanced simulation.

Figure 5.10: An overview of average Jaccard score vs epoch plot for reduced balanced
simulation.

44

Baseline Classification
loss

Explanation
loss

Combined
loss

Accuracy 0.71 0.69 0.66 0.72
Average Jaac-
ard index 0.06 0.134 0.192 0.274

Per-class
sensitivity
[NV, MEL]

[0.521, 0.757] [0.720, 0.764] [0.878, 0.678] [0.463, 0.838]

Average sen-
sitivity 0.639 0.742 0.778 0.650

Table 5.2: Test performance of model in reduced balanced data is presented in this table.

Figure 5.11: An overview of loss vs epoch plot for upsampled balanced simulation.

5.8 Experiment using upsampled balanced data

We equalize the data per class by upsampling in the simulation set. We know that the
maximum sample belongs to the nevus class. There are 1951 samples. On the other hand,
we have 437 examples that belong to MEL class, and only 172 pieces belong to BKL class.
We increase the number of the MEL and BKL samples to 1951 samples by coping them
randomly. As a result, we get 1951 samples from each of the classes. We simulated this
augmented dataset for 40 epochs. In figure 5.11 we see the loss update for three different
loss functions. With three loss functions, we see that the model learns gradually over
increasing epochs. Indeed, in figure 5.12, the classification accuracy increases while we
simulate the model trained with classification loss and combined loss. However, training
with only explanation loss decreases the classification accuracy at earlier epochs and
becomes stable later. On the other hand, if we look at the average Jaccard index plot, we
see that the average Jaccard index does not improve significantly with classification loss.
But with the combined loss, there is a noticeable improvement in the average Jaccard
index. Similarly, there is a massive improvement in the average Jaccard index with the
explanation loss. It concludes that we can improve the explainability of a CNN model
by providing correct explanation feedback. Table 5.3 presents the final result of the
simulation.

45

Figure 5.12: An overview of accuracy vs epoch plot for upsampled balanced simulation.

Figure 5.13: An overview of average Jaccard score vs epoch plot for upsampls balanced
simulation.

Model Train
data

Loss Test set λ Test
acc

Sensitivity Avg
sen-
sitiv-
ity

Avg
J-
mean

MEL NV BKL
Baseline ISIC

2019
Lcls ISIC2019

2.5K test
n/a 0.71 0.61 0.74 0.65 0.71 n/a

Baseline ISIC
2019

Lcls 100% Sim
Set

n/a 0.73 0.53 0.77 0.88 0.73 0.10

Sim-
model

80%
of Sim
Set

Lcls 10% of
Sim Set

0 0.74 0.74 0.75 0.61 0.70 0.106
(0.08)

Sim-
model

80%
of Sim
Set)

Lexp 10% of
Sim Set

1 0.76 0.49 0.85 0.64 0.66 0.18
(0.13)

Sim-
model

80%
of Sim
Set

Lcls

&
Lexp

10% of
Sim Set

0.3 0.64 0.78 0.59 0.72 0.70 0.127
(0.10)

Table 5.3: Complete result of simulation on upsampled samples. We see that there is
improvement of average Jaccard index when the explanation loss is included in the loss
computation.

46

Figure 5.14: An overview of accuracy vs slices plot.

5.9 Result of sliced simulation

This section presents the result of sliced simulation on upsampled balanced samples for
classification, explanation, and combined loss functions. Specifically, we will see how a
gradual data increase improves our explainable model’s performance. Figure 5.14 shows
how model accuracy increases over an increasing amount of data. In the x-axis, a slice
represents a chunk of data. Each chunk has 238 samples. We have a total of 20 slices, and
the model is iteratively fine-tuned on all the slices. We have a total of three experiments
for three kinds of loss functions. First, the classification loss function’s accuracy plot
shows no improvement. Secondly, the explanation loss function’s accuracy looks more
stable than that of the former loss function. However, we see more accuracy fluctuation
when combining classification and explanation loss functions.

Similarly, figure 5.15 presents the change in the average Jaccard index over the number
of slices. Looking at the classification loss function’s graph, we see that the average
Jaccard index is not increasing while the model sees more data (Increments of slices).
There is a slight improvement when we use combined loss. However, we see moderate
improvement of the average Jaccard index while using the explanation loss function.

Table 5.4 shows the summary of the sliced simulation. After tuning the model on the first
slice, we see that the average Jaccard index is 0.15. However, after the 20th slice, we see
that the Jaccard index increases to 0.19. On the other hand, the accuracy reduces to 0.72
from 0.77 by keeping the average sensitivity the same when using the explanation loss
function. These results conclude that model explanation performance increases without
reducing classification accuracy when the model gets correction feedback in smaller
chunks.

47

Figure 5.15: An overview of average Jaccard score vs slices plot.

Loss func-
tion

Slice
no

Test set Test
acc

Test avg.
sensitivity

Avg. Jaccad
index(sd)

Lcls 0 20% of sim-
Set

0.74 0.70 0.11(0.09)

Lcls 19 20% of sim-
Set

0.72 0.69 0.12(0.10)

Lexp 0 20% of sim-
Set

0.77 0.66 0.15(0.12)

Lexp 19 20% of sim-
Set

0.72 0.67 0.19(0.15)

0.70 × Lcls +
0.3× Lexp

0 20% of sim-
Set

0.77 0.66 0.12(0.10)

0.70 × Lcls +
0.3× Lexp

19 20% of sim-
Set

0.76 0.70 0.14(0.11)

Table 5.4: Complete result of sliced simulation. We see that there is improvement of
average Jaccard index and a limited drop of accuracy when model gets more explanation
feedback.

48

5.10 Training performance

Our computing machine has 64GB ram, 12 GB GeForce GTX Titan GPU, and Intel(R)
Core(TM) i9-9900K CPU @ 3.60GHz processor with 8 cores. Training Skin Care VGG16
model took around 37 hours to train 25k images. For simulation, we used the same
computing machine. It took 262 minutes to 554 minutes per epoch for simulation on
complete data. During the simulation using classification loss training took max 320
minutes per epoch. However, training took around 500 to 600 minutes for explanation
loss and combined loss. Due to the upsampling of training data, we had about 4600
simulation samples. While we were doing the sliced simulation using the classification
loss function, it took around 13 to 42 minutes per 230 samples. Contrary, simulation using
the explanation ad combined loss function took 25 to 55 minutes per slice. We noticed that
it took longer during sliced simulation than during the initial training because simulation
requires two gradient calculations. Also, the loss function is relatively complex than the
initial loss function.

