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Abstract

Image captioning is a challenging task in the domain of computer vision and natural
language processing, with the goal of developing an algorithm that can automatically
generate informative and contextually relevant captions for images. The task involves
the fusion of multi-modal elements, i.e., visual perception and language understanding,
requiring the model to extract relevant features from the image and translate them into
textual descriptions. Recent works in image captioning has shown that the models
use an encoder-decoder architecture [78], [84], [42], [45] and most of the work has
been extensively studied in English, primarily because of the availability of the data.
Nevertheless, the advantages of this advanced technology are not useful to a significant
portion of those who do not speak English. The same captioning model can be applicable
for non-English languages as long as there is sufficient training data available [61],
[28]. However, the lack of training data for non-English target languages is a notable
challenge. In such situations, it is necessary to make use of alternate resources, such as
unpaired data or manually translating captions in the target language. To overcome this
limitation, the study employs a strategic approach called cross-lingual transfer learning.
This approach leverages information gathered from a resource-rich source language
to improve performance in a target language that has limited image-caption-paired
data. Therefore, the thesis specifically investigates cross-lingual transfer learning to
generate captions in a non-English target language, especially when there is a limited
availability of data. Instead of relying solely on target language resources, the study
integrates additional sources such as image pairs with English captions and parallel
sentences (sentences in two languages that are translations of each other). To achieve
this, the research extends a modular approach previously proposed for the machine
translation task by Lyu et al. [57], to address the unique challenges posed by the image
captioning task. By employing this architecture, our aim is to exploit the Cross-language
effect, which occurs when multiple languages are merged into a common module. It
has been observed that low-resource languages can gain significant advantages from
high-resource image-caption-pair data. This strategic approach aims to improve the
efficiency and flexibility of the model, especially in situations where there is a shortage of
language resources. This extension represents a novel contribution to the field, providing
a nuanced and adaptable framework for multilingual image captioning under data
constraints.

Keywords: Pattern Recognition, Machine Learning, Deep learning, Computer Vision,
Natural Language Processing, Multi-linguality.
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Chapter 1
Introduction

In the current decade, deep learning research has witnessed a pivotal breakthrough,
with the initiation led by AlexNet [51]. This Convolutional Neural Network (CNN)
secured a remarkable victory in the 2012 ImageNet [66] contest. The versatility of deep
networks has been demonstrated across various domains, showcasing their prowess in
tasks such as image classification, feature extraction, machine translation, and natural
language processing. These networks exhibit the capacity to extract rich information
from diverse sources, encompassing audio, images, videos, and text. Among these
emerging opportunities, a particular advancement that attracted significant interest was
image captioning, which is the primary focus of the thesis.

As humans, we possess the ability to articulate an organized and structured sentence
that accurately describes a given image by identifying the prominent content and their
relationship with the surroundings. However, describing the content of an image in
simple words is a significant challenge for machines. The task requires extracting the
clear idea conveyed by the image and training the language model to produce logical
and grammatically accurate sentences. The process of discovering an efficient method
to analyze an input image, describe its content, and convert it into a series of words,
establishing an optimal connection between visual and textual components while ensur-
ing the smoothness of the language, is referred to as "image caption generation." Image
captioning is a fundamental problem in artificial intelligence that fuses the knowledge
of computer vision and natural language processing. The applications of image cap-
tioning are wide-ranging and substantial, including visually impaired individuals [58],
autonomous vehicles [35], social media [69], virtual assistants, and more.

1.1 Motivation

Image captioning has made significant advancements in recent years, emerging as a
captivating and challenging subject. However, every advancing technology brings forth
its own set of challenges. Traditional captioning systems [78] need more naturalness
as they generate captions sequentially (i.e., the next word is generated depending on
the previous word and the image features), which can lead to semantically irrelevant
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Figure 1.1: An example for image captioning task (Source: [7])

language structures. Another limitation is the fact that the majority of research and prac-
tical implementations are concentrated mainly on English captioning systems, primarily
because of the availability of annotated image-caption datasets in English. Nevertheless,
the advantages of cutting-edge technology are not accessible to a significant portion
of individuals who do not understand English, given that there are over 7,151 distinct
languages spoken globally [4]. Unfortunately, there is a limitation of image-caption
datasets in languages other than English. A straightforward method for gathering data
in target languages involves using a translation model to translate captions. However,
this method has its drawbacks. Notably, it results in a loss of valuable information from
the image and relies solely on the language model. As illustrated in Fig. 1.1 the human
annotator has described the image as "a train traveling down a track next to a forest."
However, upon closer observation, it becomes clear that certain complex details captured
visually, such as the distinctive yellow and blue colors of the train, and traversal across
three railway lines, are not explicitly conveyed in the caption. The use of a translation
model to convert captions into a target language raises concerns about potential loss of
such minute information. Therefore, the reliance on English captions as an intermediary
introduces a bottleneck in the process. If the original English captions are poorly anno-
tated by human annotators, utilizing a translation model may inadvertently propagate
inaccuracies into the translated annotations in the target language. To address this, there
is a need for a multi-modal systems that seamlessly integrate both visual and textual de-
scriptions, ensuring a more comprehensive representation. Hence, we utilize a technique
to address the language barrier by introducing cross-lingual transfer learning in image
captioning.

Cross-lingual image captioning generates accurate and fluent captions in the target
language. For instance, let’s consider the scenario where the objective is to provide a
description for an image in the Spanish, but there is a limitation for image-caption data
in Spanish. So, the model is initially trained with English labels, and then applying the
knowledge it has gained to generate Spanish captions. Hence, the process of transmitting
image data across several languages is referred to as cross-lingual image captioning.
Significant advancements have been made in this subject in recent years. In addition,
researchers have devised strategies to address the linguistic obstacles in image captioning
tasks, such as manually annotating image-caption datasets in a certain language [61],
unpaired image captioning [34], and employing transfer learning [19] approaches.

In the thesis, we investigate a method for cross-lingual transfer learning for image cap-
tioning. This technique is based on an existing technology that was originally designed
for translating text in multiple languages by Lyu et.al. [57]. The objective is to redesign
the multilingual model for image captioning task. Therefore, in the study we conduct a
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comprehensive evaluation of three frameworks: the Single model [[78], [84], [57]], 1-1
model [[75], [57]], and M2 [57] model, each designed for multilingual image captioning.
The Single model adopts a technique of employing several unidirectional models, which
is found to be successful when there is a significant amount of data available in the de-
sired language. In contrast, the 1-1 model uses a single encoder and decoder to generate
captions for multiple languages. Despite it sharing the model parameters across multiple
languages, this system faces a trade-off between the number of languages introduced and
the quality of the captions. Finally, the M2 model introduces a unique approach by shar-
ing only language-specific modules. The M2 model utilizes a modularized architecture
to establish an inter-lingual space, which enables convenient and efficient modifications
to the model. This design choice allows for flexibility and adaptability, showcasing the
M2 architecture as a promising solution for multilingual image captioning tasks.

1.2 Research problem

The existing literature predominantly overlooks the cross-lingual aspect of image cap-
tioning, hindering its potential impact on a global scale. In the thesis, we address the
critical research problem of developing a method for cross-lingual multi-modal task, with
a specific focus on image captioning. To tackle the challenge, we draw inspiration from a
well established approach initially designed for multilingual machine translation [57]
and adapt the methodology for cross-lingual image captioning. Therefore, the research
challenge focuses on creating a robust yet adaptable framework that bridges the language
gap and enable image understanding and description in multiple languages. The study
focuses on proposing a novel approach that can transfer knowledge from high-resource
language to low-resource language (enabling few-shot learning).

Main research question: Can adapting the M2 model to the image captioning task
enable few-shot captioning? To what extent is the model able to generate meaningful
captions (in a few-shot setup)?

1.3 Research objectives

The central focus of the study is to address the challenges arising from scarcity of
data in non-English languages. The key objective is to foster effective cross-lingual
communication by implementing a system to automatically generate captions in the
target (non-English) language. The approach aims to expand the range of languages
supported by the captioning system, to promote a framework that is more inclusive and
accessible, surpassing linguistic limitations. As a result, we redesign the M2 architecture
to perform cross-lingual image-captioning tailored for low-resource languages in a few-
shot learning context.

The secondary objective of the study is to conduct comprehensive comparative analysis
between three approaches, such as single model, 1-1 model, and M2 model. Additionally,
our objective is to analyze the distinctions among different decoders, with a specific
focus on the LSTM [39], Transformer [76], and pre-trained Transformer. This comparative
study is crucial in providing insights into the subtle ways in which different approaches
generate captions. Our objective is to thoroughly assess the performance and attributes of
distinct frameworks in order to enhance our understanding of their individual strengths
and shortcomings. This will provide useful insights into the wider field of multilingual
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image captioning.

Having established the key research objectives and centered the main research question
on the core concept, we proceed to articulate research questions that directly address the
design, implementation, and logic of our approach.

Research question:

1. How does the quality of generated captions differ among the single model, 1-1
model, and M2 model?

2. How does performance differ across different decoder architectures: LSTM,
Transformer, and Pre-trained NMT Transformer?

3. Can adapting the M2 model to the image captioning task enable few-shot image
captioning?

4. To what extent is the model able to generate meaningful image captions (in a
few-shot setup)?

1.4 Research methodologies

To achieve proficient multilingual image captioning, it is crucial to employ a thorough
and methodical research methodology that integrates techniques from both computer
vision and natural language processing. The methodology expands upon a modular ap-
proach that was first suggested for multilingual Neural Machine Translation (NMT) tasks
[57], adapting it for the purpose of cross-lingual image captioning. We implement three
distinct models. The initial approach involves employing multiple single-directional
models [[78], [84]], wherein each model possesses an encoder for image input and a
decoder for processing captions in the target language. However, this strategy becomes
impractical due to the quadratic increase in the number of models as additional languages
are introduced [57]. The second method, adopting a 1-1 configuration that restricts the
number of models by sharing parameters. This method utilizes a single encoder and a
single decoder for captioning in multiple languages, resulting in a compact structure
that reduces the overall number of parameters. The 1-1 model encounters a capacity
bottleneck, manifested when the model is constrained by the trade-off between the
number of languages introduced and captioning accuracy. The final method M2, not
only streamlines the system but also proves to be effective in enhancing performance
by incorporating language-specific decoder. Therefore, the core concept of this study
revolves around the implementation of cross-lingual transfer learning approach using
the M2 model. By doing this we harness knowledge acquired from high-resource lan-
guages to enhance the performance of model in low-resource languages. To measure the
performance of a model, it is important to employ well-established metrics like BLEU
[62], ROUGE [54], and CIDEr[77]. These metrics ensure a thorough examination across
different languages and provide an accurate evaluation of the model’s effectiveness. The
experiment’s code has been made available.

1.5 Scope and limitations

The primary focus of this research lies in designing customized models for multilingual
image captioning, a technology that aims to overcome language barriers and enhance
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multi-modal communication. The models strive to improve the user experience by creat-
ing captions in the desired language, facilitating effortless sharing and understanding
of visual content among people with different linguistic backgrounds. The efficacy of
the implemented framework is intricately tied to the availability and quality of sparsely
annotated image-caption pairs across diverse languages.

Nevertheless, it is crucial to recognize the inherent limitations associated with the task at
hand. Firstly, the computational requirements for the system are substantial, demanding
increased computational power, typically facilitated by GPU. Also, to effectively perform
few-shot learning in a cross-lingual context, a prerequisite is having at least a small
sample of data in the target languages. This poses a potential limitation, especially for
languages with scarce resources.

1.6 Contribution

The following contributions are made in this thesis:

1. Redesigned the modular M2 approach, originally designed for Machine Translation
tasks, to address challenges encountered in Multilingual Image Captioning.

2. Customized the pretrained Marian NMT Decoder from Hugging Face by introduc-
ing 1D (1 x 1) Convolution layers to perform Cross-Attention [76] between Feature
Maps from Image Encoder & Causal Word Embeddings of Text Decoder.

3. Evaluated the M2 architecture under different few-shot scenarios. This involved
evaluating the performance and adaptability of the model over varying sizes of
training data sets, thus providing useful insights into its robustness and ability to
generalize.

4. Implemented a unified architecture (1-1 model), specifically for multilingual image
captioning tasks. This model was concurrently trained on datasets from multiple
languages, such as English (en), Italian (it), and Spanish (es), allowing it to acquire
knowledge and produce descriptions in a multilingual setting.

5. Performed separate evaluations for each language incorporated into the unified
1-1 model. Leveraging the Python Lang_detect library [8] and the generative pre-
trained transformer model[22], language detection mechanisms were employed.
This involved verifying whether the captions generated by the model aligned
accurately with the target language.

6. Improved cross-modal grounding and prevent the model from exploiting language
priors [87]. This improvement aims to strengthen the model’s ability to establish
meaningful connections between visual and textual elements, ensuring that its
predictions are based on intrinsic visual features rather than relying excessively on
pre-existing language biases.

7. Performed ablation experiments using different auto-regressive language model
architectures such as Bi-LSTM [33] and Transformer [76].

1.7 Outline of the thesis

The outline of the report is as follows:
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1. Chapter 2: This section provides a comprehensive overview, explaining fundamen-
tal concepts and introducing key ideas, theories, and terminology that are essential
to the study. This guarantees an in-depth understanding of essential topics, which
include deep learning architectures, image processing techniques, and natural
language processing.

2. Chapter 3: The study conducts a thorough review of both historical and cur-
rent literature concerning the topic at hand. The chapter investigates different
methodologies and addresses the challenges associated with generating significant
captions. We also examine pertinent literature, emphasizing the modifications and
effects observed in specific studies that have helped shape our research.

3. Chapter 4: This section provides a detailed analysis of the methodology and execu-
tion complexities, exploring key elements to reveal insights into their formulations,
motivations, and underlying principles. The chapter concludes with a thorough
clarification of the training methodologies and implementation details.

4. Chapter 5: This chapter starts with a detailed overview of the datasets and bench-
marks used, followed by an analysis of the specific evaluation criteria. We conduct
a comprehensive assessment of our model’s performance across multiple bench-
marks, comparing it with both baseline and state-of-the-art techniques. The chapter
presents both quantitative and qualitative evaluations of our strategy.

5. Chapter 6: Provides a brief summary and conclusion to the thesis, including the
limitations and potential areas for future research.



Chapter 2
Concept

This chapter aims to establish the fundamental basis required for understanding the
complex concepts, theories, and procedures that form the foundation of our research.
The initial step is clarifying essential ideas related to Image Captioning. Then, we give a
perceptive summary of the current approaches and thoroughly analyze the underlying
issues. Subsequently, we proceed to explore the fundamental concept of our proposed
study and offer a justification for its basis.

2.1 Preliminaries

In this section, our attention is directed towards the core ideas essential for grasping the
concepts addressed in the thesis. We begin by examining the fundamental principles of
Artificial Intelligence (AI) and its subdomain, Machine Learning (ML). Next, we explore
specific intricacies regarding different architectures and concepts employed in Deep
Learning (DL), as well as its influence on image captioning.

2.1.1 Artificial Intelligence (AI) and Machine Learning (ML)

Artificial Intelligence (AI) is a prominent field in Computer Science that focuses on the
research and creation of intelligent algorithms, techniques, and systems. The primary
objective is to enhance the capabilities of robots to perceive and understand their envi-
ronment, acquire knowledge from past experiences, and make intelligent decisions to
maximize their likelihood of achieving desired outcomes. AI aims to replicate several as-
pects of human cognitive processes, including visual and auditory perception, language
understanding and generation, data processing, recommendation systems, and other
related functions. The basis of AI is rooted in the deliberate implementation of logic and
decision trees, enabling machines to possess independent learning, logical thinking, and
self-correcting abilities.