Chapter 6
Conclusion

We started with the evolution of machine learning and deep learning research. We
specifically looked at recent findings in explainable AI and contemporary machine
learning and deep learning research in skin cancer detection and analysis. We also
went through the technical detail for developing an interactive and explainable model.
Moreover, we saw how to build an explainable model that can interact with the simulated
user and update knowledge based on user feedback. Finally, we presented the detailed
results of an experiment on an interactive model in a simulated environment. This
chapter presents the overall summary and future work of this thesis.

6.1 Summary

Machine learning is a century-old field of computer science and statistics. Many machine
learning algorithms were invented even before the invention of the digital computer.
However, due to the advancement of powerful computers, the research in this field
accelerated. Moreover, the complexity of the algorithm also increased. Similarly, deep
learning and artificial intelligence also get more focus due to the invention of powerful
computing machines. Deep learning algorithms are currently considered black-box
algorithms. It is challenging to decode why deep learning models make particular
decisions. Due to its black-box nature, the real-life application of the deep learning model
is not yet reached the application milestone. Researchers are putting hard work into
developing explainable deep learning approaches. This paper specifically explained
how we could decode convolutional neural networks’ decisions. Several algorithms
are currently available for explaining CNNs’ decisions, for example, Grad-CAM, LIME,
SHAP. Although they are decisive for the local explanation, they are not inbuilt with the
convolution architecture. However, to ensure interactivity and explainability, we need
some architecture that can explain models’ decisions and also allow us to train them
using user feedback. These algorithms belong to the self-explainable neural networks
(SENNs) category. SENN can classify and explain at the same time.

This thesis proposed a self explainable convolutional model that does not require any
encoder or decoder network. We showed that with the help of the concept of the Grad-

49

50

CAM algorithm, one could convert a black box VGG16 model to a self-explainable VGG16
algorithm. We can make any CNN architecture self-explainable using this method. This
approach also ensures no decay in models’ previous knowledge. We can also tune the
proposed self-explainable model for a balance between classification and explanation
data.

Convolution neural network shows a promising result in skin cancer classification and
analysis. Researchers use CNN for the classification and segmentation of skin cancer
images. We also see that some researchers explain CNNs’ decision using Grad-CAM. In
this researches, we see that the use of the Grad-CAM algorithm is limited to explaining
models’ decisions. However, this thesis brings an entirely new approach to retrain a CNN
model using classification and explanation data. We can leverage this approach to retrain
a model from user feedback in an interactive way. Furthermore, this thesis presented
how to retrain a VGG16 skin cancer classifier in different settings using simulated user
feedback. We evaluate the performance of the model in unbalanced data and balanced
data. We noticed that unbalanced data is problematic to simulation. Balancing using
repeated samples can overcome the challenge. Moreover, we saw that explanation, and
combined feedback increases the model’s explanation capability. In the following, we
discuss the overall view of this research. We also evaluate the goal and discuss how we
can make further improvements.

6.2 Evaluation

This thesis aimed to develop an interactive feedback-based tuning method for CNN that
can allow dermatologists to give feedback on classification and explanation. Firstly, a
new self-explainable CNN architecture paired with a training algorithm is developed
by utilizing the Grad-CAM explanation technique. This algorithm does classification
as well as generates the explanation for that. We can also tune the network based on
classification and explanation feedback. There are three objective functions: classification,
explanation, and combined while tuning the network. The combined objective function
fuses the classification and explanation loss using balancing hyper-parameter. We found
that simulated user feedback increased the average Jaccard index from 0.10 to 0.18. There
is a slight decrease of the accuracy while an improvement in explainability. Finally, we
can also summarize by stating that the experimental results agree that integrating user
feedback increases model explainability.

6.3 Future work

In this study, we found that the explanation capability of a CNN model improves
when the model is tuned using user feedback. Even though the model produces better
explanations after the tuning, there is space for further improvements. There are several
possible areas to work on for further improvement. For example, using an improved
technique for generating saliency maps, accepting robust user feedback, and updating
the loss function are possible areas for further improvement. Shinde et al. [92], propose
an improved technique for generating a saliency map of a CNN model. They show that
their way performs better than the Grad-CAM technique. Firstly, they generate class
activation maps out of each convolution layer from the network. Then, they fuse all
the class activation maps for a more meaningful saliency map. It is a robust way of
generating a class activation map since it considers the importance of the output of every

51

convolution layer. Adding this technique will improve the performance because it will
consider each of the convolution layers during the tuning of the model.

In this thesis, we had to modify the saliency map to binary maps to match the saliency
maps with the ground truths. This conversion is not lossless. We reduce information
on pixel-wise importance features. One probable solution is adapting saliency maps
as feedback. Adapting non-binary saliency maps with the loss function will allow the
model to get more accurate and piecewise information. Binary user feedback gives
information on the significant region of an image. However, nonbinary user feedback
can present precise knowledge about each pixel of an image. As a result, tuning on
nonbinary feedback will optimize the model based on the importance of the value of
each pixel. To adapt to this, we need to update the loss function. In this scenario, we
can use the pixel-wise distance between the output saliency map and user feedback.
Moreover, it is also essential to know which modality users prefer to provide feedback.
Providing non-binary feedback can be cumbersome for humans. So, a good interface
should also be designed. If we can define the user preference, we can make an encoder
system that encodes user feedback to the saliency space. Moreover, it is important to see
how this model performs in a real-life test environment. In this thesis, we only look at
the skin cancer domain. However, we can apply user feedback-based CNN tuning to
any other field. One must ensure that the task is image classification.

Moreover, in the simulation data, we found an overlap with the model’s training data.
However, there is no overlap between the test data of simulation and initial training
data. We could use the non-overlapping simulation data, but it would reduce 25% of the
samples. In real-life applications, we will not see overlapping simulation data because
dermatologists will always give new data to the model instead of the past training data.
So in the future, we will do the simulation again with non-overlapping data.

I would also speculate that simultaneous training for classification and explanation could
become a common practice when tuning data is available. Now the problem is that
the training procedure is "hacked" and requires a copy of the model at each iteration.
Optimization is possible by calculating gradient for each layer of the model multiple
times in each iteration, if the underlying framework (Keras, PyTorch) supports it.

Bibliography

[1] Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU).
(2018).

[2] David Alvarez-Melis and Tommi S. Jaakkola. 2018. Towards Robust Interpretability
with Self-Explaining Neural Networks. CoRR abs/1806.07538 (2018). http://
arxiv.org/abs/1806.07538

[3] Paolo Andreini, Simone Bonechi, Monica Bianchini, Alessandro Mecocci, and Franco
Scarselli. 2020. Image generation by GAN and style transfer for agar plate image
segmentation. Computer methods and programs in biomedicine 184 (2020), 105268.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39, 12 (2017), 2481–2495. DOI:
http://dx.doi.org/10.1109/TPAMI.2016.2644615

[5] Catarina Barata, Jorge S. Marques, and M. Emre Celebi. 2019. Deep Attention Model
for the Hierarchical Diagnosis of Skin Lesions. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

[6] Homanga Bharadhwaj. 2018. Layer-wise Relevance Propagation for Explainable
Recommendations. (2018).

[7] Lei Bi, Jinman Kim, Euijoon Ahn, Ashnil Kumar, Michael Fulham, and Dagan
Feng. 2017. Dermoscopic Image Segmentation via Multistage Fully Convolutional
Networks. IEEE Transactions on Biomedical Engineering 64, 9 (2017), 2065–2074. DOI:
http://dx.doi.org/10.1109/TBME.2017.2712771

[8] Laura Canalini, Federico Pollastri, Federico Bolelli, Michele Cancilla, Stefano Al-
legretti, and Costantino Grana. 2019. Skin Lesion Segmentation Ensemble with
Diverse Training Strategies. (06 2019).

[9] M. Emre Celebi, Quan Wen, Hitoshi Iyatomi, Kouhei Shimizu, Huiyu Zhou, and
Gerald Schaefer. 2015. A State-of-the-Art Survey on Lesion Border Detection in
Dermoscopy Images. 97–129. DOI:http://dx.doi.org/10.1201/b19107-5

[10] Esther Chabi Adjobo, Amadou Tidjani Sanda Mahama, Pierre Gouton, and Joël
Tossa. 2019. Proposition of Convolutional Neural Network Based System for
Skin Cancer Detection. In 2019 15th International Conference on Signal-Image Tech-
nology Internet-Based Systems (SITIS). 35–39. DOI:http://dx.doi.org/10.1109/
SITIS.2019.00018

[11] Hao Chang. 2017. Skin cancer reorganization and classification with deep neural
network. CoRR abs/1703.00534 (2017). http://arxiv.org/abs/1703.00534

52

http://arxiv.org/abs/1806.07538
http://arxiv.org/abs/1806.07538
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TBME.2017.2712771
http://dx.doi.org/10.1201/b19107-5
http://dx.doi.org/10.1109/SITIS.2019.00018
http://dx.doi.org/10.1109/SITIS.2019.00018
http://arxiv.org/abs/1703.00534

[12] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Bala-
subramanian. 2018. Grad-CAM++: Generalized Gradient-Based Visual Explana-
tions for Deep Convolutional Networks. 2018 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV) (Mar 2018). DOI:http://dx.doi.org/10.1109/
wacv.2018.00097

[13] François Chollet and others. 2015. Keras. https://github.com/fchollet/
keras. (2015).

[14] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A.
Marchetti, Stephen W. Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin K. Mishra,
Harald Kittler, and Allan Halpern. 2017. Skin Lesion Analysis Toward Melanoma
Detection: A Challenge at the 2017 International Symposium on Biomedical Imag-
ing (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). CoRR
abs/1710.05006 (2017). http://arxiv.org/abs/1710.05006

[15] Noel C. F. Codella, Quoc-Bao Nguyen, Sharath Pankanti, David A. Gutman, Brian
Helba, Allan Halpern, and John R. Smith. 2016. Deep Learning Ensembles for
Melanoma Recognition in Dermoscopy Images. CoRR abs/1610.04662 (2016). http:
//arxiv.org/abs/1610.04662

[16] Noel C. F. Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi,
Stephen W. Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Li-
opyris, Michael A. Marchetti, Harald Kittler, and Allan Halpern. 2019. Skin Le-
sion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the
International Skin Imaging Collaboration (ISIC). CoRR abs/1902.03368 (2019).
http://arxiv.org/abs/1902.03368

[17] Abhishek Das, Ram Prasaath, and Varun Agrawal. 2017. Grad-CAM: Gradient-
weighted Class Activation Mapping. (2017). https://github.com/ramprs/
grad-cam

[18] Sergey Demyanov, Rajib Chakravorty, Mani Abedini, Alan Halpern, and Rahil Gar-
navi. 2016. Classification of dermoscopy patterns using deep convolutional neural
networks. 364–368. DOI:http://dx.doi.org/10.1109/ISBI.2016.7493284

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 248–255.

[20] C.P. Diehl and G. Cauwenberghs. 2003. Svm incremental learning, adaptation and
optimization. In Proceedings of the International Joint Conference on Neural Networks,
2003., Vol. 4. IEEE, Portland, Oregon USA, 2685–2690. DOI:http://dx.doi.org/
10.1109/IJCNN.2003.1223991

[21] Mehwish Dildar, Shumaila Akram, Muhammad Irfan, Hikmat Ullah Khan, Muham-
mad Ramzan, Abdur Rehman Mahmood, Soliman Ayed Alsaiari, Abdul Hakeem M
Saeed, Mohammed Olaythah Alraddadi, and Mater Hussen Mahnashi. 2021. Skin
Cancer Detection: A Review Using Deep Learning Techniques. International journal
of environmental research and public health 18, 10 (2021), 5479.