The evolution of AI has experienced a significant shift, transitioning from its initial
focus on symbolic logic-based systems to adopting data-driven methodologies that

7
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Figure 2.1: Relationship between Artificial Intelligence, Machine Learning, Deep Learn-
ing and Natural Language Processing (Source: [60])

are integral to Machine Learning techniques. Symbolic AI, based on the manipulation
and interpretation of symbols that represent things or concepts, mainly relies on logic-
based programming. This programming approach involves the utilization of rules
and axioms to make inferences and deductions. Symbolic AI encountered difficulties
in effectively negotiating complex and ever-changing real-world situations, despite
its notable advantages. This led to a significant change in the field, resulting in the
emergence of specialized sub-fields such as Machine Learning, Deep Learning, Robotics,
and Natural Language Processing (as depicted in Fig.2.1). These advancements have
collectively propelled AI to become a powerful force that is expected to transform the
technological landscape. The following sections will explore the intricacies of these
sub-fields, revealing their distinct contributions to the constantly expanding landscape
of AI.

Machine Learning (ML) is a specialized area within AI, characterized by its ability to
adjust and respond to new information or circumstances. ML algorithms exhibit an innate
capacity to identify patterns and derive meaningful conclusions from data, distinguishing
them from conventional AI techniques. This allows them to break free from strict
adherence to predefined rules, resulting in a significant advancement. This evolution
is a crucial turning point, laying the foundation for the current era of AI. The primary
objective of machine learning is to create computer algorithms that can independently
acquire and integrate knowledge gathered from data. This learning process occurs
through a systematic analysis of observations, which may include personal experiences,
examples, and explicit instructions. The objective is to uncover fundamental patterns
that empower the system to autonomously make judgments without any requirement
for human intervention. ML exerts a substantial impact on diverse sectors such as
healthcare, banking, e-commerce, and autonomous vehicles, resulting in profound and
transformative advancements. Applications have diverse purposes, such as improving
personalized recommendation systems and developing medical algorithms for disease
identification.
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ML covers a wide range of learning methods, each relying on factors such as having
carefully curated datasets, the adequacy of sample sizes for training models, the presence
of pre-trained models, and the computational resources available. This introduction lays
the groundwork for a comprehensive analysis of the various aspects of ML, elucidating
its distinct methodologies and applications within the overarching framework of Image
Captioning.

The domain of ML includes various learning methodologies, each tailored to address
certain challenges and tasks. Three frequently employed strategies comprise:

1. Supervised Learning:This method entails utilizing a dataset that has been anno-
tated with labels in order to train an algorithm. Supervised learning involves a
training dataset that comprises pairings of input and output. The inputs are the
features, and the outputs are the associated labels. The main objective is to acquire
a mapping function that can effectively forecast outputs for new and unfamiliar
inputs. Supervised learning is commonly used for tasks such as classification,
audio recognition, and regression analysis.

2. Unsupervised Learning: In contrast, unsupervised learning utilizes datasets that
do not possess explicit labels or annotations. This methodology functions with-
out explicitly specified outputs and seeks to reveal hidden patterns, structures,
or relationships within the data. Unsupervised learning is advantageous for ex-
amining the inherent structure of data or carrying out tasks such as grouping,
dimensionality reduction, and density estimation.

3. Transfer Learning:The transfer learning paradigm involves reusing a model that
has been trained on one task for a different, yet related, task. This strategy utilizes
the acquired information from the source task to enhance the learning of the target
task, particularly in situations when there is a scarcity of data for the target task. It
has proven valuable across various domains, such as image recognition, natural
language processing, and other complex tasks, enabling models to benefit from
previously acquired knowledge and adapt to new challenges.

Apart from these fundamental approaches, there exist various other learning strategies,
including reinforcement learning, self-supervised learning, semi-supervised learning,
multi-instance learning, and others. In this thesis, we adopt a hybrid approach that
combines the advantages of supervised learning and transfer learning methods.

2.1.2 Deep Learning (DL)

Deep learning is a distinct branch of ML that presents its own unique set of opportu-
nities and challenges. It stands out due to its exceptional ability to extract meaningful
patterns and representations from data sources, such as images, videos, and text, among
others. Remarkably, DL does not rely on pre-existing human skills or domain-specific
information. The term "deep" refers to the multiple layers of neural networks that are em-
ployed to detect complex patterns in data. The main goal of Artificial Neural Networks
(ANN) is to imitate the cognitive abilities of the human brain, although on a smaller
scale, by collecting knowledge from large datasets. DL architectures have a distinctive
ability to swiftly process raw input, akin to the functioning of the human brain, and then
improve their predictive accuracy as the amount of data increases. DL plays a crucial
role in achieving high levels of precision and accuracy in several tasks, including speech



10

Figure 2.2: Schematic representation detailing the structure of a single perceptron, show-
casing its neuron and connections in the neural network framework (Source:)

recognition, translation, and object detection. The advancements in AI have been seen
through notable achievements such as Google DeepMind’s AlphaGo, intelligent voice
assistants, self-driving cars, and other key discoveries.

Deep Learning concepts:

The perceptron [65] is a fundamental building block and serves as the primary computa-
tional unit within a Neural Network (NN). Frank Rosenblatt introduced the concept in
1957, and it is the most basic type of NN, specifically tailored for binary classification
problems. This approach utilizes supervised machine learning and exploits a linear
decision boundary, known as a hyperplane, to effectively separate and classify input
data. The perceptron, despite its simplicity, has the ability to handle difficult categoriza-
tion problems by learning and adapting to the input it receives, much like the intricate
neuronal connections in our brains.

Let break down the individual components of a fundamental perceptron employing a
neuron, as illustrated in Fig. 2.2;

1. Input layer: The neuron receives input in the form of numerically encoded
data, denoted as (x1, x2, x3, ..., xn), alongside their corresponding class labels
y1, y2, y3, ....., yn

2. Weighted summation: The inputs (x1, x2, x3, ..., xn), undergo a transformation by
being multiplied with corresponding weights w1, w2, w3, ...., wn, initialized with
random values. Additionally, a constant weight or bias (b) is incorporated, con-
tributing to the weighted sum s,

s = (wT
i xi + b) (2.1)

3. Activation Function: The weighted sum, denoted as s, is passed via a non-linear
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activation function σ, such as Sigmoid, Tanh, or Rectified Linear Unit (ReLU) [15].
The activation function incorporates non-linear properties and regulates the range
of the output. Specifically, the use of ReLU ensures that the resulting output a is
confined to the interval from zero to positive infinity.

a = σ(s) (2.2)

4. Output and Learning: The final result a represents the altered input data. Subse-
quently, the accuracy of this output is assessed. The Back Propagation approach is
used iteratively to enhance the neuron’s forecasting power.

The single layer perceptron is limited in its ability to linearly distinguish between diverse
input data distributions, as it only depends on a single linear hyperplane. To overcome
this limitation and effectively capture complex non-linear patterns, a more advanced
architecture with multiple layers of perceptrons is required. This architecture is referred
as a Multi-Layer Perceptron (MLP) or Deep Neural Network (DNN). Nevertheless, when
linear functions are intricately combined, the total model operates as a single layer
feed-forward model without the incorporation of non-linear elements. As a result, our
model has difficulties in accurately representing complex patterns within the dataset. To
address this problem effectively, it is essential to utilize non-linear activation functions
during the forward pass. Therefore, the neural network training procedure comprises
two critical stages:

1. Forward Propagation: The operations performed in this phase are similarly to the
training processes discussed earlier in the perceptron section.

2. Backward Propagation:

(a) Gradient calculation: The process begins by calculating the gradients of the
loss function in relation to the model parameters.

(b) Weight Update: Gradients are utilized to modify both the biases and weights
of the network in order to minimize the loss.

(c) Backward pass: The process of back-propagation involves the sequential
transmission of gradients through the network, from one layer to another, by
applying the chain rule of calculus.

(d) Optimization Algorithm: Weight adjustments are guided by optimization
algorithms such as gradient descent to effectively minimize the loss.

(e) Learning rate adjustment: The learning rate, which is a hyper-parameter,
affects the magnitude of weight updates and has an effect on the model’s
convergence.

The Forward and Backward passes are iteratively performed within a loop until the
model reaches a global optimum or the loss function shows a significant decrease.

2.1.3 Convolution Neural Networks (CNN)

The Convolutional Neural Network (CNN) proposed by LeCun et al. [?] has played
a significant role in the recent advancement of Deep Learning, particularly for image
analysis. CNN, sometimes referred to as ConvNet, is a specialized neural network
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Figure 2.3: A CNN is made up of two primary parts. The process of feature learning
and the subsequent classification component. In the feature learning phase, a series
of convolutional layers are sequentially arranged to acquire knowledge of features,
beginning with fundamental ones such as edges and progressing towards complex ones.
The classification layer is comprised of a series of fully connected (FC) layers that allocate
the input to specific classes (Source: [1]).

specifically developed for the examination and manipulation of data structured in a
grid-like arrangement, such as images. A digital image is a form of data that uses a
binary system to describe visual information. It is structured as an array of pixels, where
very pixel contains distinct values that indicate its brightness and color.

The human brain demonstrates fast information processing in response to visual stimuli.
Every single neuron functions within its own receptive area and establishes connections
with other neurons to collectively cover the full visual field. Just like individual neurons
in the biological vision system, each neuron in a CNN solely processes input within its
own receptive field. The layers are arranged in a hierarchical fashion, where the earliest
levels emphasize the recognition of basic patterns like lines and curves, while more
complex patterns like faces and objects are learned in the following layers. CNNs consist
of multiple layers, each serving a specific purpose in the extraction of features from input
data. The conventional layers commonly present in a CNN (fig.2.3) consist of

1. Input Layer: The initial layer is responsible for receiving the input data, typically
in the form of an image. Every node inside this layer corresponds to either a pixel
or a characteristic of the input.

2. Convolution Layers: The CNN relies on the convolution layer as its foundational
element, which carries the majority of the computational load. Sparse interaction,
equivariant representation, and parameter sharing are the three main advantages
of convolution in computer vision.

The layer conducts matrix computation by evaluating the dot product of two
matrices. The kernel matrix contains modifiable parameters, whereas the other
matrix represents a limited region inside the receptive field. The kernel captures
the intricate details, despite having a smaller spatial dimension compared to the
image. As illustrated in fig.2.4, consider an image with three channels (RGB). The
dimension of the kernel is relatively smaller in terms of height and width but can
cover all the channels in terms of depth. During the forward pass, the kernel moves
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Figure 2.4: Illustration of feature extraction using convolutional filters or kernels (Source:
[3])

across the height and width of the image, generating a representation for each
receptive region. The procedure yields a two-dimensional activation map, which
offers details regarding the kernel’s reaction at each spatial location within the
image. The variable size of the kernel during its traversal across the input is known
as stride.

3. Pooling (Sub-sampling or Down-sampling) Layers: The main objective of this
layer is to reduce the size of the convolved feature map, with the aim of minimizing
computational expenses. This is achieved by reducing interconnections between
layers and performing operations on individual feature maps. There are different
pooling operations, such as max pooling (identifies the highest value within a
receptive field) [21] and average pooling (computes the mean value within the
field) [21]. Although pooling results in a loss of knowledge, it offers various benefits,
including complexity reduction, improved efficiency, and prevents over-fitting.

4. Fully Connected (Dense) Layers: Integrating a Fully-Connected layer is widely
recognized as a cost-efficient method for gaining insights into non-linear com-
binations of the high-level characteristics, which are expressed by the output of
the convolutional layer. The fully connected layer is learning the intricacies of a
potentially non-linear function inside the specific domain. Following the conver-
sion of the input image into a format compatible with the Multi-Layer Perceptron,
the subsequent step entails transforming the image into a column vector by flat-
tening it. The compressed result is fed into a feed-forward neural network, and
the back-propagation algorithm is utilized during each iteration of the training
procedure.

5. Output Layer: The final layer is responsible for producing the network’s output.
The composition of this layer varies depending on the specific task being performed.
Nodes that represent multiple classes can be utilized in image classification, em-
ploying a softmax activation function to generate a probability distribution.

CNN Variants:

There are four popular variants of Convolutional Neural Networks (CNNs) that have
become widely used in imagine captioning research. The computer vision field broadly
recognizes the following CNN architectures: AlexNet, GoogLeNet, ResNet, and VGGNet.
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Figure 2.5: The concept of residual connection is employed in the ResNet architecture, as
described in the work by ABC. The fundamental concept of residual learning pertains to
the optimization of a stack of layers by learning a residual mapping F (x) instead of the
original mapping H(x). This is achieved by expressing H(x) as the sum of F (x) and x
(Source: [11])

The AlexNet architecture, created by Krizhevsky et al. (2012) [?], played a crucial role
in stimulating the rise of deep learning by obtaining a definitive triumph in the 2012
ILSVRC competition. During the next two years, the ILSVRC-2014 competition observed
the victory of a unique form of CNN referred to as GoogLeNet [72], which was created by
Google. In the same year, another highly acclaimed architectural design called VGGNet
[70] was also introduced. The ILSVRC-2015 competition saw the introduction of Residual
Network or ResNet [37] architectures, which is notable for its substantial depth, with up
to 256 layers.

ResNet Architecture:

Drawing insights from empirical evidence in experimental studies [37], we explore the
challenges linked to training highly deep neural networks, exemplified by architectures
like VGGNet [70]. As neural networks become deeper, they often encounter difficulties
such as vanishing gradients and degradation in training accuracy. The obstacles outlined
impede the effective training of networks, constraining their ability to capture and
learn complex hierarchical features. The transformative innovation of ResNet lies in its
adoption of residual blocks, overcoming issues of vanishing gradients or degradation
and enabling the successful training of exceptionally deep networks.

Given the strong capability of neural networks as function approximators, it is reasonable
to expect that they would possess the ability to effectively address the identification
function, wherein the output of a function corresponds to its input. The fundamental
component of ResNet is the residual block (as illusted in Fig.2.5. Consider x as the input
to the block, and F (x) as the intended underlying mapping. The resulting value y of the
residual block is acquired through [37]:

y = F (x) + x (2.3)

To facilitate the learning of F (x), instead of directly learning the mapping, the block
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Figure 2.6: A representation of an RNN is shown on the left side, and an RNN that has
been unfolded (or unrolled ) into a full network is shown on the right side. The term
"unrolling" refers to the process of representing the network by explicitly writing out
its structure for the entire series. For instance, in the case when the sequence of interest
is a sentence consisting of three words, the neural network would be expanded into a
network with three layers, with each layer corresponding to a specific word. (Source: [2])

learns the residual mapping F (x)x. The shortcut connection allows the gradient to flow
through the identity mapping if F (x) is close to zero during training, thus eliminating
the vanishing gradient problem.

The ResNet architecture is constructed by stacking numerous residual blocks, featuring
a fundamental structure that incorporates convolutional layers, batch normalization,
ReLU activation functions, and residual connections. To optimize computational effi-
ciency, ResNet commonly employs bottleneck blocks, which consist of three sequential
convolutions: 1x1, 3x3, and another 1x1. Additionally, the architecture incorporates
down-sampling layers designed to decrease spatial dimensions.

2.1.4 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are designed specifically to handle sequential input
data. They excel particularly in tasks that require the examination of temporal corre-
lations, such as natural language processing and image captioning. RNNs, in contrast
to conventional feed-forward neural networks, possess a distinctive architecture that
enables the preservation of information from previous inputs via hidden states. RNNs
include an inbuilt memory mechanism that enables them to effectively collect and utilize
sequential patterns, making them well-suited for jobs that demand contextual under-
standing. They are adept at producing meaningful outputs by taking into account the
sequential organization of data, thus acknowledging the importance of input order.