[22] Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, and Yike Guo. 2017. Automatic
Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional
Networks. In Medical Image Understanding and Analysis, María Valdés Hernández and
Víctor González-Castro (Eds.). Springer International Publishing, Cham, 506–517.

53

http://dx.doi.org/10.1109/wacv.2018.00097
http://dx.doi.org/10.1109/wacv.2018.00097
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1710.05006
http://arxiv.org/abs/1610.04662
http://arxiv.org/abs/1610.04662
http://arxiv.org/abs/1902.03368
https://github.com/ramprs/grad-cam
https://github.com/ramprs/grad-cam
http://dx.doi.org/10.1109/ISBI.2016.7493284
http://dx.doi.org/10.1109/IJCNN.2003.1223991
http://dx.doi.org/10.1109/IJCNN.2003.1223991

[23] Xue Dong, Yang Lei, Tonghe Wang, Matthew Thomas, Leonardo Tang, Walter J
Curran, Tian Liu, and Xiaofeng Yang. 2019. Automatic multiorgan segmentation in
thorax CT images using U-net-GAN. Medical physics 46, 5 (2019), 2157–2168.

[24] Ulzii-Orshikh Dorj, Keun-Kwang Lee, Jae-Young Choi, and Malrey Lee. 2018. The
skin cancer classification using deep convolutional neural network. Multimedia Tools
and Applications 77, 8 (2018), 9909–9924.

[25] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. (2017).
http://archive.ics.uci.edu/ml

[26] David Duque-Arias, Santiago Velasco-Forero, Jean-Emmanuel Deschaud, François
Goulette, Andres Serna, Etienne Decencière, and Beatriz Marcotegui. 2021. On
Power Jaccard Losses for Semantic Segmentation:. In Proceedings of the 16th Inter-
national Joint Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications. SCITEPRESS - Science and Technology Publications, Online
Streaming, — Select a Country —, 561–568. DOI:http://dx.doi.org/10.5220/
0010304005610568

[27] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M
Blau, and Sebastian Thrun. 2017. Dermatologist-level classification of skin cancer
with deep neural networks. nature 542, 7639 (2017), 115–118.

[28] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew
Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput.
Vision 88, 2 (jun 2010), 303–338. DOI:http://dx.doi.org/10.1007/s11263-
009-0275-4

[29] Bhavya Ghai, Q. Vera Liao, Yunfeng Zhang, Rachel Bellamy, and Klaus Mueller. 2020.
Explainable Active Learning (XAL): An Empirical Study of How Local Explanations
Impact Annotator Experience. arXiv e-prints (Jan. 2020), arXiv:2001.09219.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[31] Manu Goyal and Moi Hoon Yap. 2017. Multi-class Semantic Segmentation of
Skin Lesions via Fully Convolutional Networks. CoRR abs/1711.10449 (2017).
http://arxiv.org/abs/1711.10449

[32] David Gutman, Noel C. F. Codella, Emre Celebi, Brian Helba, Michael Marchetti,
Nabin Mishra, and Allan Halpern. 2016. Skin Lesion Analysis toward Melanoma
Detection: A Challenge at the International Symposium on Biomedical Imaging
(ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). (2016).

[33] Emma Harrington, Barbara Clyne, Nieneke Wesseling, Harkiran Sandhu, Laura
Armstrong, Holly Bennett, and Tom Fahey. 2017. Diagnosing malignant melanoma
in ambulatory care: a systematic review of clinical prediction rules. BMJ open 7, 3
(2017), e014096. DOI:http://dx.doi.org/10.1136/bmjopen-2016-014096

[34] Elad Hazan. 2019. Introduction to Online Convex Optimization. CoRR
abs/1909.05207 (2019). http://arxiv.org/abs/1909.05207

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Resid-
ual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Jun 2016). DOI:http://dx.doi.org/10.1109/
cvpr.2016.90

54

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.5220/0010304005610568
http://dx.doi.org/10.5220/0010304005610568
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
http://www.deeplearningbook.org
http://arxiv.org/abs/1711.10449
http://dx.doi.org/10.1136/bmjopen-2016-014096
http://arxiv.org/abs/1909.05207
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90

[36] Achim Hekler, Jochen S. Utikal, Alexander H. Enk, Axel Hauschild, Michael We-
ichenthal, Roman C. Maron, Carola Berking, Sebastian Haferkamp, Joachim Klode,
Dirk Schadendorf, Bastian Schilling, Tim Holland-Letz, Benjamin Izar, Christof
von Kalle, Stefan Fröhling, Titus J. Brinker, Laurenz Schmitt, Wiebke K. Peitsch,
Friederike Hoffmann, Jürgen C. Becker, Christina Drusio, Philipp Jansen, Joachim
Klode, Georg Lodde, Stefanie Sammet, Dirk Schadendorf, Wiebke Sondermann,
Selma Ugurel, Jeannine Zader, Alexander Enk, Martin Salzmann, Sarah Schäfer,
Knut Schäkel, Julia Winkler, Priscilla Wölbing, Hiba Asper, Ann-Sophie Bohne,
Victoria Brown, Bianca Burba, Sophia Deffaa, Cecilia Dietrich, Matthias Dietrich,
Katharina Antonia Drerup, Friederike Egberts, Anna-Sophie Erkens, Salim Greven,
Viola Harde, Marion Jost, Merit Kaeding, Katharina Kosova, Stephan Lischner,
Maria Maagk, Anna Laetitia Messinger, Malte Metzner, Rogina Motamedi, Ann-
Christine Rosenthal, Ulrich Seidl, Jana Stemmermann, Kaspar Torz, Juliana Giraldo
Velez, Jennifer Haiduk, Mareike Alter, Claudia Bär, Paul Bergenthal, Anne Gerlach,
Christian Holtorf, Ante Karoglan, Sophie Kindermann, Luise Kraas, Moritz Felcht,
Maria R. Gaiser, Claus-Detlev Klemke, Hjalmar Kurzen, Thomas Leibing, Verena
Müller, Raphael R. Reinhard, Jochen Utikal, Franziska Winter, Carola Berking, Lau-
rie Eicher, Daniela Hartmann, Markus Heppt, Katharina Kilian, Sebastian Krammer,
Diana Lill, Anne-Charlotte Niesert, Eva Oppel, Elke Sattler, Sonja Senner, Jens
Wallmichrath, Hans Wolff, Anja Gesierich, Tina Giner, Valerie Glutsch, Andreas Ker-
stan, Dagmar Presser, Philipp Schrüfer, Patrick Schummer, Ina Stolze, Judith Weber,
Konstantin Drexler, Sebastian Haferkamp, Marion Mickler, Camila Toledo Stauner,
and Alexander Thiem. 2019. Superior skin cancer classification by the combination
of human and artificial intelligence. European Journal of Cancer 120 (2019), 114–121.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.ejca.2019.07.019