A basic RNN, depicted in Figure 2.6, is commonly constructed by combining the result
from the previous time step with the input from the current time step. The presence
of recurrent connections allows them to effectively store and recall information over
temporal data. RNNs utilize the hyperbolic tangent (tanh) activation function in the
hidden layer to improve the network’s ability to capture long-term dependencies. As
depicted in fig. 2.6, ’o’ is denoted as the output variable and is considered to provide non-
standardized logarithmic probabilities for each possible value of the discrete variable.
In order to obtain a probability distribution throughout the output, a common post-
processing step is using the softmax operation. This method standardizes the non-
standardized logarithmic probabilities, providing a vectorΘy that represents the model’s
prediction as standardized probabilities for each output.
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Back-propagation is essential for training, as it enables the learning of sequential re-
lationships and the optimization of network parameters. Gradients are computed in
the back-propagation process by temporally propagating errors through the network.
The process involves extending the network across input sequences and calculating
gradients at each individual time step. The frequently used term for this approach is
back-propagation through time (BPTT) [81]. The gradients at each output are inter-
connected due to the shared parameters across all time steps, relying on both current
computations and previous steps. While the typical technique proves to be beneficial, it
encounters challenges such as vanishing gradients [38] and exploding gradients. These
issues arise when the gradients decrease or increase excessively over lengthy sequences,
which impairs efficient learning [38]. To address these issues, advanced architectures
such as Long Short-Term Memory (LSTM) [39] have been proposed. LSTM enhances the
capacity of RNNs to effectively capture and retain long-term relationships.

Long Short-Term Memory (LSTM)

LSTM networks, a particular variant of RNNs, are renowned for their exceptional ability
to capture and model long-term dependencies in data. LSTMs, first introduced by
Hochreiter and Schmidhuber in 1997 [39], have proven to be highly effective in various
applications by addressing the issue of vanishing gradients which is the major limitation
of traditional RNNs. The LSTM model, illustrated in Figure 2.7, exhibits remarkable
adaptability for the classification, manipulation, and forecasting of time series data,
particularly when faced with temporal lags of uncertain duration. LSTMs are improved
with the integration of memory cells and gating mechanisms, enabling them to selectively
store and forget information. The system consists of several essential components,
including the cell state, an input gate, a forget gate, an output gate, and a set of weights
and biases. We will analyze the operation of an LSTM cell in a methodical manner,
reviewing each step separately.

1. Forget gate ft: The forget gate is responsible for determining the retention or dis-
carding of information from the previous cell state Ct−1. The forget gate activation
vector is generated using the previous hidden state ht−1 and the current input xt

as input values.

ft = σ(Wf .[ht−1, xt] + bf ) (2.4)

In this case, Wf and bf represent the weight matrix and bias for the forget gate,
respectively, while σ denotes the sigmoid activation function.

2. Input gate it and Candidate Cell State C̃t: The input gate determines the selection
of new data to be stored in the cell state. The input gate, similar to the forget gate,
receives ht−1 and xt as inputs and produces an activation vector for the input gate.
Moreover, it calculates a candidate cell state C̃t that represents the new data to be
included.

it = σ(Wi.[ht−1, xt] + bi)C̃t = tanh(Wc.[ht−1, xt] + bC) (2.5)

where, Wi,Wc, biandbc are the weights and biases for the input gate and the candi-
date cell state, respectively.
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Figure 2.7: An LSTM Block contains four interacting layers (cell state, an input gate, a
forget gate, an output gate) (Source:[14])

3. Cell state Ct: The cell state is updated by combining the previous cell state Ct−1,
the forget gate ft, and the input gate multiplied by the candidate cell state it.C̃t.

Ct = ft.Ct−1 + it.C̃t (2.6)

4. Output gate ot and Hidden State ht: The output gate calculates the next hidden
state ht using the modified cell state. The function accepts two inputs, ht−1 and xt,
and produces an output gate activation vector ot.

ot = σ(Wo.[ht−1, xt] + bo) (2.7)

The hidden state is then calculated as,

ht = ot ∗ tanh(Ct) (2.8)

Although LSTM networks are highly effective in capturing long-term relationships in se-
quential data, they come with certain drawback like heavily depending on previous states
to generate output. In order to overcome this limitation, researchers have created the
bi-directional BLSTM model [33]. This model employs bidirectional processing, enabling
it to incorporate historical and future information pertaining to a particular point in a
given sequence. Although there have been advancements, it is crucial to recognize that
LSTMs, especially BLSTMs, are still susceptible to computational complexity, sensitivity
to hyper-parameters, and difficulties in capturing very long-term relationships.
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2.1.5 Transformers

The implementation of the Transformer by Vaswani et al. [76] in 2017 marked an impor-
tant shift in the encoder-decoder framework. The sequential structure of RNNs presented
computational constraints, hindering effective parallelization on modern hardware such
as Tensor Processing Units (TPUs) and Graphics Processing Units (GPUs). Sequential
processing required the word-by-word processing of phrases, hence constraining the
practicality of parallel computing. The Transformer model overcame these restrictions
by incorporating a groundbreaking technique called the self-attention mechanism.

Self-Attention Mechanism:

The key feature of the Transformer lies in its integration of the attention mechanism. This
method is crucial in the word processing stage as it allows the model to selectively focus
on other words in the input that have a strong semantic relationship with the word being
analyzed. For the purpose of demonstration, let us examine two sentences:

1. The cat drank the milk because it was hungry.

2. The cat drank the milk because it was sweet.

In the initial statement, the pronoun "it" refers to the noun "cat," whereas in the subse-
quent sentence, it refers to the noun "milk." The self-attention mechanism is essential
for providing the model with more contextual information about the word "it" during
processing. The model’s contextual awareness allows it to dynamically associate "it" with
the correct antecedent, whether that be "cat" or "milk." Vaswani et al. (2017) [76] utilize
dot-product attention, which can be expressed by the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.9)

where K and V represent the keys and values, respectively and Q represent the query
matrix. The self-attention mechanism involves a series of steps to calculate attention
scores and produce a weighted sum, so enhancing the model’s ability to understand
complex relationships in the input sequence. Below is a detailed explanation of the
self-attention calculation in the transformer model.

1. Key, Query, and Value Transformations: For each word i in the input sequence,
the Transformer computes three vectors: Key Ki , Query Qi, and Value Vi . These
vectors are obtained by linear transformations of the word’s embedding vector Ei:

Ki = WK .Ei;Qi = WQ.Ei;Vi = Wv.Ei

where WK ,WQ,WV are learnable weight matrices.

2. Score Calculation: Let’s assume that we are figuring out the self-attention for
the first word in this example, "The". Each word in the input sentence must be
evaluated in relation to this word. As we encode a word at a specific position, the
score dictates how much attention should be paid to other components of the input.
This score is calculated by taking a dot product of query and key matrix of that
respective word that is been scored currently.
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Figure 2.8: Multi-Head Attention with h attention heads, all running in parallel. (Source:
[80])

3. Normalization with Softmax: The obtained score is then divided by 8 (as the
square root of the key vector, i.e., 64, is utilized in the paper to ensure stable
gradients). This result is fed into the softmax function, normalizing the scores to be
positive and summing to one. The softmax score determines the emphasis each
word receives in this context, allowing occasional focus on words connected to the
present word.

4. Weighted Value Matrix: Subsequently, each value matrix is multiplied by its
corresponding softmax score. This process aims to attenuate the influence of
irrelevant words while preserving the significance of the word or words targeted
for attention.

5. Output Generation: Finally, the weighted value matrices are summed, producing
the output of the self-attention layer. This output is then fed into the feed-forward
network, contributing to the model’s ability to capture intricate relationships within
the input sequence.

Multi-Head Attention:

Multi-head attention [76] as shown in Fig.2.8, is a crucial element of the Transformer,
specifically to improve the model’s capacity to comprehend a wide range of complex
patterns in input sequences. The self-attention method is executed in parallel across
many "heads," each equipped with its own set of trainable weight matrices for key, query,
and value. By utilizing several heads, the model is able to simultaneously concentrate
on various elements and relationships within the data. Each head acquires distinct
representations, enabling the model to effectively capture diverse forms of dependency
in the input. The outputs of the individual attention heads are concatenated and then
linearly processed to generate the final output. As a result, the transformer architecture
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becomes highly versatile and robust for various tasks.

The benefits of multi-head attention includes increased modeling capacity and the ca-
pability of covering a wider spectrum of patterns in the data. Moreover, the parallel
computation across several heads can result in enhanced efficiency during the training
process. Nevertheless, it is important to take into account certain drawbacks. Multi-head
attention increases the computational complexity of the model, necessitating a greater
number of parameters and resources. This can lead to extended training periods and
enhanced memory requirements. Although facing these difficulties, the benefits of multi-
head attention make it an excellent tool for strengthening the capabilities of transformer
designs.

Positional Encoding:

Positional encoding [76] is another crucial component of transformer that conveys infor-
mation about the positions of tokens within a sequence. Transformers, unlike RNN or
CNN, do not include inherent sequential-order information. This is because transformers
analyze the entire sequence in parallel. Positional encoding overcomes this constraint
by incorporating positional information into the input embedding. The most common
technique for positional encoding involves using sine and cosine functions.

This encoding approach guarantees that tokens at various places are assigned unique
positional embedding. By using both sine and cosine functions, the positional encoding
mechanism is able to effectively represent independent frequencies. This enables the
model to accurately differentiate between tokens located at different distances within the
sequence. The sinusoidal nature of each dimension in the positional encoding allows the
model to efficiently process longer sequence lengths. As a result, it is feasible to infer
the relative placement of different embedding at a relatively low cost. The positional
encoding is then included by adding it element-wise to the input embedding of the
tokens. The transformer model is provided with a fused representation that integrates
both the token and positional information.

The Overall Model Architecture:

The Transformer model comprises of encoder and decoder components, as depicted in
Figure.2.9. The encoder and decoder consist of multiple identical layers, which can be
stacked Nx times.

Encoder: The encoder’s task is to analyze the input sequence and provide a thorough
representation that captures the contextual information of each input tokens. The funda-
mental components of the encoder consist of:

1. Multi-Head Self-Attention: This technique enables the model to assign varying
weights to distinct segments of the input sequence, thereby capturing intricate
connections and interactions within the data.

2. Position-wise Feed-Forward Networks: Each layer includes a position-wise fully
connected feed-forward network. The network employs the attention mechanism
to process information in a position-specific manner, allowing the model to gain
understanding of non-linear shifts and complex patterns within the input sequence.

3. Layer Normalization and Residual Connections: After each sub-layer, layer normal-
ization is applied, and the output of the sub-layer is connected to the input using a
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Figure 2.9: The Transformer model architecture. The encoder consists of N blocks on the
left, while the decoder consists of N blocks on the right. (Source:[13])

residual connection. These components help to stabilize training by mitigating the
issue of vanishing gradients.

Decoder: The decoder’s objective is to generate an output sequence by employing the
information that has been encoded by the encoder. The primary components of the
decoder consist of:

1. Multi-Head Self-Attention with Masking: Like the encoder, the decoder’s layers
use multi-head self-attention. A masking strategy prevents tokens from training
for subsequent places. Sequence generation activities that generate tokens from
preceding tokens require this.

2. Encoder-Decoder Attention: Besides self-attention, the decoder uses encoder-
decoder attention. This allows the decoder to generate tokens using encoder
output. This helps produce contextually appropriate outputs based on input data.

3. Position-wise Feed-Forward Networks: The decoder layers have position-wise com-
pletely connected feed-forward networks. These networks use attention process
data to understand complex relationships and make position-specific non-linear
changes.
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4. Layer Normalization and Residual Connections: Here, the decoder normalizes and
links each sub-layer with a residual connection to ensure constant training.



Chapter 3
Related Work

This section provides an in-depth analysis of fundamental research in the fields of image
captioning and neural machine translation. We aim to get a thorough comprehension of
the progress made in image captioning, cross-lingual image captioning, and multilingual
translation by examining critical research in this domain. The provided analysis serves
as a meticulous examination of current research methods and frameworks, establishing
the groundwork for subsequent chapters in this thesis

3.1 Image Captioning (IC)

Image captioning entails the automated generation of descriptive narratives for images,
acting as a bridge between visual content and linguistic representation. The objective of
this section is to examine significant developments and various approaches that have
shaped the field of image captioning. We will examine how this area has developed
over time, highlighting the most significant approaches and strategies that have emerged
in response to its growing importance. In this section, the research is divided into
two components. First, we investigate frameworks that follow conventional unilingual
approaches. Next, we examine the field of cross-lingual and multilingual approaches.

3.1.1 Neural Image Captioning

In recent years, several methodologies have emerged with the goal of generating descrip-
tive captions for images. Many of these techniques leverage RNNs, drawing inspiration
from the successful application of sequence-to-sequence training of machine translation.
The encoder-decoder framework, widely employed in machine translation, proves highly
suitable for image caption generation as it effectively "translates" an image into coherent
text. The initial foray pioneered by Kiros et.al. (2014a) [47] utilizes a feedforward neural
network for predicting the next word based on the image and preceding word, while
Mao et.al. (2014) [59] later replaced the feed-forward neural language model with a
recurrent neural language model, employing a similar generation strategy. Another work
by Kiros et.al. [48] suggests constructing a joint multimodal embedding space using a

23
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Figure 3.1: Approach Overview: In step (2), lower convolutional layers capture image
features. Step (3), a feature is sampled and input to an LSTM to generate the correspond-
ing word. Step 3 is iteratively repeated K times to produce a K-words caption. (Source:
[84])

potent computer vision model and an LSTM for text encoding.

Diverging from the initial methods, and drawing inspiration from the recent success of
end-to-end training in statistical machine translation [49], where direct maximization of
translation probability achieves state-of-the-art results, Vinyals et.al. [78] adopt a similar
approach for image captioning. Instead of utilizing an encoder recurrent neural network
(RNN), they opt for a deep convolutional neural network (CNN) as the image encoder.
Pre-trained on an image classification task, the last hidden layer of the CNN serves as
input to the RNN decoder responsible for generating sentences. This model, known as
the Neural Image Caption (NIC) [78], exhibits a positive performance correlation with
the quantity of available training samples. Notable improvements are also observed on
Flickr30k (56 to 66), SBU (19 to 28), and the recently released COCO dataset (BLEU-4
of 27.7). However, a limitation arises as the generated captions often focus on specific
aspects of the image due to the model’s singular presentation of the image at the be-
ginning. In contrast to the approaches of Kiros et.al. (2014a) [47] and Mao et.al. (2014)
[59], who incorporate the image at every time step, Vinyals et.al. (2014) [78] present
the image solely at the beginning, leading to an inefficiency in leveraging the complete
image representation to influence the formation of each word.

To overcome this limitation of NIC approach [78], incorporating an attention mechanism
[76] has proven to be beneficial. Xu et al [84] describes an approach to caption generation
with attention mechanism. The Attention-based encoder-decoder framework plays a
crucial role by assigning importance to pertinent regions of the input image within
the encoder network for generating each word in the decoder network. The central
focus of the thesis work revolves around this approach, wherein we extend this idea to
facilitate multilingual image captioning. Following that, I will provide a more detailed
and thorough explanation of this paper. As shown in 3.1, the primary goal of the Image
Captioning task is to construct a caption y encoded as a series of 1-of-K words, given an
input image I [84],

y = y1, y2, y3, ...., yc, yi ∈ RK (3.1)
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where K is the size of the vocabulary and C is the maximum sequence length.