[37] Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2021. Online learning:
A comprehensive survey. Neurocomputing 459 (Oct. 2021), 249–289. DOI:http:
//dx.doi.org/10.1016/j.neucom.2021.04.112

[38] Andreas Holzinger, Markus Plass, Katharina Holzinger, Gloria Cerasela Crisan,
Camelia-M. Pintea, and Vasile Palade. 2017. A glass-box interactive machine learn-
ing approach for solving NP-hard problems with the human-in-the-loop. (2017).

[39] Vladimir Iglovikov and Alexey Shvets. 2018. TernausNet: U-Net with VGG11
Encoder Pre-Trained on ImageNet for Image Segmentation. CoRR abs/1801.05746
(2018). http://arxiv.org/abs/1801.05746

[40] M.H. Jafari, N. Karimi, E. Nasr-Esfahani, S. Samavi, S.M.R. Soroushmehr, K. Ward,
and K. Najarian. 2016. Skin lesion segmentation in clinical images using deep
learning. In 2016 23rd International Conference on Pattern Recognition (ICPR). 337–342.
DOI:http://dx.doi.org/10.1109/ICPR.2016.7899656

[41] Weijia Ji, Lizhi Cai, Wei Chen, Mingang Chen, and Gang Chai. 2018. Seg-
mentation of Lesions in Skin Image Based on Salient Object Detection with
Deeply Supervised Learning. In 2018 IEEE 4th International Conference on Com-
puter and Communications (ICCC). 1567–1573. DOI:http://dx.doi.org/10.1109/
CompComm.2018.8780745

[42] Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. 2013. Deep Learning: Yesterday, Today,
and Tomorrow. Journal of Computer Research and Development 50, 9 (2013), 1799.
https://crad.ict.ac.cn/EN/abstract/article_1340.shtml

55

http://dx.doi.org/https://doi.org/10.1016/j.ejca.2019.07.019
http://dx.doi.org/10.1016/j.neucom.2021.04.112
http://dx.doi.org/10.1016/j.neucom.2021.04.112
http://arxiv.org/abs/1801.05746
http://dx.doi.org/10.1109/ICPR.2016.7899656
http://dx.doi.org/10.1109/CompComm.2018.8780745
http://dx.doi.org/10.1109/CompComm.2018.8780745
https://crad.ict.ac.cn/EN/abstract/article_1340.shtml

[43] Jeremy Kawahara, Aicha BenTaieb, and Ghassan Hamarneh. 2016. Deep features to
classify skin lesions. In 2016 IEEE 13th International Symposium on Biomedical Imaging
(ISBI). 1397–1400. DOI:http://dx.doi.org/10.1109/ISBI.2016.7493528

[44] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Technical
Report.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.),
Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[46] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, (2010). http://yann.lecun.com/exdb/
mnist/

[47] Hang Li, Xinzi He, Feng Zhou, Zhen Yu, Dong Ni, Siping Chen, Tianfu Wang, and
Baiying Lei. 2019. Dense Deconvolutional Network for Skin Lesion Segmentation.
IEEE Journal of Biomedical and Health Informatics 23, 2 (2019), 527–537. DOI:http:
//dx.doi.org/10.1109/JBHI.2018.2859898

[48] Hongfeng Li, Yini Pan, Jie Zhao, and Li Zhang. 2021. Skin disease diagnosis
with deep learning: A review. Neurocomputing 464 (Nov. 2021), 364–393. DOI:
http://dx.doi.org/10.1016/j.neucom.2021.08.096

[49] Yuexiang Li and Linlin Shen. 2018a. cC-GAN: A robust transfer-learning framework
for HEp-2 specimen image segmentation. IEEE Access 6 (2018), 14048–14058.

[50] Yuexiang Li and Linlin Shen. 2018b. Skin lesion analysis towards melanoma detec-
tion using deep learning network. Sensors 18, 2 (2018), 556.

[51] Haofu Liao. 2015. A Deep Learning Approach to Universal Skin Disease Classifica-
tion.

[52] Bill S. Lin, Kevin Michael, Shivam Kalra, and H.R. Tizhoosh. 2017. Skin le-
sion segmentation: U-Nets versus clustering. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI). 1–7. DOI:http://dx.doi.org/10.1109/
SSCI.2017.8280804

[53] S. Lipovetsky and M. Conklin. 2001. Analysis of regression in game theory approach.
Applied Stochastic Models in Business and Industry 17 (2001), 319–330.

[54] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van
Ginneken, and Clara I. Sánchez. 2017. A survey on deep learning in medical image
analysis. Medical Image Analysis 42 (Dec. 2017), 60–88. DOI:http://dx.doi.org/
10.1016/j.media.2017.07.005

[55] Lina Liu, Lichao Mou, Xiao Xiang Zhu, and Mrinal Mandal. 2019. Skin Lesion
Segmentation Based on Improved U-net. In 2019 IEEE Canadian Conference of Electri-
cal and Computer Engineering (CCECE). 1–4. DOI:http://dx.doi.org/10.1109/
CCECE.2019.8861848

56

http://dx.doi.org/10.1109/ISBI.2016.7493528
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1109/JBHI.2018.2859898
http://dx.doi.org/10.1109/JBHI.2018.2859898
http://dx.doi.org/10.1016/j.neucom.2021.08.096
http://dx.doi.org/10.1109/SSCI.2017.8280804
http://dx.doi.org/10.1109/SSCI.2017.8280804
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1109/CCECE.2019.8861848
http://dx.doi.org/10.1109/CCECE.2019.8861848

[56] Adria Romero Lopez, Xavier Giro-i Nieto, Jack Burdick, and Oge Marques. 2017.
Skin lesion classification from dermoscopic images using deep learning techniques.
In 2017 13th IASTED international conference on biomedical engineering (BioMed). IEEE,
49–54.