Encoder Block (Feature maps from convolution layers): In this instance, a Convo-
lutional Neural Model is used to extract features from the input image and represent
them in a latent space, ensuring efficient encoding. Unlike previous studies that mostly
rely on the flattened fully connected representation of the CNN, this work incorporates
information extracted from the lower convolution layers. This decision is taken in order
to maintain the alignment between the characteristics and the two-dimensional image.
Moreover, this method allows the decoder network to focus on particular areas of an
image by selecting a subset from the complete set of feature vectors. The output from
the lower layers of the CNN is mainly in the format of kkD, where k denotes the size
of the feature maps and D represents the number of convolutional filters. Next, we
will transform the feature tensors into a shape of k2D. For the sake of simplicity, let’s
suppose that k2 is equal to L. Subsequently, the size of the obtained feature map can be
represented as LD. The convolutional feature extractor generates L vectors, each with a
dimension of D, which represent different parts of the image I ,

a = a1, a2, a3, ..., aL, whereai ∈ RD (3.2)

where a as the final output from the Encoder Network.

Decoder Block (Generator Network-LSTM): The Decoder LSTM network functions as
a generative network, producing one word at a time. It does so by taking into account
previous hidden state, the words generated so far, and the encoder feature vectors. The
vector ẑ ∈ RD represents the context vector, which captures the visual information linked
to a certain input point. The authors introduce a method ϕ that calculates the value
of zt based on the annotation vectors a, where i ranges from 1 to L, corresponding to
the characteristics retrieved from various image locations. The mechanism assigns a
positive weight, denoted as i, to each location i. This weight can be interpreted in two
ways: as the probability that location i is the correct place to focus on such that the text
decoder can generate the correct next word, or as the relative significance of location i
in combining the ai’s together. Bahdanau et.al. (2014) [18] proposed a soft [76] variant
of this attention technique. The weight i, of each annotation vector ai is determined
by an attention model called fatt. This model utilizes a multilayer perceptron that is
conditioned on the prior hidden state ht−1. The hidden state undergoes variation as
the output RNN progresses in its output sequence. The network’s next focus point is
influenced by the sequence of words that have already been generated.

eti = fatt(ai, ht−1) (3.3)

αti =
exp(eti)∑L

k=1 exp(etk)
(3.4)

After calculating the weights, which add up to one, using the softmax function, the
context vector ẑt is computed as follows:

ẑt = ϕ(ai, αi) (3.5)

is a function that, when given a set of annotation vectors and their respective weights,
returns a single vector.

Another paper by Biswas et.al. [20] describes an image captioning architecture incorpo-
rating a top-down attention mechanism. Stefanini et.al. [71] review numerous captioning



26

methods, datasets, evaluation measures, and visual encoding and text creation training
strategies. The authors quantitatively compare numerous methods to discover the most
influential architectural and training approaches.

Several datasets used are artificial, limited in size, or demonstrate bias towards specific
topics, genres, or styles. An effective approach to tackle this problem is to employ data
augmentation techniques, which can significantly expand the amount of training data
that is accessible. Anagnostopoulou et.al. [16] proposed a technique for incorporating
human feedback into the training procedure. This method allows for the creation of
descriptions for fresh images by first training an image captioning model using the MS
COCO dataset. Secondly, the users offer feedback on photographs in conjunction with
their related subtitles. The feedback is subsequently employed to generate a supple-
mentary training dataset, which is progressively integrated into the model’s updates. In
order to address problems such as catastrophic forgetting, spare memory is utilized, and
the effectiveness of feedback is further improved through the implementation of a data
augmentation technique. Hartmann et.al. [36] implemented a system that optimizes the
effectiveness of human feedback by utilizing data augmentation. The system consists
of three primary components: feedback collecting, data augmentation, and model up-
date. The system initially undergoes training using the MS COCO dataset and is then
refined based on feedback from end-users, with a specific emphasis on sustaining user
engagement. Collecting user input requires getting feedback of different complexities
in order to achieve a balance between depth and user involvement, which in turn re-
quires a well-designed user interface. Data augmentation involves utilizing feedback to
create a more extensive collection of training samples, adopting various methodologies
such as caption-based, image-based, or a combination of both. The enriched data is
subsequently utilized to efficiently update the model parameters, resulting in improved
performance.These studies provide comprehensive methods for data augmentation to
increase the size of the training dataset in situations where there is a scarcity of data.

3.1.2 Cross-Lingual strategies in Image Captioning

In recent times, there has been a notable surge in scholarly investigations pertaining to
the field of image caption generation. The majority of these studies have predominantly
focused in the English language, primarily because to the extensive availability of dataset.
However, the potential of image captioning should not be limited to a single language.
Hence, cross-lingual image captioning holds significant importance for a substantial
portion of those who do not speak English as their primary language.

Early research in this field tackled the problem by gathering large collections of image-
caption pairs in the desired language. A notable example is the "YJ Captions 26k Dataset"
[61], which is a Japanese version of the MS COCO [55] dataset. In this dataset, captions
were generated by human annotators using Yahoo! Crowdsourcing services in Japan.
Nevertheless, this approach is expensive and impractical, as it depends on human
annotators and is time-consuming process. To address this, researchers are shifting
towards learning from machine-translated text, making the process more scalable and
cost-effective. Chen et.al. [24] were the first to attempt the elimination of the necessity
for data annotation in every language, pioneering annotation-free cross-lingual image
captioning evaluation. They introduced three metrics to evaluate the semantic coherence
of captions without annotations. Their experiments revealed that machine-translated
sentences, while occasionally grammatically correct, may lack fluency. For example,

English sentence: "A couple sits on the grass by the river with a baby and a dog”
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German sentence: “Mit einem Hund und einem Baby sitzt im Gras an einem Fluss ein
Paar”

This example demonstrates that although the keywords are translated correctly, the
improper conjunction in the translated sentence diminishes its fluency. The problem
of fluency becomes more noticeable as the length of the caption increases. The lack of
fluency presents a difficulty in acquiring cross-lingual captions from machine-translated
texts. Lan et.al. [52] proposed a fluency-guided learning system to improve the fluency
and guarantee the grammatical correctness of generated captions. Unlike methods that
rely on human curation, the objective is to completely train a cross-lingual captioning
model using machine-translated sentences. In this research, the authors introduce a
fluency-guided learning paradigm to tackle the fluency problems in translated sentences.
This system comprises a module that automatically calculates the fluency of sentences
and another module that employs these estimated fluency scores to efficiently train an
image captioning model for the desired language. This technique enhances the fluency
and relevance of generated captions in Chinese, without the need for manually written
sentences in the target language. The findings suggest that less than 30% of the translated
sentences satisfy the standards for fluency and need more improvement.

Deep learning for image captioning achieves impressive results but encounters a bottle-
neck due to the necessity for large annotated datasets, often scarce, expensive, and slow
to acquire. In such situations, the use of unsupervised or semi-supervised techniques that
can produce captions from unpaired data or leverage annotations from different domains
or languages is extremely beneficial. A useful strategy for handling unlabeled data
involves the application of transfer learning techniques [79], which have demonstrated
notable benefits. Miyazaki et.al. [61] investigated the application of transfer learning
in the field of cross-lingual image captioning. They pre-trained a model for English
image captions and retained only one crucial layer, the one closest to the vision system,
after removing all other trained layers. This layer transferred knowledge to Japanese by
appending an untrained Japanese generation model to the English model. The bilingual
model outperformed the monolingual one.

For another example, the authors Biswas et.al. [20] investigate a method for image
captioning in German using transfer learning techniques. They proposed four methods,
two baseline and two advanced, using the MS COCO dataset [55] (English captions)
and the Multi30K dataset [29] (manually translated to German). Baseline 1 was trained
on the translated MS COCO dataset, while Baseline 2 used a small Multi30K dataset.
Advanced methods pre-trained on the translated MS COCO dataset and fine-tuned
on German Multi30K were also explored. The first advanced method learned initial
mapping from the translated corpus and then fine-tuned on Multi30K. The second
advanced method employed an attention mechanism. Comparing the models, the one
with the attention mechanism yielded promising results. Biswas et.al. [20] explore
German image captioning through transfer learning, proposing and experimenting with
four methods (two baseline and two advanced) using MS COCO and Multi30K datasets.
The baselines involve training on translated MS COCO and a small Multi30K dataset,
while the advanced methods are pre-trained on translated MS COCO and fine-tuned
on the German Multi30K dataset. One advanced method learns an initial mapping
from images to German, fine-tuned on Multi30K, while the other employs an attention
mechanism with object-specific localized maps. The model incorporating the attention
mechanism showed promising results in the comparison.

In certain investigations, the necessity for image-caption paired data in the target lan-
guage is circumvented, leading to the concept of unpaired image captioning. This
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Figure 3.2: A unified model for multilingual captioning, employing artificial tokens to
facilitate language switching (Source: [75])

method use a single encoder-decoder model to extract visual characteristics and produce
captions in a pivot language, such as English. subsequently, a secondary encoder-decoder
model aligns the pivot language caption with the target language caption, such as Ger-
man. However, this technique has certain constraints: (i) Image captioning and machine
translation are separate tasks that require different models and datasets; (ii) inaccura-
cies made by the image captioning model are propagated to the machine translation
model. Gu et.al. [34] proposed a way to overcome restrictions by reducing differences
between models and training them together to enhance interaction and learning. Their
architecture comprises three models: an image captioning model to generate captions in
the pivot language, a neural machine translation model to translate the caption into the
target language, and a target language auto-encoder that directs the decoder to produce
caption-like sentence. This approach produces captions in the target language that are
reasonably adequate. Gao et.al. [31] proposed a two-phase approach. In the first phase,
they use cross-lingual auto-encoding to train the mapping of a scene graph from the
source language to the target language and then decode the sentence. In the second
phase, they use cross-modal unsupervised feature mapping to learn how to map scene
graph features from the image to the language modality. While both methods [[34], [31]]
demonstrate potential for a multilingual captioning system, limitations arise, including
a reduction in system quality as the number of languages increases, the necessity for
re-training when adding a new languages, and an increase in the vocabulary that is
shared between several languages.

To design a system generally accepted in industry, the adoption of a new language must
be supported easily, while sustaining the system’s precision and conserving resources
and time. Tsutsui et.al. [75] proposed an approach that streamlines the addition of a
new language to the system through the utilization of artificial tokens, enabling the
integration of modules into a unified model. The idea is to add an artificial token at the
beginning of each sentence, thereby governing the language of the caption. During the
training phase, this token sent is the language of the ground-truth caption (e.g., <en>
for English or <jp> for Japanese), and during testing, it tells the module to construct a
sentence in the stated language. A part of the thesis work we utilizes the ideas from the
aforementioned study, justifying a closer examination. The methodology utilizes a CNN
(ResNet50 [37], pretrained on ImageNet [51]) to extract image features, subsequently
used by an RNN (LSTM [39] with 512 hidden units) to generate captions. This approach
aligns with previous methodologies [78]. Formally, the aim to minimize the negative
logarithm of the likelihood of the caption given an image. A unique token, S0, signifies
the sentence’s start and the captioning language. In monolingual models, <sos> indicates
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sentence initiation, while multilingual models use <en> or <jp> for English or Japanese
(as shown n 3.2), respectively. The system, evaluated using the YJ Captions 26k Dataset
[61], showed promising results in generating semantically meaningful captions. The
experiments revealed the model’s proficiency in transitioning between languages, even
dissimilar ones like English and Japanese, within a single neural model.

Another method for tackling cross-lingual image captioning entails integrating attention
mechanisms. The study conducted by Wu et.al. [83] presents a two-part approach.
Initially, the process of pre-training takes place on a model that includes an image encoder
and an English decoder, specifically designed for generating captions in the English
language. Furthermore, a German caption model is created, which consists of an encoder
for English captions, a decoder for German captions, and a cycle consistency constraint.
The image encoder generates English captions, which are subsequently used by another
English encoder to produce a German caption. Cycle consistency is maintained through
the utilization of three attention mechanisms: cross-attention between English decoder
with respect to image regions, cross-attention between low-resource language decoder &
feature maps from image encoder, and attention between low-resource language decoder
conditioned on English words. The experimental results indicate that this strategy
enhances the alignment between words and images and surpasses other methods based
on common assessment criteria.

In conclusion, cross-lingual image captioning has witnessed a remarkable evolution over
time. We’ve moved away from the labor-intensive process of manually annotating image-
caption pairs in the target language to more efficient unpaired methods employing pivot
languages as intermediaries. The integration of transfer learning has proven particularly
valuable, bridging the gap when labeled data is scarce or extensive amounts of unlabeled
data are involved. This advancement has substantially improved system performance,
rendering it highly applicable for industrial use. Looking ahead, the promising realm of
zero-shot learning holds potential for further enhancements in this evolving field.

3.2 Few-shot Image Captioning

Few-shot learning represents a paradigm-shifting approach in the field of machine
learning, offering a solution to the conventional limitations associated with traditional
supervised learning methods. Unlike traditional models that rely on explicit examples
during training, few-shot learning empowers machines to generalize and make pre-
dictions with only a few training samples. This is particularly relevant in scenarios
where acquiring large labeled training data for all possible languages is impractical or
cost-prohibitive. This concept mirrors the human ability to transfer knowledge from
known categories to new, unseen ones. Few-shot learning thus opens the door to more
flexible and adaptive machine learning systems, capable of handling a broader range of
tasks and domains without the need for large labelled data.

With the proposal of an ensemble-based self-distillation method, Chen.et.al [25] present
a novel approach to the few-shot image captioning field. By using unpaired images and
captions, this technique makes it easier to train image captioning models and increases
the model’s adaptability to a variety of data sources. The ensemble consists of several
basic models that are trained using different data samples in each iteration to increase the
resilience of the model. And use the ensemble to generate numerous pseudo captions,
each given a weight based on the degree of trust in it, in order to efficiently learn from
unpaired images. Furthermore, they offer a simple yet powerful pseudo feature creation
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method using Gradient Descent [17] for learning from unpaired captions. The pseudo
captions and generated pseudo features of the ensemble together help to train base
models in further iterations, showcasing the adaptability and efficiency of the suggested
method. In paper, [27] examines the difficulties associated with few-shot learning in the
context of two multi-modal tasks: answering visual questions (VQA) and captioning
images. Here, the authors introduce Fast Parameter Adaptation for Image-Text Modeling
(FPAIT), an exciting method intended to simultaneously understand text and image data
with sparse examples. FPAIT provides useful benefits in two main areas. In the first
place, it demonstrates quick learning speed by obtaining suitable initial parameters for
the joint image-text learner from a variety of tasks. With a minimal number of gradient
steps, FPAIT effectively adapts to a novel assignment and achieves impressive results.
Furthermore, FPAIT exhibits robustness against the constraints brought up by few-shot
circumstances.

Contrastive pre-training has emerged as a potent strategy in achieving the goal of few-
shot and zero-shot learning, bringing about a paradigm shift in the field of multi-modal
research. Particularly in the intersection of vision and language, models such as CLIP
(Radford et.al., 2021 [64]) and ALIGN (Jia et.al., 2021 [40]) have played a pioneering role
by acquiring a shared multi-modal embedding space from extensive and noisy collections
of image-text pairs. For instance, CLIP undergoes training on a dataset containing 400
million image-sentence pairs sourced from the web, leading to remarkable performance
on tasks like image classification and vision-text retrieval. By adeptly crafting prompts,
it becomes conceivable to improve the detection of objects that were not seen during
training. Applications based on CLIP have demonstrated their proficiency in solving
zero-shot problems across diverse and novel scenarios. It is noteworthy that zero-
shot prompt engineering has also been applied to more advanced tasks, including
Visual Question Answering (VQA), although its performance has not yet reached the
levels achieved by supervised methods. Additionally, CLIP enhances text-driven image
manipulation through the utilization of Generative Adversarial Networks (GANs) [32]
or other generative models.

Furthermore, the few-shot learning method demonstrates remarkable flexibility. While
the word-to-word metrics may be lower, the captions generated exhibit a strong semantic
alignment with the image and convey real-world information, surpassing the restrictions
typically associated with captions from human annotators in datasets used by supervised
captioning methods.

3.3 Neural Machine Translation (NMT)

Statistical Machine Translation (SMT) [49] and phrase-based systems [50] are two tradi-
tional methods that are replaced by Neural Machine Translation (NMT), a major advance
in machine translation. Driven by the growing demand for smooth communication
across various languages in our globally interconnected society, NMT leverages deep
learning to improve translation accuracy and fluency, leading to a revolution in the
field of translation. Historically, SMT [49] held sway in machine translation, relying on
statistical models to comprehend the dynamics between source and target languages
through extensive parallel corpora. Despite notable achievements, SMT struggled with
intricate connections and contextual nuances. To address these limitations, researchers
proposed Phrase-Based Translation Systems [50], emphasizing the translation of phrases
instead of individual words. Despite enhancements, these systems faced challenges in
coherence and contextual understanding, especially with idiomatic expressions and com-



31

plex sentence structures. NMT’s emergence marked a paradigm shift, leveraging deep
learning techniques like RNNs and attention mechanisms. Unlike its predecessors, NMT
designs do not use manual designs and rule-based systems, instead extracting knowl-
edge directly from data. This shift enables NMT to capture intricate language patterns,
resulting in more contextually aware and fluent translations. NMT boasts significant
advantages over previous methods. Its capacity to learn complex relationships between
words and phrases yields translations that are not only accurate but also contextually
relevant. Additionally, NMT’s superior generalization across diverse language pairs
minimizes the need for language-specific customization. However, challenges persist,
including addressing low-resource languages, mitigating biases in training data, and
countering adversarial attacks, prompting ongoing research in these domains.

The practical implementation of machine translation has predominantly concentrated
on certain language pairs due to the inherent challenges associated with developing
a comprehensive system capable of consistently translating across multiple languages.
The authors in [30] made an initial endeavor by modifying an attention-based encoder-
decoder strategy to enable multilingual neural machine translation (NMT). This was
achieved by incorporating independent decoders and attention mechanisms for each
target language. Luong et.al. [56] explore the integration of multilingual training within a
multitask learning framework. The existing model, an encoder-decoder network, lacks an
attention mechanism. To harness multilingual data effectively, the researchers augment
their model by introducing multiple encoders and decoders, each specifically tailored
to support a particular source and target language. Unfortunately, the computational
expense associated with working on large datasets and models renders the outlined sys-
tems impractical for both translation inference and training. Furthermore, conventional
Neural Machine Translation (NMT) systems exhibit reduced reliability when handling
input sentences containing uncommon terms, adversely impacting both accuracy and
processing speed. Wu et.al. [82] addressed existing challenges by introducing Google’s
Neural Machine Translation system (GNMT). This paper provides a detailed account of
the GNMT system’s implementation, shedding light on crucial aspects such as model
accuracy, robustness, and speed. The model comprises a deep LSTM network with eight
encoder and decoder layers, incorporating residual and attention connections from the
decoder to the encoder. The authors successfully enhanced the machine translation
system, enabling effective performance on real data, accommodating large datasets,
expediting translation inference, and improving translation quality and inference speed
through adept handling of open vocabulary.

The described system is tailored for a unidirectional, language-specific model, designed
for a single language pair. In a related development, Johnson et.al. [43] proposed a
straightforward and effective method to handle multiple languages using a single model
without necessitating significant alterations to the fundamental NMT framework. Their
approach presented a simple and effective strategy0 for managing both high-resource
and low-resource languages within a single model, preserving the fundamental GNMT
architecture. The only modification involves adding an artificial token to the input
sequence indicating the target language (e.g., for English to Spanish translation: <2es>
Hello, how are you? -> Hola, ¿cómo estás?). This work highlights the potential of zero-
shot translation, a successful demonstration of transfer learning in machine translation
without additional steps. Despite numerous advantages, the system faced a limitation
in incorporating new languages, requiring a complete system retraining, which is time-
consuming and costly due to system expansion with additional languages.

Escolano et.al. [30] introduced a modular approach that enables the addition of languages
without requiring the retraining of the entire system. This approach connects a shared
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encoder-decoder model with a language-specific model, facilitating lifelong learning and
the creation of a modular multilingual machine translation system. The system comprises
two steps: initial joint training with language-specific encoder-decoder models, followed
by the addition of new languages through the training of a new module connected to the
existing ones. Upon experimentation, the authors identified three beneficial settings for
the model: (i) a initial pretraining step on all combinations of English, German, French,
and Spanish; (ii) incrementally introducing new languages, the authors tested with
Russian <-> English languages in a bi-directional setup; and (iii) In the final step, they
perform Zero-Shot translation of all the languages on which the model was trained-on
in set (i) & (ii). However, the system’s cost is a notable concern, as training separate
modules for each language demands significant memory and performance resources,
and the effectiveness of zero-shot translation is not particularly impressive.

3.4 Summary

In summary, our exploration of zero-shot and cross-lingual image captioning under-
scores the transformative potential of these cutting-edge technologies. Cross-lingual
image captioning, despite challenges in cultural nuances and translation accuracy, sig-
nifies a significant leap towards a globally interconnected digital landscape, fostering
understanding across languages and cultures. Meanwhile, zero-shot image captioning
represents a breakthrough in natural language processing and computer vision, enabling
models to generate insightful descriptions for previously unseen images. Ongoing devel-
opments in zero-shot image captioning hold promise for improved accessibility to visual
content and dynamic human-computer collaboration. The literature review reveals no-
table architectural advancements and performance enhancements in cross-lingual image
captioning, emphasizing the dynamic nature of this evolving field.



Chapter 4
Implementation

This chapter explores the complexities of the methodology, implementation, and training
strategies of our study. First we thoroughly examining the process of describing images
using a single language model, delving into fundamental ideas, and seamlessly transi-
tions into the challenges of multilingual captioning models. The discussion focuses on
the integration of a pre-trained Neural Machine Translation (NMT) model to improve
image captioning abilities, particularly in situations for low-resource languages. The
chapter offers a thorough explanation of important choices, offering insights into the
reasoning for selecting the NMT model as a crucial element in our efforts and how this
helps us perform few-shot learning on low-resource languages. To conclude, the chapter
outlines the intricacies of the training process, encompassing dataset preparation, the
computational environment utilized, GPU setup, hyper-parameters, and the evaluation
procedures employed in this study.

4.1 Methodology

The chapter initiates with an in-depth examination of the Single Model, 1-1 Model, and
M2 architecture, framing our research around the [84] image captioning paradigm and
the visual attention model [84], forming the foundational framework. It then explores
various image captioning architectures, such as CNN-LSTM model, CNN-transformer
model and CNN-pretrained transformer model. The overarching goal of this chapter is
to furnish readers with a comprehensive understanding of the architectural evolution
that shapes our distinctive image captioning approach. This comprehension lays the
groundwork for the specific experiments detailed in the subsequent section.

4.1.1 Encoder Architecture

The encoder plays a pivotal role, serving as the cornerstone for extracting high-level
features from input images. In the context of our experiments, the CNN encoder stands
as a steadfast component, maintaining its architectural integrity across various models,
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Figure 4.1: CNN Encoder - ResNet-101; Processes an image with 3 color channels,
outputting feature maps through convolutional blocks

while we introduce variations in the decoder to explore diverse approaches to generating
descriptive captions. Throughout our experiments, the CNN encoder remained constant,
ensuring a consistent baseline for comparison across different decoding strategies.

The role of the encoder is to transform the input image, composed of three color channels,
into a compact representation with learned channels. This method efficiently captures
the crucial data embedded in the original image. Instead of training encoders, we use
pre-trained CNNs that have already shown expertise in representing images. Therefore,
the chosen architecture is the 101-layered Residual Network (ResNet-101), pre-trained
on the ImageNet classification task and readily available in PyTorch [12]. This is a choice
for its architectural features and performance benefits, specifically its superior capability
to handle deep networks.

ResNet-101 progressively generates smaller representations of the original image, with
each subsequent representation incorporating more learned features and an increased
number of channels. The final encoded output is a tensor with dimensions 2048x14x14,
indicating 2048 channels and a spatial size of 14x14. While the paper [84] mentions the
use of a VGGnet, it emphasizes the need for modifications, particularly the removal
of the last linear layers associated with softmax activation used for classification. For
ResNet-101, the last two layers (pooling and linear layers) are discarded, emphasizing
the exclusive focus on image encoding rather than classification. To ensure versatility
in handling images of variable sizes, an adaptive AVG pooling layer is introduced to
resize the encoding to a fixed size. For potential fine-tuning of the encoder, a fine-tuning
method is incorporated, enabling or disabling gradient calculations for the relevant
parameters. Notably, only convolutional blocks 2 through 4 in the ResNet are fine-tuned,
preserving the foundational knowledge learned in the first block, which is crucial for
basic image processing tasks such as edge and line detection. This decision aligns with
the principles of transfer learning, allowing for the option of fine-tuning to enhance
performance.

4.1.2 CNN-LSTM Architecture

The decoder’s function in image captioning is to iteratively generate a caption based
on the encoded image, employing an RNN with a Long Short-Term Memory (LSTM)
network. Operating as a generative network, the Decoder LSTM produces words one
at a time, taking into account the prior hidden state, previously generated words, and
encoder feature vectors.

In a conventional setting without attention, the encoded image could be averaged across
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Figure 4.2: CNN- LSTM approach: Image features are captured at lower convolutional
layers, sampled, and fed to LSTM for generating corresponding words. This process is
repeated K times to produce a K-words caption

all pixels, and this average, possibly linearly transformed, would serve as the initial
hidden state for the decoder, as suggested in the [78]. However, in the presence of
attention, the decoder aims to focus on different regions of the image during various
stages of caption generation. This is achieved by using a weighted average across all
pixels, assigning higher weights to more important pixels. The resulting weighted
image representation is then concatenated with the previously generated word at each
step, guiding the generation of the next word. The work [84] examines two attention
mechanisms, specifically hard attention and soft attention. However, in our study, we
mainly utilize the soft attention mechanism [76].

The output of the Encoder, initially in dimensions N, 14 ∗ 14, 2048, is flattened for con-
venience, avoiding the need for multiple tensor reshaping operations. To streamline
the decoding process, images and captions are sorted by decreasing caption lengths,
facilitating the processing of valid timesteps and excluding padding tokens. The manual
iteration over each timestep is executed in a loop, as opposed to a continuous itera-
tion. This manual iteration is necessary for incorporating the attention mechanism
between each decoding step. The attention-network computes model weights and
attention-weighted embeddings at each time-step. The paper [84] recommends passing
the attention-weighted embedding vector through a sigmoid filter to add non-linearity &
crop the gradients between a range of -1 to +1.

The resulting embedding vector is concatenated with the embedding of the previous
word - "<start>" to signal to the decoder to start the caption generation. Finally, run the
LSTM Cell to generate the output logit. A fully-connected layer then transforms this logit
into scores for each word in the model’s vocabulary. The scores are then converted into a
normalized probability distribution which sums to 1. Additionally, the weights returned
by the attention network at each time-step are stored for further analysis. The detailed
decoding process outlined here illustrates the intricacies of incorporating attention
mechanisms to enhance the image captioning model’s ability to focus on relevant image
regions during sequential word generation.
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4.1.3 CNN-Transformer Architecture

Within the field of image captioning, the Transformer architecture has exhibited ex-
ceptional ability in capturing complex interconnections and contextual relationships
within sequential data. In our approach we enhances the capabilities of the Transformer
model during the decoding phase. We are conducting studies that involve both the basic
Transformer model and a pre-trained version. More precisely, within the decoder of the
pre-trained Transformer, we are currently investigating alterations by replacing the fully
connected layer with 1x1 convolution layers.

Marian NMT

We are using pre-trained Marian NMT [44] models from Hugging-Face [9]. MarianNMT
adopts an encoder-decoder architecture and was initially developed by Jörg Tiedemann.
The models were pretrained mostly on the Open Parallel Corpus (OPUS) [73], which is
a collection of translated texts from the web. Thus the models off support for multiple
language combinations. Lastly, the models adheres to a consistent naming convention –
Helsinki−NLP/opus−mt− srclanguage− targetlanguage".

Pre-trained MarianNMT transformer decoder

The output tensor from the CNN encoder, representing image features, is a 3D tensor of
shape (14, 14, 2048). To leverage the strengths of the Transformer architecture, segment
this tensor into 196 vectors, each encapsulating a 2048-dimensional feature. However, be-
fore feeding these vectors into the Transformer encoder, introduce a positional-encoding
mechanism. Unlike sequences, where the order is inherent, images lack a natural order
for the Transformer to recognize. Our positional-encoding strategy is spatial in nature,
accounting for the 14x14 grid of pixels in each image feature. For each pixel at position
(x, y), create a 1024-dimensional vector to represent its vertical position (x feature) and
another 1024-dimensional vector for its horizontal position (y feature). Concatenating
these two vectors results in a 2048-dimensional position feature vector, ensuring the
Transformer captures the spatial relationships crucial for image understanding. The
architecture is illustrated in Fig.4.3.

The decoder input of the Transformer also requires positional-encoding, following a
conventional method. Post positional-encoding, the encoded image features are fed
into the Transformer encoder, extracting a comprehensive representation of the image’s
content. During training, the entire target captions are provided to the decoder part of
the Transformer, enabling predictions for all sequence positions simultaneously. This
contrasts with traditional LSTM architectures, where only one next word is predicted at
a time during training. The efficiency of the Transformer becomes particularly evident in
its faster training pace compared to LSTM. In the caption generation phase, the process
aligns with LSTM, predicting one word at a time based on the previously generated word
during evaluation. This adaptation of the Transformer architecture for image captioning
underscores its versatility and efficiency in handling complex sequential data.
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Figure 4.3: A high-level overview of an image captioning system which incorporates a
ResNet-101 model as image Encoder and Marian NMT model as auto-regressive text
Decoder
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Figure 4.4: An expanded illustration of the modifications made to the Marian NMT
auto-regressive text decoder. The section inside the dashed lines illustrate the addition
of 1D convolution layers to extract information from the feature maps passed by the
encoder
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Pre-trained MarianNMT transformer decoder with 1x1 CNN-based cross attention
layers

From the insights gained in 4.4, our implementation adheres to the fundamental trans-
former architecture with a notable modification. We replace the the full-connected layers
with 1x1 convolution layers.

A 1x1 convolutional layer is often referred to as a point-wise convolution. A 1x1 convo-
lutional layer with N filters operates on each pixel independently across channels and is
mathematically equivalent to a fully connected layer with N neurons. A fully connected
layer performs a weighted sum of its input neurons, where each input is multiplied by a
corresponding weight, and the results are summed up. A 1x1 convolutional layer with
N filters can be seen as performing a weighted sum of its input channels at each spatial
location. The advantages of employing 1x1 convolutions include parameter sharing,
preserving spatial hierarchy, computational efficiency, non-linearity, and adaptability
to variable input sizes. Notably, parameter sharing exploits spatial locality, reducing
the number of parameters compared to fully connected layers. The spatial hierarchy
is maintained, allowing the recognition of local patterns and their combination into
higher-level representations. Computational efficiency arises from optimized convolu-
tional algorithms, contributing to faster training and inference times. The non-linear
nature enhances the model’s adaptability to intricate patterns, while the ability to handle
variable input sizes is crucial in applications with diverse image dimensions.