[57] Scott Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. CoRR abs/1705.07874 (2017). http://arxiv.org/abs/1705.07874

[58] Tomas Majtner, Sule Yildirim-Yayilgan, and Jon Yngve Hardeberg. 2016. Combining
deep learning and hand-crafted features for skin lesion classification. In 2016 Sixth
International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE,
1–6.

[59] Piotr Migdal and Rafat Jakubanis. 2018. Keras vs PyTorch. https://
deepsense.ai/keras-or-pytorch/. (2018). Accessed: 2022-01-12.

[60] Palaniappan Mirunalini, Aravindan Chandrabose, Vignesh Gokul, and SM Jaisakthi.
2017. Deep learning for skin lesion classification. arXiv preprint arXiv:1703.04364
(2017).

[61] Robert (Munro) Monarch. 2021. Human-in-the-Loop Machine Learning.
(2021). https://www.manning.com/books/human-in-the-loop-machine-
learning

[62] Mohammad Amin Morid, Alireza Borjali, and Guilherme Del Fiol. 2021. A scop-
ing review of transfer learning research on medical image analysis using Ima-
geNet. Computers in Biology and Medicine 128 (Jan. 2021), 104115. DOI:http:
//dx.doi.org/10.1016/j.compbiomed.2020.104115

[63] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. (2012).

[64] Zabir Al Nazi and Tasnim Azad Abir. 2020. Automatic Skin Lesion Segmentation
and Melanoma Detection: Transfer Learning Approach with U-Net and DCNN-
SVM. In Proceedings of International Joint Conference on Computational Intelligence,
Mohammad Shorif Uddin and Jagdish Chand Bansal (Eds.). Springer Singapore,
Singapore, 371–381.

[65] Ho Minh Duy Nguyen, Abraham Ezema, Fabrizio Nunnari, and Daniel Sonntag.
2020. A Visually Explainable Learning System for Skin Lesion Detection Using
Multiscale Input with Attention U-Net. In KI 2020: Advances in Artificial Intelligence
(2020-09-01), Vol. 12325. Springer, 313–319. https://www.dfki.de/fileadmin/
user_upload/import/11178_KI_2020.pdfhttps://link.springer.com/
chapter/10.1007/978-3-030-58285-2_28

[66] Fabrizio Nunnari, Chirag Bhuvaneshwara, Abraham Obinwanne Ezema, and Daniel
Sonntag. 2020. A Study on the Fusion of Pixels and Patient Metadata in CNN-Based
Classification of Skin Lesion Images. In Machine Learning and Knowledge Extraction
(Lecture Notes in Computer Science), Andreas Holzinger, Peter Kieseberg, A Min Tjoa,
and Edgar Weippl (Eds.). Springer International Publishing, Cham, 191–208. DOI:
http://dx.doi.org/10.1007/978-3-030-57321-8_11

[67] Fabrizio Nunnari, Md Abdul Kadir, and Daniel Sonntag. 2021. On the Overlap
Between Grad-CAM Saliency Maps and Explainable Visual Features in Skin Cancer
Images. In Machine Learning and Knowledge Extraction, Andreas Holzinger, Peter
Kieseberg, A. Min Tjoa, and Edgar Weippl (Eds.). Springer International Publishing,
Cham, 241–253.

57

http://arxiv.org/abs/1705.07874
https://deepsense.ai/keras-or-pytorch/
https://deepsense.ai/keras-or-pytorch/
https://www.manning.com/books/human-in-the-loop-machine-learning
https://www.manning.com/books/human-in-the-loop-machine-learning
http://dx.doi.org/10.1016/j.compbiomed.2020.104115
http://dx.doi.org/10.1016/j.compbiomed.2020.104115
https://www.dfki.de/fileadmin/user_upload/import/11178_KI_2020.pdfhttps://link.springer.com/chapter/10.1007/978-3-030-58285-2_28
https://www.dfki.de/fileadmin/user_upload/import/11178_KI_2020.pdfhttps://link.springer.com/chapter/10.1007/978-3-030-58285-2_28
https://www.dfki.de/fileadmin/user_upload/import/11178_KI_2020.pdfhttps://link.springer.com/chapter/10.1007/978-3-030-58285-2_28
http://dx.doi.org/10.1007/978-3-030-57321-8_11

[68] Fabrizio Nunnari and Daniel Sonntag. 2019. A CNN toolbox for skin cancer classifi-
cation. (2019). https://arxiv.org/abs/1908.08187

[69] Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam.
2019. Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique
for Deep Convolutional Neural Network Models. (2019).

[70] Şaban Öztürk and Umut Özkaya. 2020. Skin lesion segmentation with improved
convolutional neural network. Journal of digital imaging 33, 4 (2020), 958–970.

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[72] Yanjun Peng, Ning Wang, Yuanhong Wang, and Meiling Wang. 2019. Segmentation
of Dermoscopy Image Using Adversarial Networks. Multimedia Tools Appl. 78,
8 (apr 2019), 10965–10981. DOI:http://dx.doi.org/10.1007/s11042-018-
6523-2

[73] Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. RISE: Randomized Input Sampling
for Explanation of Black-box Models. CoRR abs/1806.07421 (2018). http://
arxiv.org/abs/1806.07421

[74] Adon Phillips, Iris Teo, and Jochen Lang. 2019. Segmentation of Prognostic Tissue
Structures in Cutaneous Melanoma Using Whole Slide Images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

[75] Federico Pollastri, Federico Bolelli, Roberto Paredes Palacios, and Costantino Grana.
2018. Improving skin lesion segmentation with generative adversarial networks. In
2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS).
IEEE, 442–443.