4.2 Data Pre-processing

We customize the data preparation process according to the various methodologies
explored in our study, specifically the single model, 1-1 model, and M2 architecture.
We using Andrej Karpathy’s predefined training, validation, and test splits [45] that
were initially designed for the English MS-Coco dataset. Consequently, we redesign this
format to support datasets in Italian, Spanish, and a mixed dataset that incorporates a
shuffle of all three languages. Before being organized into Andrej Karpathy’s specified
splitting format, the raw captions undergo preprocessing and tokenization. This format
includes essential details such as the image filepath, image id, image file name, sentences
with tokens, raw captions, sentence id, and image id. The data is stored in a JSON format
and serves as the input for the subsequent preprocessing step, along with the COCO
dataset images folder as illustrated in Fig. 4.5. The necessary inputs for the model,
include images, captions, and caption length.

1. Images: Since we are using a pre-trained ResNet-101 Encoder, it is crucial to
pre-process the images to meet the requirements of the pre-trained Enocder. The
pre-processing consists of two essential steps: firstly, ensuring that the pixel values
are limited to the range of [0, 1], and secondly, normalizing the images by using the
mean and standard deviation obtained from the RGB channels of ImageNet images.
In order to ensure uniformity, all MS-COCO images are resized to dimensions of
256x256. Consequently, the model requires the input images to be in the form of
a Float tensor and necessitates their normalization using the mean and standard
deviation. Here N is the batch size. In order to optimize the management of images
during the process of training and validation, we save them in an HDF5 [6] file.
Each split in the HDF5 file is stored as a tensor. It is important to mention that pixel
values are kept within the range of [0, 255]. The decision to use HDF5 files is based
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Figure 4.5: Left-most section: convert the RBG image into grey scale. Right-most section:
Converts the raw captions into encoding. Mid section: pre-processed images and captions
are serialized and stored in binary file format such as HDF5
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on the practical constraint that the photos are too huge to fit in the computer’s
memory. Therefore, we directly access and retrieve them from the disk during the
training and validation processes. The steps for pre-processing images remains
same for all three approaches.

2. Captions: The raw sentences are extracted from Andrej Karpathy’s split JSON file
and then tokenized according to the specific model being employed. The NLTK [10]
word tokenizer is used for the CNN-LSTM model, whereas the tokenizer defined
in the NMT model provided by Hugging Face is utilized for the CNN encoder -
Marian NMT decoder model.

The captions function as both the outputs and inputs for the decoder, as every
word is utilized for generating the subsequent word. Nevertheless, in order to
commence the process of generating captions, it is important to have a zeroth word,
denoted as <start>, which is crucial for anticipating the first word. Likewise, when
approaching the final word, the model is trained to predict the occurrence of <end>
token. This capability is essential as it allows the Decoder to determine when
to terminate the decoding operation during inference. An example of an input
sequence looks like,

<start> a cat is sitting on a mat <end>

To provide a consistent length, captions need to be padded using <pad> tokens,
as they are considered fixed size tensors. Furthermore, it is imperative to have
a vocabulary file that serves as a comprehensive index, mapping each word in
the corpus. This vocabulary file includes the <start>, <end>, and <pad> tokens.
Therefore, the captions provided to the model should appear as an Integer tensor.

3. Caption length: As the captions are subject to padding, it is crucial to closely
control the lengths of each caption. The length of the caption is determined by
the sum of the actual length and the length of the <’start’> and <’end’> tokens.
This strategy aims to optimize computation by eliminating <’pad’> tokens and
processing a sequence only up to its length. Therefore, the model requires caption
lengths to be provided as an Integer tensor. The caption length are then stored in
the a JSON file.

4.3 Approaches

In this section, we elucidate the methodologies employed in our study, encompassing
the Single Model, 1-1 Model, and M2 Model. Each approach is distinct in its design, data
pre-preparation and training procedures, contributing to a comprehensive understanding
of the diverse strategies applied in our investigation.

4.3.1 Single model

Establishing a multilingual captioning system [84] can be achieved by opting for a
separate model for each individual language. However, this necessitates the creation of a
model for each supported language, leading to scalability challenges. The initial approach
involves employing multiple unidirectional models, where each model comprises an
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Figure 4.6: Overview of three distinct multilingual image captioning models designed
for the languages English (En), Spanish (Es), and Italian(it). Left-most section: consists of
a collection of individual models designed for 3 different directions. Mid section: a 1-1
model that shares all the parameters of the model . Reight-most section: the M2 approach
primarily shares language-specific modules.

encoder for processing the input image and a decoder for generating captions in the
respective target language. As illustrated in Fig. 4.6, for the Single model there are
distinct image encoders paired with decoders for different languages, such as English,
Italian, and Spanish. To implement this, we leverage the models mentioned in Section.4.1,
and the data pre-processing steps remain constant and aligned with the steps provided
in Section.4.2.

Moreover, these models demand a substantial amount of data in the targeted language,
and availability of data for image-caption pairs in languages other than English is
often constrained. Consequently, this approach becomes impractical, particularly as
the number of languages increases, leading to an exponential growth in the number of
required models. In practical image captioning applications, the need arises to effectively
handle multiple languages. However, training separate models for each language is not a
practical solution. Hence, there is a crucial necessity to develop a unified model capable
of supporting and accommodating multiple languages efficiently.

4.3.2 1-1 model

The proposed approach suggests training a unified caption generator capable of produc-
ing meaningful captions in multiple languages. This method proves to be more practical
than a single-model approach, as it efficiently reduces the number of models by sharing
components among them. The 1-1 method, in particular, employs a single encoder and a
single decoder to facilitate captioning in multiple languages. This approach stands out
for its compactness, significantly reducing the number of parameters while concurrently
enhancing the system’s overall performance.

Notably, the implementation of this method requires no alteration to the conventional
image captioning system. Instead, modifications are made to the data, leaving all other
components of the system—encoder, decoder, attention mechanism, and vocabulary,
as detailed in section.4.1 unchanged. This ensures a seamless integration of multilin-
gual capabilities into the existing system without the need for substantial structural
modifications. Data preparation follows the same procedures as outlined in Section:4.2,
with minor adjustments made to the captions and the images. In order to effectively
employ multilingual data within a unified system, we advocate for a straightforward
modification to the input data.
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Figure 4.7: Data Pre-processing: inject language token at the beginning of the captions to
instruct the model to generate caption in the target language
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1. Injecting language token in the beginning of the captions: To indicate the desired
language for the model to generate captions in, a language token is included at
the start of the input sentence. To visually represent this concept, refer to Fig. 4.7,
where the captions undergo tokenization with the language token injected as the
initial token. Let’s analyze the pair of sentences below:

<en> "a", "cat", "is" , "siting", "on", "a", "mat" <end>
<it> "un", "gatto", "è", "seduto", "su", "un", "tappeto" <end>

where, <en> represents English language token and <it> for Italian. Once the
language token is incorporated into the input captions, we proceed to train the
model using multilingual captioning data, which encompasses English, Italian and
Spanish languages. During the inference providing the language token requests
the model to generate captions in the target language.

2. Languages token overlay on the image: An experimental scenario was conducted
wherein language tokens corresponding to English (en), Italian (it), and Spanish
(es) were injected onto the images. The data pre-processing involves two main
steps: a) the initial step, identical to the process outlined in Section.4.2, includes
an additional JSON file storing the language tokens for the captions; b) the second
step involves loading the files saved in step a, specifically the images stored in
an HDF5 file, which are deserialized, reshaped, and then overlaid with language
tokens, as illustrated in Fig. 4.8. Following the incorporation of language tokens
into the input images, the model is trained with multilingual captioning data,
encompassing multiple languages.

To enhance cross-modal grounding [87], we implemented a strategy to address a
common issue where the model tends to generate captions based on high-frequency
words, often overlooking the actual content of the image. As illustrated in fig. 4.9,
the model accurately predicts identical captions for two separate photos, highlight-
ing the superior influence of the language decoder. In Image 1, the caption "the cat
is sitting on a mat" is accurately generated, but in Image 2, the model mistakenly
outputs the same caption. Cross-modal grounding is essential for addressing these
difficulties by improving the model’s ability to understand information from many
modalities, thus strengthening the model’s robustness.

The main benefit of the model is its simplicity. As there are no alterations to the model
architecture, expanding the model to accommodate more languages is a straightforward
process. Additional data can be seamlessly incorporated by augmenting the dataset,
potentially employing over- or under-sampling techniques to ensure a balanced repre-
sentation of all languages. The introduction of a new token becomes the sole adjustment
needed when transitioning to a different target language. The training procedure re-
mains unchanged, with mini-batches for training being sampled from the combined
mixed-language training data, mirroring the process in the single-language scenario. The
deployment of such a multilingual model in production is also notably simplified, as
it effectively reduces the overall number of required models when managing multiple
languages.

However, the 1-1 model is not without its limitations and encounters capacity bottlenecks
that are less than ideal. A capacity bottleneck arises when the model becomes constrained
by the trade-off between the number of tasks introduced and captioning accuracy. In
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Figure 4.8: Data pre-processing: overlay language token on the image in three different
positions with two different colors, to guide the model generate caption in target language
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Figure 4.9: An example explaining cross-modal grounding. The left-most section: model
generates a accurate captions extracting information from multiple modalities. The
right-most section: the model generates inaccurate caption, which suggests that the
model lacks the ability of extract information from both modalities

other words, performance may decrease when the number of image captioning directions
is doubled. The 1-1 model, despite its benefits in multi-way training, exhibits lower
maintainability, making it less appealing for industrial applications. Additionally, incor-
porating a new language into the system becomes a cumbersome task as the entire model
necessitates retraining as one unified entity, demanding significant effort and time.

4.3.3 M2 architecture

The M2 method serves as the foundational framework for our thesis. This approach
stands as a viable alternative to the 1-1 model, offering a solution that aligns with
industrial requirements. This proposed method adopts an efficient architecture known
as the modularized multilingual NMT model (M2). Unlike the 1-1 model, the M2
model selectively shares language-specific modules, specifically either the encoder or the
decoder. The authors substantiate that the M2 model effectively addresses the limitations
observed in the 1-1 model, leveraging the advantages of multi-way training without
succumbing to the capacity bottleneck. Coupled with its modularized architecture, M2
facilitates a convenient and efficient modification of the model.

The construction of the M2 architecture in few-shot learning scenario involves two key
steps.

1. At first, NMT models is a requirement, and these models are trained using parallel
data. Illustrated in Fig. 4.10.a, our exemplar scenario employs a German Encoder
trained with an English decoder, followed by the utilization of the same German
encoder with a Spanish decoder. This approach ensures compatibility between
both decoders, allowing them to be effectively employed with the same encoder.
The incorporation of pre-trained NMT decoders from Hugging Face, as delineated
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Figure 4.10: Left-most section: NMT model pre-tainting, an encoder-decoder architecture
to train a German-English translation model and using the same German encoder to
train a German-Spanish translation model. Mid section: Train a image captioning system,
with image encoder and English NMT decoder. Left-most section: use the pre-trained
image encoder and pre-trained NMT Spanish decoder to perform few-shot learning

in Section 4.1, forms a crucial component of our experimental setup for the M2
architecture.

2. After obtaining our pre-trained NMT decoder, as depicted in Fig. 4.10.b, the subse-
quent step involves the training of our image encoder using an image-captioning
dataset. In this process, only the image encoder is trained, while the NMT decoder
remains frozen. This strategic approach ensures that the image encoder captures
the intrinsic characteristics of the images, preparing it for utilization with other
language decoders for subsequent few-shot learning tasks.

3. Following the training of the image encoder, we proceed to perform few-shot
learning using other language NMT decoders. Fig. 4.10.c illustrates the execution
of few-shot learning with a Spanish NMT decoder. Leveraging the pre-trained
image encoder and language decoder allows for the facilitation of cross-lingual
transfer learning, particularly beneficial for low-resource languages. This approach
enables effective few-shot learning, showcasing the versatility and adaptability of
the model across diverse linguistic scenarios.

High-resource languages play a pivotal role in bolstering the capabilities of natural
language processing models for low-resource languages. Leveraging pre-trained models
from languages with abundant linguistic resources offers a multitude of advantages.
These pre-trained models serve as a foundation, enabling faster convergence during
training and improved performance with limited data. The availability of large datasets
for high-resource languages also facilitates data augmentation for their low-resource
counterparts, enriching training sets and enhancing model generalization. Techniques
such as fine-tuning and transfer learning allow the adaptation of pre-trained models to
the specific linguistic nuances of low-resource languages. Moreover, shared linguistic
features across languages and the application of resource-efficient techniques contribute
to more effective and accurate models for languages with fewer available resources. This
collaborative synergy between high-resource and low-resource languages accelerates
progress in natural language processing across diverse linguistic landscapes.



48

4.4 Training details

4.4.1 Loss Function

The loss function computes the overall loss by employing CrossEntropy to compare
the predicted captions with the target captions, just utilizing the unprocessed scores
obtained from the final layer of the decoding process. The author of [84] proposes the
use of a second loss function called the attention alpha loss. The alpha loss aims to
promote a fair allocation of attention between the decoder and encoder over the entire
image, discouraging an excessive focus on any specific region. This modification seeks
to optimize the attention system’s efficiency in extracting information from the full
image, hence reducing the likelihood of creating captions that include redundant words.
Furthermore, we exclude the padded portions in a sequence when calculating the loss.

4.4.2 Beam Search

A straightforward approach is greedy search. The primary limitation of greedy search
is that it is prone to yield suboptimal solutions. Due to the independent nature of
each decision at every step, there is no regard for the cumulative effect on the whole
sequence. The model might choose a word with a relatively high probability at a
particular phase, but this decision may not be optimal for the overall coherence and
accuracy of the sequence. For instance, in the context of caption generation, selecting the
word with the highest probability at each stage may lead to a caption where the chosen
words individually possess high probabilities, but the overall sequence may lack fluency,
coherence, or even accuracy.

In order to overcome this limitation, different search strategies, such as beam search are
frequently used. These methods employ a systematic approach that examines many
options at each stage, taking into account a wider range of factors and enhancing the
probability of discovering a solution that is globally optimal. In our experiments we
utilize beam search. To better understand the procedure of beam search, refer to Fig.4.11.
The process of beam search can be explained by the following steps:

1. First consider the top k candidates. (Example: an, a, the)

2. Generate k subsequent words corresponding to each of the initial words. ( Example:
an cat, a cat, a man)

3. Select the top k word combinations, ranked by their score. (Example: a cat, a man)

4. For each of the second k words, select the third word and then select the top
combinations of words. (example: a cat is, a cat sits)

5. Implement this for every decode step.

6. Once the sequence comes to an end, indicated by the presence of the <end> token,
select the caption with the highest overall score. (Example: a cat is sitting on a mat.)

4.4.3 Early stopping

We make use of the BLEU-4 score evaluation metric in order to assess the performance of
the model on the validation set. This metric compares the generated captions with the
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Figure 4.11: Illustration of Beam Search: A graphical depiction illustrating the consecutive
stages of beam search. It demonstrates the multiple potential paths to generate more
accurate and contextually relevant sequences
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reference caption. Each generated caption is evaluated by comparing it to all available
captions for the corresponding image, which serve as reference captions.