[76] Teodora Popordanoska, Mohit Kumar, and Stefano Teso. 2020. Toward Machine-
Guided, Human-Initiated Explanatory Interactive Learning. arXiv:2007.10018 [cs]
(July 2020). http://arxiv.org/abs/2007.10018 arXiv: 2007.10018.

[77] Propublica. 2017. propublica/compas-analysis. (Jun 2017). https://github.com/
propublica/compas-analysis/

[78] Hema Raghavan, Omid Madani, and Rosie Jones. 2006. Active Learning with
Feedback on Features and Instances. J. Mach. Learn. Res. 7 (Dec. 2006), 1655–1686.

[79] Md Atiqur Rahman and Yang Wang. 2016. Optimizing Intersection-Over-Union in
Deep Neural Networks for Image Segmentation. In Advances in Visual Computing,
George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Fatih Porikli, San-
dra Skaff, Alireza Entezari, Jianyuan Min, Daisuke Iwai, Amela Sadagic, Carlos
Scheidegger, and Tobias Isenberg (Eds.). Vol. 10072. Springer International Publish-
ing, Cham, 234–244. DOI:http://dx.doi.org/10.1007/978-3-319-50835-
1_22 Series Title: Lecture Notes in Computer Science.

58

https://arxiv.org/abs/1908.08187
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1007/s11042-018-6523-2
http://dx.doi.org/10.1007/s11042-018-6523-2
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/2007.10018
https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/
http://dx.doi.org/10.1007/978-3-319-50835-1_22
http://dx.doi.org/10.1007/978-3-319-50835-1_22

[80] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. CoRR
abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242

[81] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I Trust
You?": Explaining the Predictions of Any Classifier. CoRR abs/1602.04938 (2016).
http://arxiv.org/abs/1602.04938

[82] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs] (May 2015).
http://arxiv.org/abs/1505.04597 arXiv: 1505.04597.

[83] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. 2017. Right for the
Right Reasons: Training Differentiable Models by Constraining their Explanations.
CoRR abs/1703.03717 (2017). http://arxiv.org/abs/1703.03717

[84] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and et al.
2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision 115, 3 (Apr 2015), 211–252. DOI:http://dx.doi.org/10.1007/
s11263-015-0816-y

[85] Tanzila Saba, Muhammad Attique Khan, Amjad Rehman, and Souad Larabi Marie-
Sainte. 2019. Region extraction and classification of skin cancer: A heterogeneous
framework of deep CNN features fusion and reduction. Journal of medical systems 43,
9 (2019), 1–19.

[86] Sumit Saha. 2018. A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way. https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53. (2018). Accessed: 2021-09-30.

[87] Grigory Sapunov. 2019. Hardware for Deep Learning. Part 1: Introduc-
tion. https://blog.inten.to/hardware-for-deep-learning-current-
state-and-trends-51c01ebbb6dc. (2019). Accessed: 2022-01-02.

[88] Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Vivek Kumar
Singh, Syeda Furruka Banu, Forhad U H Chowdhury, Kabir Ahmed Choudhury,
Sylvie Chambon, Petia Radeva, Domenec Puig, and Mohamed Abdel-Nasser. 2021.
SLSNet: Skin lesion segmentation using a lightweight generative adversarial net-
work. (2021).

[89] Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Xiaoting
Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting. 2020. Right
for the Wrong Scientific Reasons: Revising Deep Networks by Interacting with their
Explanations. arXiv:2001.05371 [cs, stat] (Jan. 2020). http://arxiv.org/abs/
2001.05371 arXiv: 2001.05371.

[90] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say
that? Visual Explanations from Deep Networks via Gradient-based Localization.
CoRR abs/1610.02391 (2016). http://arxiv.org/abs/1610.02391

[91] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann
LeCun. 2014. OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks. arXiv:1312.6229 [cs] (Feb. 2014). http://arxiv.org/
abs/1312.6229 arXiv: 1312.6229.

59

http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1703.03717
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc
https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc
http://arxiv.org/abs/2001.05371
http://arxiv.org/abs/2001.05371
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229

[92] Sumeet Shinde, Priyanka Tupe-Waghmare, Tanay Chougule, Jitender Saini, and
Madhura Ingalhalikar. 2021. Predictive and discriminative localization of pathology
using high resolution class activation maps with CNNs. PeerJ. Computer Science 7
(2021), e622. DOI:http://dx.doi.org/10.7717/peerj-cs.622

[93] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Impor-
tant Features Through Propagating Activation Differences. CoRR abs/1704.02685
(2017). http://arxiv.org/abs/1704.02685

[94] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv:1409.1556 [cs] (April 2015). http://
arxiv.org/abs/1409.1556 arXiv: 1409.1556.

[95] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
2017. SmoothGrad: removing noise by adding noise. (2017).

[96] Daniel Sonntag, Fabrizio Nunnari, and Hans-Jürgen Profitlich. 2020. The Skincare
project, an interactive deep learning system for differential diagnosis of malignant
skin lesions. Technical Report. arXiv:2005.09448 [cs, eess] (May 2020). http://
arxiv.org/abs/2005.09448 arXiv: 2005.09448.

[97] Erich P. Stuntebeck, John S. Davis, Gregory D. Abowd, and Marion Blount. 2008.
HealthSense: Classification of Health-Related Sensor Data through User-Assisted
Machine Learning. In Proceedings of the 9th Workshop on Mobile Computing Systems
and Applications (HotMobile ’08). Association for Computing Machinery, New York,
NY, USA, 1–5. DOI:http://dx.doi.org/10.1145/1411759.1411761

[98] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. 2015. Rethinking the Inception Architecture for Computer Vision. CoRR
abs/1512.00567 (2015). http://arxiv.org/abs/1512.00567

[99] Stefano Teso. 2019. Toward Faithful Explanatory Active Learning with Self-
explainable Neural Nets. Interactive Adaptive Learning 2444 (2019), 13.