Consistent with the conclusions of the [84] study, it is important to highlight that the
relationship between loss and BLEU score weakens beyond a particular threshold. Hence,
the authors suggest stopping the training process at an early stage when the BLEU score
starts to decline, regardless of the ongoing decrease in loss.

4.4.4 Training details

This report provides an in-depth exploration of the training complexities for three dis-
tinct models: the Single model, 1-1 model, and M2 model. Every model goes through
customized training procedures, with a main focus on improving the decoder and, in
certain cases, adjusting the encoder.

1. Single model training: We initiated the training procedure by focusing exclusively
on improving the Decoder, while maintaining the Encoder frozen in the beginning.
The training process was optimized by using a batch size of 128. The Adam [46]
optimizer was employed, with a decoder learning rate set to 1e-4. In addition, a
gradient clipping [85] threshold of 5 was applied to reduce any potential problems
connected to gradients throughout the training process.

2. 1-1 model training: In the 1-1 model scenario, we experimented two distinct
approaches: one where the language token was inject at the beginning of the
captions and another where the language token was overlaid on the image. For
both the approaches training began exclusively for the decoder, similar to the
Single model approach. The same batch size of 128 and Adam optimizer with a
decoder learning rate of 1e-4 were employed. A gradient clipping threshold of 5
was maintained as a precautionary measure throughout the training process.

Subsequently, the Encoder was fine-tuned, specifically when language tokens are
overlaid on an image. During the process of transfer learning, we took a careful ap-
proach, recognizing that the model we used was already trained on a different task.
Therefore, a reduced learning rate of 1e-4 was used for the purpose of fine-tuning
the encoder. This adjustment accounts for the necessity of maintaining the charac-
teristics obtained by the pre-trained model, while avoiding drastic modifications
that might disrupt its learned representations. This ensure a careful modification of
the image understanding component to align with the introduced language tokens.

3. M2 model training: For the M2 approach we again experiment with two distinct
scenarios: Marian NMT decoder and modified Marian NMT decoder. And we
trained the model to perform few-shot learning in two steps of training:

(a) The M2 model training commenced with a distinctive approach for the image
encoder model. In this case, the Marian NMT decoder was initially kept
frozen. But in case of modified Marian NMT architecture, training focused
also on refining the decoder, specifically the added 1x1 convolution layer,
while keeping the rest of the decoder frozen. A batch size of 128, Adam
optimizer, and a encoder and decoder learning rate of 1e-4 were employed. A
gradient clipping threshold of 5 was implemented as a precautionary measure.

(b) After completing the training of the image encoder, we seamlessly transitioned
to swap the English language decoder with the Spanish decoder. With the
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Tools and language Remarks
Python open-source library support, building pipeline, multiprocessing,

community support, wrapper
Numpy Efficient computational operations on multi-dimensional arrays
Pandas data manipulation, data analysis, data cleaning
PyTorch tensor operations, GPU support
NLTK BLEU score computation, word tokenizer
HuggingFace MarianNMT models, MarianNMT tokenizers
A100, V100, RTXA6000
GPU

For the effective training and evaluation of models

Matplotlib graph visualization
Wandb to monitor and display model training in real time
Github version control

Table 4.1: List of the technological components used in this study, supplemented by
remarks highlighting their usage and importance

pre-trained image encoder and the MarianNMT Spanish decoder in place, we
conducted training using a limited number of examples to facilitate effective
few-shot learning.

4.4.5 Hyper-parameter tuning and Computational Setup

Hyperparameter tuning is crucial for optimizing the performance of image captioning
models. Throughout the experimental phase, we methodically investigated different
hyperparameters in order to enhance the overall effectiveness of the models. A range of
learning rates around 1e-4 was thoroughly tested to determine the most suitable values
for both the decoder and encoder. Additionally, the beam size during the decoding
process has been identified as a crucial aspect that affects both the diversity and quality
of the generated captions. Various beam sizes were analyzed, such as 1, 3, and 5, with
the end determination that a beam size of 3 yielded the most favorable configuration for
achieving greater model performance.

The training process utilized A100 and V100 GPUs, providing the computational power
required for efficient model training. These GPUs enable accelerated processing, facilitat-
ing the optimization of image captioning models.

4.4.6 Training Durations

The duration of the training process varies based on the model architecture and the
incorporation of additional linguistic data. For a single LSTM model, the training
typically takes approximately 3 days. The 1-1 model, which incorporates a broader
dataset encompassing English, Italian, and Spanish, requires around 5 days to complete.
Transformer models exhibit a shorter training duration, with a single model completing
in approximately 2 days and the 1-1 model in about 3 days. Transformers exhibit superior
parameter efficiency in comparison to LSTMs, offering similar or better performance
with a reduced number of parameters. This attribute not only accelerates training but
also improves computing efficiency

The adoption of pre-trained models substantially diminishes training time, with a typical
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single pre-trained model requiring approximately 1 day, the 1-1 model around 2 days,
and the M2 model, incorporating image encoder training, taking about 1 day. In a
few-shot setting, completion times are further compressed to just a few hours. The
use of pre-trained models, which have learned important patterns from large datasets,
speeds up the convergence process, allowing for quick modifications to the specific
characteristics of the target data and promoting effective adaptation.

Teacher Forcing during Validation

An important aspect of the training process involves the use of Teacher Forcing during
validation. While Teacher Forcing is often used during training to speed up the process, it
is important to ensure that validation settings closely resemble real inference conditions.
This entails providing ground truth input at every decoding phase, independent of the
previously created word. Striking a balance between training efficiency and validation
realism is vital for ensuring the model’s generalization capabilities.

Tech-stack: The technology stacks used in our research are summarized in Table-4.1,
together with their justifications and importance.



Chapter 5
User Study

5.1 Dataset

The development and evaluation of image captioning models hinge on meticulously
curated datasets comprising image-caption pairs. These datasets are crucial for enabling
the training, validation, and testing stages, serving as a fundamental resource for devel-
oping reliable and flexible captioning models. The utilization of benchmark datasets has
greatly accelerated research efforts, thereby leading to the progress of state-of-the-art
captioning models in the sector. This study evaluates a novel benchmark, the MS-COCO-
2014 dataset [55], in three languages: English (the original dataset), Italian, and Spanish
(translations of the original dataset).

5.1.1 MS-COCO-2014 Dataset

The MS-COCO dataset [55] is a comprehensive dataset used for tasks such as object
detection, segmentation, and captioning. Featuring over 330,000 images, each annotated
with 80 object categories and 5 descriptive captions. The MS-COCO-2014 provides a
diverse and comprehensive collection of scenes from everyday life. The significance of the
MS-COCO dataset lies in its role as a standardized benchmark, fostering advancements in
image captioning research by offering a rich, varied, and challenging data for training and
evaluating state-of-the-art models. The dataset consists of two primary components: the
images and their corresponding annotations. The images are structured in a hierarchical
manner, where a main directory encompasses sub-directories for the train, validation,
and test sets. And the annotations are represented in JSON format, and includes the
following information: train keys: dict_keys([’info’, ’images’, ’licenses’, ’annotations’])
[55],

1. ’info’: Information includes essential details like the version number, creation
date, and contributor information. Also the url of the official website (e.g., UCI
repository page or a distinct domain).,
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info = {
"year": int,
"version": str,
"description": str,
"contributor": str,
"url": str,
"date_created": datetime,

}

2. ’licenses’: The licenses section contains comprehensive information regarding the
licenses of the images included in the dataset. This will allow understanding of the
precise authorizations given for their utilization. Here is an illustration of licensing
information.

license = {
"id": int,
"name": str,
"url": str,

}

3. ’images’: This dictionary is considered to be the second most significant one, as it
provides metadata about to the images.

image = {
"license": int,
"file_name": str,
"coco_url": str,
"height": int,
"width": int,
"date_captured": datetime,
"flickr_url": str
"id": int,

}

where the "license" field represents the ID of the image license, referring to the
corresponding entry in the "licenses" section. The "file_name" attribute indicates
the name of the file within the images directory. Additionally, "coco_url" and
"flickr_url" provide URLs to the online-hosted copies of the image. The "height"
and "width" attributes denote the size of the image. Lastly, the "date_captured"
field specifies the date when the photograph was taken. The most important field
is the "id" field, which is used in "annotations" to identify the image.

4. ’annotations’: The most important section of the dataset, which contains informa-
tion vital for each specific tasks like image captioning,

annotions= {
"id": int,
"image_id": int,
"caption": str }
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Here, the "id" corresponds to the unique identifier of the associated image in the
dataset. The "image_id" serves as a distinct identifier for the annotation itself, facili-
tating cross-referencing with ’images’ section. Lastly, the "caption" field includes a
human-generated description, a vital element for tasks such as image captioning.

The dataset organizes its classes into two main classifications: "things" and "stuff." Within
the category of "things," one can discover tangible objects, including animals, auto-
mobiles, and household items. Prominent instances of "objects" categories encompass
persons, bicycles, cars, and motorcycles. In contrast, the "stuff" category consist of back-
drops or environmental elements, including features like sky, water, and highways. The
graph in Fig.5.1 below depicts the incorporation of 80 classes in the dataset.From the
graph it is crucial to acknowledge that the dataset exhibits class imbalance, where the
quantity of samples in one class varies from others. As depicted, the class "person"
strongly dominates with 185,316 samples, followed by car and chair, while the class "hair
drier" has the fewest samples, totaling only 135. Therefore, the class imbalance might
lead to a potential bias during training and evaluation phase of the model. This bias, in
turn, may result in over-fitting to the majority class, leading to excellent performance
within that class but subpar performance in other classes

In addition to class imbalance, the COCO dataset exhibits variability in image dimensions,
encompassing a total of 2,519 distinct dimensions. Among these, the most frequent
dimension is (640, 480), observed in 26,464 images. The largest image in the dataset
possesses dimension of (640, 640), whereas the smallest image is considerably more
compact with dimensions of (59, 72). Understanding this diversity is crucial for image
captioning models that necessitate consistent dimensions, making it pivotal in deciding
on a standardized input size for pre-processing.

5.1.2 MS-COCO-it Dataset

The MS-COCO-it [67] dataset originates from the study titled "Large scale datasets for
Image and Video Captioning in Italian," accessible at it_dataset. Comprising over 600,000
image-caption pairs, it is an Italian-translated version of the original English MS-COCO
dataset. Following the methodology outlined by Vinyals et.al. [78], the image-caption
pairs were utilized for training, excluding a development set of approximately 2000
images and a test set of around 4000 images. These sets are termed the MS-COCO2K
development set and the MS-COCO4K test set. Each image is accompanied by five
captions, which have been automatically translated from English to Italian and subse-
quently manually validated. The MS-COCO-it dataset mirrors the format and images
of the original MS-COCO dataset, comprising both unvalidated (u.) and validated (v.)
elements. Table-5.1 encompasses the size of training, validation and test data.

Image Captions Words
training u 116,195 581,286 ≈ 6, 900, 000

development v. 308 1,541 17,913
development u. 1,696 8,486 ≈ 102, 000

test v. 596 2,982 34,657
test u. 3,422 17,120 ≈ 202, 000

Table 5.1: Data Overview: MSCOCO-it Dataset

https://github.com/crux82/mscoco-it
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Figure 5.1: Distribution of Data Classes for the MS-COCO dataset: Illustrating the relative
frequencies of different classes within the dataset

Image Captions
train_human_spanish 2,000 10,000

train_machine_spanish. 20,000 100,000
validation 1,000 5,000

test 1,000 5,000

Table 5.2: Data Overview: MSCOCO-es Dataset

5.1.3 MS-COCO-ES Dataset

The MS-COCO-ES dataset, introduced in [5], is a derivative of the original MS-COCO
dataset, crafted through the process of translation. The primary objective of the project
was to present a streamlined subset of the initial image captions, skillfully translated
into Spanish by human annotators. This curated subset comprises 20,000 captions
corresponding to 4,000 images, maintaining an average of 5 captions per image. Table-5.2
sums up the size of the Spanish dataset.

5.1.4 Comparison between English, Italian and Spanish dataset

Notably, each image is accompanied by five English captions, each offering nuanced
insights. Fig.5.2, Fig.5.3 and Fig.5.4 provides an example for English, Italian and Spanish
dataset, respectively. The annotations aim to capture the richness and diversity of the
dataset. The data sizes for all three languages are compared in Table-5.3.

The English captions (see Fig.5.5) can range from a minimum of 5 words to a maximum
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Table 5.3: Summary of Images and Annotations Statistics: displaying the number of
images and corresponding captions for various languages (English, Italian and Spanish)

English Italian Spanish
Images Training 82783 82080 22000

Validation 40503 34115 5000
Annotations Training 414113 410596 110000

Validation 202654 170690 1000

Figure 5.2: An example image from English COCO dataset

of 49 words. Italian captions (see Fig.5.6), on the other hand, might span from 6 to 55
words, while Spanish captions (see Fig.5.7) can have a range of 2 to 59 words. The English
dataset shows that captions with 10 words have the highest frequency, suggesting a
common preference among annotators. Conversely, captions consisting of 5 words have
the lowest frequency of occurrence. In contrast, the Italian dataset shows a significant
rise in the frequency of captions with 11 words, while those with 6 words are the least
common. Similarly, the Spanish dataset reveals that captions consisting of 10 words
are the most prevalent, whilst captions with only 2 words have the lowest occurrence.
This dissertation contributes to the development of language models and improves the
efficiency of the algorithms, resulting in enhanced image captioning tasks.

5.2 Evaluation Metrics

Evaluating the efficacy of the implemented models demands an evaluation of the output
caption’s quality. In the study we employ BLUE (Bilingual Evaluation Understudy)
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Figure 5.3: An example image from Italian COCO dataset

Figure 5.4: An example image from Spanish COCO dataset
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Figure 5.5: Distribution of Caption Length in English MS COCO Dataset: This bar
graph visualizes the varied lengths of captions ranging from a minimum of 5 words to a
maximum of 49 words

Figure 5.6: Distribution of Caption Length in Italian MS COCO Dataset: This bar graph
visualizes the varied lengths of captions ranging from a minimum of 6 words to to a
maximum of 55 words

Figure 5.7: Distribution of Caption Length in Italian MS COCO Dataset: This bar graph
visualizes the varied lengths of captions ranging from a minimum of 2 words to to a
maximum of 59 words
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[62], ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [54], and CIDEr
(Consensus-based Image Description Evaluation) [77] to provide an in-depth under-
standing of the models’ performance. By employing these metrics, the aim is to assess
the quality of the captions by considering variables such as accuracy, completeness, and
linguistic similarity.

5.2.1 n-grams

To begin, let’s establish the concept of "n-grams," which refers to consecutive sequences
of ’n’ elements, typically words or characters, extracted from a corpus of texts. N-grams
entail predicting the likelihood of a word occurring, considering the context provided by
the preceding n-1 words. The choice of "n" determines the scope of the context taken into
account by the model. For instance, n=1 corresponds to unigrams (individual words),
N=2 is bigrams, and N=3 corresponds to trigrams and so on. Given a sentence " The cat
is sitting on a mat", the n-grams are as follows,

1. 1-gram (unigram): "The", "cat", "is", "on", "a", "mat"

2. 2-gram (bigram): "The cat", "cat is", "is on", "on a", "a mat"

3. 3-gram (trigram): "The cat is", "cat is on", "is on a", "on a mat"

4. 4-gram: "The cat is on", "cat is on a", "is on a mat" and so on.