[100] Stefano Teso and Kristian Kersting. 2019. Explanatory Interactive Machine Learn-
ing. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES
’19). Association for Computing Machinery, New York, NY, USA, 239–245. DOI:
http://dx.doi.org/10.1145/3306618.3314293

[101] Philipp Tschandl, Christoph Sinz, and Harald Kittler. 2019. Domain-specific
classification-pretrained fully convolutional network encoders for skin lesion seg-
mentation. Computers in Biology and Medicine 104 (2019), 111–116. DOI:http:
//dx.doi.org/https://doi.org/10.1016/j.compbiomed.2018.11.010

[102] Andreea Udrea and G.D. Mitra. 2017. Generative Adversarial Neural Networks
for Pigmented and Non-Pigmented Skin Lesions Detection in Clinical Images. 2017
21st International Conference on Control Systems and Computer Science (CSCS) (2017),
364–368.

[103] Halil Murat Ünver and Enes Ayan. 2019. Skin Lesion Segmentation in Dermoscopic
Images with Combination of YOLO and GrabCut Algorithm. Diagnostics 9 (2019).

[104] Wikipedia contributors. 2021a. Online machine learning — Wikipedia, The Free
Encyclopedia. (2021). https://en.wikipedia.org/w/index.php?title=
Online_machine_learning&oldid=1039010301 [Online; accessed 24-
January-2022].

60

http://dx.doi.org/10.7717/peerj-cs.622
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2005.09448
http://arxiv.org/abs/2005.09448
http://dx.doi.org/10.1145/1411759.1411761
http://arxiv.org/abs/1512.00567
http://dx.doi.org/10.1145/3306618.3314293
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2018.11.010
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2018.11.010
https://en.wikipedia.org/w/index.php?title=Online_machine_learning&oldid=1039010301
https://en.wikipedia.org/w/index.php?title=Online_machine_learning&oldid=1039010301

[105] Wikipedia contributors. 2021b. Saliency map — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Saliency_map&oldid=
1049691575. (2021). [Online; accessed 24-January-2022].

[106] Wikipedia contributors. 2022a. Shapley value — Wikipedia, The Free En-
cyclopedia. (2022). https://en.wikipedia.org/w/index.php?title=
Shapley_value&oldid=1064989172 [Online; accessed 24-January-2022].

[107] Wikipedia contributors. 2022b. Sobel operator — Wikipedia, The Free En-
cyclopedia. (2022). https://en.wikipedia.org/w/index.php?title=
Sobel_operator&oldid=1067623546 [Online; accessed 24-January-2022].

[108] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang
He. 2021. A Survey of Human-in-the-loop for Machine Learning. arXiv:2108.00941
[cs] (Nov. 2021). http://arxiv.org/abs/2108.00941 arXiv: 2108.00941.

[109] Wenjun Yan, Yuanyuan Wang, Shengjia Gu, Lu Huang, Fuhua Yan, Liming Xia,
and Qian Tao. 2019. The domain shift problem of medical image segmentation
and vendor-adaptation by Unet-GAN. In International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 623–631.

[110] Jordan Yap, William Yolland, and Philipp Tschandl. 2018. Multimodal skin lesion
classification using deep learning. Experimental dermatology 27, 11 (2018), 1261–1267.

[111] Lequan Yu, Hao Chen, Qi Dou, Jing Qin, and Pheng-Ann Heng. 2017. Auto-
mated Melanoma Recognition in Dermoscopy Images via Very Deep Residual
Networks. IEEE Transactions on Medical Imaging 36, 4 (2017), 994–1004. DOI:
http://dx.doi.org/10.1109/TMI.2016.2642839

[112] Yading Yuan, Ming Chao, and Yeh-Chi Lo. 2017. Automatic Skin Lesion Seg-
mentation Using Deep Fully Convolutional Networks With Jaccard Distance.
IEEE transactions on medical imaging 36, 9 (Sept. 2017), 1876–1886. DOI:http:
//dx.doi.org/10.1109/TMI.2017.2695227

[113] Matthew D. Zeiler and Rob Fergus. 2013. Visualizing and Understanding Con-
volutional Networks. CoRR abs/1311.2901 (2013). http://arxiv.org/abs/
1311.2901

[114] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. 2016. Learning Deep
Features for Discriminative Localization. CVPR (2016).

[115] Juntang Zhuang. 2018. LadderNet: Multi-path networks based on U-Net for
medical image segmentation. ArXiv abs/1810.07810 (2018).

61

https://en.wikipedia.org/w/index.php?title=Saliency_map&oldid=1049691575
https://en.wikipedia.org/w/index.php?title=Saliency_map&oldid=1049691575
https://en.wikipedia.org/w/index.php?title=Shapley_value&oldid=1064989172
https://en.wikipedia.org/w/index.php?title=Shapley_value&oldid=1064989172
https://en.wikipedia.org/w/index.php?title=Sobel_operator&oldid=1067623546
https://en.wikipedia.org/w/index.php?title=Sobel_operator&oldid=1067623546
http://arxiv.org/abs/2108.00941
http://dx.doi.org/10.1109/TMI.2016.2642839
http://dx.doi.org/10.1109/TMI.2017.2695227
http://dx.doi.org/10.1109/TMI.2017.2695227
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

	 Introduction
	Motivation
	Machine Learning and Neural networks
	Evolution of ML methods
	Convolutional neural network
	Online machine learning
	Interactive learning
	Research goals and outline

	 Related work
	Explanation methods
	Input augmentation
	Class activation mapping

	Self-explaining neural networks
	Interactive and explainable AI
	Domain specific related work: skin cancer detection

	 Technical background
	Transfer learning
	Base Architecture
	Training data

	Saliency map
	Thresholding saliency map
	Loss function
	Online and incremental machine learning
	Optimization technique

	 Method
	Self explainable model
	Integrating the explanation with the original model
	User feedback
	Implementation

	 Experiments and Results
	Data description
	Data preparation
	Simulating feedback on the full simulation set
	Simulation on slices of data
	Training on different loss functions
	Experiment using unbalanced data
	Experiment using reduced balanced data
	Experiment using upsampled balanced data
	Result of sliced simulation
	Training performance

	 Conclusion
	Summary
	Evaluation
	Future work

	Bibliography