N-grams offer a direct and effective approach to capturing contextual information and
connections between words in a sequence. However, they encounter limitations such
as the issue of sparsity, which hinders their ability to make generalizations because of
rare or unseen sequences. The limited context window restricts the ability to capture
distant relationships, and resolving ambiguity continues to be difficult due to the lack of
complex semantic comprehension in N-grams. Subword-level N-grams help to reduce
the out-of-vocabulary problem.

5.2.2 BLEU (Bilingual Evaluation Understudy)

BLEU score [62] is a quantitative metric employed for comparing a predicted caption
with one or many reference captions. The BLEU score is a precision-oriented metric that
ranges from 0 to 1. A score of 0 signifies that the created output lacks any resemblance
to the references, suggesting subpar caption generation. On the other hand, a score of 1
indicates that the created output matches the references perfectly, showing a high level
of caption quality. To compute the BLUE score, we first determine the modified precision
and brevity penalty(BP).

Modified Precision

Precision is defined as the proportion of true positive predictions among all positive
predictions. In brief, it quantifies the accuracy of the model’s positive predictions. Within
the framework of n-grams, true positives refer to the set of n-grams that match exactly
between the predicted and reference sentences. Additionally, false positives relate to
the n-grams that are present in the predicted sentences but not in the reference sentence.
Hence, precision can be determined by dividing the number of matched n-grams by
the total number of n-grams in the predicted sentences. Let’s consider the following
example:
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1. Reference: "The cat is sitting on the mat"

2. Prediction: "The cat cat cat mat"

What is the degree of accuracy in this scenario when examining individual words
(unigrams)? Nevertheless, it is clear that this translation is insufficient. To address
this issue, the computation of BLUE involves the application of "Modified Precision."

To calculate modified precision, the frequency of an n-gram is clipped to the highest
number of times it occurs in the reference texts. The modified n-gram precision can be
precisely defined as follows:

P = exp(
N∑

n=1

wnlog(pn)) (5.1)

where wn = 1/n.

Brevity Penalty(BP)

In instances where longer sentences are involved, it’s possible that the generated can-
didates may be notably concise and may lack essential details when compared to the
reference. In order to tackle this issue, the notion of the Brevity Penalty (BP) is introduced.
The Brevity Penalty is utilized to penalize predictions that are excessively brief in com-
parison to their corresponding references. This approach guarantees that the generated
content will possess a similar level of completeness and appropriateness as the specified
references.

BP =

{
1, ifc > r,

exp(1− r/c), otherwise,
(5.2)

where c is the predicted caption length and r is the average length of the ground-truth
caption.

BLEU Score

The geometric mean of the modified precision up to N is multiplied by the BP value to
obtain the final BLEU score.

BLEU = BP ∗ P (5.3)

The BLEU score has multiple advantages, such as its straightforward calculation and
extensive acceptance as an evaluation metric. It has demonstrated a strong correlation
with human judgment. However, it is imperative to consider notable disadvantages.
The score does not take into account semantic meaning when evaluating synonyms of
n-grams unless they exactly match the references. For instance, multiple expressions
with similar meanings in a particular text might lead to a poor blue score. In addition,
higher-order n-grams face difficulties in addressing word order problems, which might
result in misleadingly high ratings for translations with bad word order. Cross-dataset
comparisons are hard to do when using different methods because things like the number
of references and the normalization and tokenization techniques employed have a big
effect on BLEU scores.
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5.2.3 ROUGE (Recall Oriented Understudy for Gisting Evaluation)

ROUGE [54] measures the extent of overlap and similarity between the predicted captions
produced by the model and the reference captions. The evaluation considers various
aspects like the overlap of n-grams, the overlap of words, and the capacity to recall
important phrases. ROUGE scores are calculated using precision, recall, and F1-score
metrics, and they assist in evaluating the quality of the predicted caption by comparing
it to the reference phrase. ROUGE can be categorized into different types, such as
ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S, based on the particular feature used
for calculation.

1. ROUGE-N: The ROUGE-N metric quantifies the degree of similarity between the
predicted caption and the ground truth caption by evaluating the overlap of n-
grams [53]. For example, ROUGE-1 (unigram) quantifies the degree of similarity
between individual words, ROUGE-2 (bigram) quantifies the degree of similarity
between two-word sequences, and so forth. The ROUGE-N metric is employed
to assess the fluency and grammatical accuracy of the generated captions. The
precision, recall, and F1-score are computed by taking into account the overlap of
n-grams.

Recall =
Overlappingnumberofn− grams

Numberofn− gramsinthereferencesentence
(5.4)

Precision =
Overlappingnumberofn− grams

Numberofn− gramsinpredictiedsentence
(5.5)

The F-1 score is computed as (Harmonic mean),

F1 =
2 ∗ Precision ∗Recall

(Precision+Recall)
(5.6)

2. ROUGE-L: The metrics ROUGE-L are calculated based on the ideas of Longest
Common Subsequence (LCS) [54]. ROUGE-L is specifically designed for the pur-
pose of evaluating the Longest Common Subsequence (LCS). The Longest Common
Subsequence (LCS) is the sequence of words that appears in both the candidates
and reference summaries, with the requirement that the words must maintain their
original order. It automatically includes the longest uninterrupted sequence of
words. It is important to recognize that LCSes may not be consecutive, yet they
remain in same order. For example:

(a) Predicted sentence: "The cat is sleeping on the red mat"

(b) Reference sentence: "The cat is lying down on a clean red mat"

To calculate ROUGE-L, the first step is to identify the longest common subsequence
that is shared by the two phrases. This example illustrates the phrase "The cat is on
the red mat". Subsequently, calculate the precision, recall, and F1-score.

P =
LCS(A,B)

m
(5.7)

R =
LCS(A,B)

n
(5.8)
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where, A and B represent predicted and reference captions, which have respective
lengths of m and n. Then F-score is calculated as the weighted Harmonic mean as,

F =
(1 + b2)RP

R+ b2P
(5.9)

ROUGE stands as a robust metric with demonstrated correlation with human evaluation,
providing a reliable means of assessing the quality of generated summaries. The simplic-
ity of its computation and understanding contributes to its extensive acceptance, and its
ability to be used with other languages makes it suitable for evaluating summaries in
multiple languages. Nevertheless, ROUGE’s main emphasis on n-gram overlap leads
to limits by disregarding the semantic intricacies inherent in the meaning of the sum-
mary. Moreover, the metric’s sensitivity to the selection of reference summaries creates
heterogeneity in the evaluation process. Moreover, ROUGE may display partiality for
summaries that have a different length compared to the reference summaries.

5.2.4 CIDEr (Consensus-based Image Description Evaluation)

The evaluation of the textual descriptions generated for images can be conducted using
the CIDEr metric [77]. The CIDEr measure evaluates the similarity between a generated
caption and the reference captions by considering not just word choice and grammar
but also meaning and content. The CIDEr measure calculates how similar a generated
caption is to the reference captions.

CIDEr computes similarity by considering the common n-grams (phrases of different
lengths) between the generated caption and the reference captions. It focuses on collecting
many methods of presenting the same fundamental ideas, which is very valuable for
evaluating the depth and fluency of created captions. The calculation of the CIDEr metric
comprises multiple stages:

1. Begin by providing a set of reference captions for each image, establishing these
captions as the ground truth for the evaluation process.

2. Compare the generated caption to each reference caption using the BLEU (Bilin-
gual Evaluation Understudy) score. This metric evaluates the overlap of n-grams
between the generated caption and the reference captions.

3. Modify the BLEU scores through IDF (Inverse Document Frequency) weighting.
This adjustment assigns more significance to words that are infrequent in the
reference captions but appear in the generated caption.

4. Conclude the process by averaging the weighted BLEU scores across all reference
captions, yielding the ultimate CIDEr score. This comprehensive approach consid-
ers both n-gram overlap and word rarity, providing a nuanced evaluation of the
quality of generated captions

CIDErn(ci, Si) =
1

m

∑
j

gn(ci).g
n(Sij)

||gn(ci)||||gn(Sij)
(5.10)

CIDEr(ci, Si) =

N∑
n=1

wnCIDErn(ci, Si) (5.11)
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Models BL1 BL2 BL3 BL4 Avg.BL R-L CDr
CNN-LSTM 74.00 57.23 43.52 33.11 51.96 52.61 1.033

CNN-Transformer 74.92 58.59 44.14 34.81 53.11 53.69 1.058
CNN-Marian
NMT Decoder 75.81 64.73 56.72 47.85 61.27 55.00 1.353
CNN-Modified

Marian NMT Decoder 76.08 65.73 56.04 48.17 61.50 56.08 1.408

Table 5.4: Performance Metrics English caption Generation by a single model: A Com-
parative Analysis of BL1: BLEU-1, BL2: BLEU-2, BL3: BLEU-3, BL4: BLEU-4, Avg.BL:
Average BLEU Scores, R-L: ROUGE-L, and CDr: CIDEr scores across various models

The CIDEr metric has gained widespread adoption in the domain of image captioning
and has been employed in numerous benchmark datasets and competitions. The evalua-
tion metric is extensively utilized due to its ability to give a comprehensive assessment
of the quality of generated captions, considering both the linguistic and content aspects.

5.3 Results

Here, we present the comprehensive results of our approach for generating descriptive
captions for an image. The review covers both quantitative and qualitative factors,
providing insights into the performance of three approaches: the Single model, the 1-1
model, and the M2 model. The following analysis explores the complexities of different
architectures, as explained in Section.4.1. Following that, a thorough analysis of various
elements within our model is conducted, offering an informative and comprehensive
assessment. Our research not only sheds light on the effectiveness of our image caption-
ing models but also provides a detailed understanding of the specific contributions of
different architectural components. The examination of results will be directed by the
research question stated in Section.1.3. As we examine the results, our analysis will focus
on answering the particular hypotheses that were raised at the beginning of our research.
This systematic strategy guarantees a concentrated and logical examination of results in
accordance with the overarching objectives specified in our research question.

5.3.1 Research Question: 01

How does performance differ across three different decoder architectures: LSTM,
Transformer, and Pre-trained NMT Transformer?

Our research involves examining different configurations of the encoder-decoder frame-
work, each providing varied combinations of components. These configurations include
CNN-LSTM, CNN-Transformer, CNN-pretrained Transformer, and CNN-modified pre-
trained Transformer. Section.4.1 offers a comprehensive explanation of these models,
clarifying their architectural complexities. We will mostly concentrate on comparing
the results acquired from these different models in order to identify the differences in
performance and the specific strengths. This comparative evaluation sets the foundation
for a nuanced understanding of the impact of different encoder-decoder combinations
on the image captioning task.

Quantitative Analysis:
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Models BL1 BL2 BL3 BL4 Avg.BL R-L CDr
CNN-LSTM 70.92 56.62 43.13 33.37 51.01 50 0.944

CNN-Transformer 71.13 56.03 44.50 34.36 51.50 51.29 0.96
CNN-Marian
NMT Decoder 71.44 62.86 54.71 47.79 59.20 53.62 1.079
CNN-Modified

Marian NMT Decoder 73.94 63.16 55.98 48.04 60.27 54.62 1.191

Table 5.5: Performance Metrics for Italian caption Generation by a single model: A
Comparative Analysis of BL1: BLEU-1, BL2: BLEU-2, BL3: BLEU-3, BL4: BLEU-4,
Avg.BL: Average BLEU Scores, R-L: ROUGE-L, and CDr: CIDEr scores across various
models

Table 5.4 and 5.5 provide a detailed breakdown of performance metrics, including
BLEU-1, BLEU-2, BLEU-3, BLEU-4, Avg-BLEU, ROUGE-L, and CIDEr scores, for both
English and Italian datasets. Noteworthy observations emerge from the analysis of
Table.5.4, focusing on the English dataset. The modified pre-trained transformer model
demonstrates superior performance compared to other models, particularly evident in
the BLEU-4 score, which attains 48. This represents a notable relative improvement
of +37% over the LSTM model and +34% over the non pre-trained transformer model.
This significant enhancement is attributed to harnessing the language understanding
capabilities of the pre-trained model, resulting in a +2% relative improvement over the
Marian NMT decoder. The efficacy of the modified pre-trained transformer model is
further emphasized by its performance across various evaluation metrics, with trends
similar to those observed for BLEU-4. The benefits of this model are accentuated by the
intrinsic characteristics of the 1x1 convolution, especially pronounced when processing
image inputs. Moving beyond BLEU-4, consistent trends across other evaluation metrics
underscore the robustness and efficacy of the proposed model.

In Table.5.5 mirrors the trends observed in Table.5.4, albeit for the Italian dataset. The
modified pretrained transformer model consistently outperforms the non pre-trained
transformer model by +34%, exhibiting a +2% relative gain over the Marian NMT
model. These consistent patterns underscore the robustness and generalizability of
the pretrained transformer approach across different linguistic datasets. This collective
evidence substantiates the effectiveness and versatility of the proposed model, further
reinforcing its potential applicability in diverse language-processing scenarios.

The experimental research revealed that the LSTM model requires around three days to
complete the training process. It achieves convergence at 26th epochs before showing
signs of overfitting. On the other hand, the Transformer model demonstrates accelerated
convergence, completing training in just two days and achieving up to 19th epochs before
showing signs of overfitting. The effectiveness of the Transformer architecture can be
attributed to its increased number of inherent parameters. The use of a pretrained model,
notably the Marian Neural Machine Translation (NMT) model, significantly reduces
the time required for training, completing in just one day and showing evidence of
overfitting as early as the 15th epoch. Likewise, a modified pre-trained model achieves
convergence in just 14th epochs, highlighting the significant benefits of utilizing existing
information to improve the efficiency of the model training process. It is important to
mention that, in all of our experiments, we consistently use a batch size of 128.
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Models BL1 BL2 BL3 BL4 Avg.BL R-L CDr
CNN-LSTM 43.61 34.69 28.01 23.66 32.49 34.63 0.69

CNN-Transformer 44.46 36.39 30.35 25.49 34.17 36.17 0.7551
CNN-Marian
NMT Decoder 48.25 42.37 32.84 28.46 37.98 38.36 0.7932

Table 5.6: Performance Metrics for English caption Generation by a 1-1 model: A Com-
parative Analysis of BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, and CIDEr scores
across various models

Models BL1 BL2 BL3 BL4 Avg.BL R-L CDr
CNN-LSTM 42.19 34.81 28.72 23.68 32.35 33.62 0.65

CNN-Transformer 43.36 36.58 30.25 25.18 33.84 35.60 0.7534
CNN-Marian
NMT Decoder 48.02 41.58 31.76 27.11 37.11 38.70 0.7765

Table 5.7: Performance Metrics for Italian caption Generation by a 1-1 model: A Compar-
ative Analysis of BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, and CIDEr scores across
various models

5.3.2 Research Question: 02

How does the 1-1 model performance differ across three different decoder architec-
tures: LSTM, Transformer, and Pre-trained NMT Transformer?

After examining the data in Table.5.6, it is clear that the pre-trained Neural Machine
Translation (NMT) model performs significantly better than other models in the 1-1
model approach, specifically in relation to the English language. This superiority is
demonstrated by an increase of 18% compared to the LSTM model and 11% compared
to the non pre-trained Transformer model. Table 5.7 demonstrates similar findings for
the Italian language. The pre-trained model surpasses other models by achieving a
relative improvement of +13% compared to the LSTM model and +7% compared to the
Transformer model.

Regarding the Spanish language, as explained in Table 5.8, the consistent pattern con-
tinues, highlighting the superior performance of the pre-trained model with a relative
improvement of 36% compared to the LSTM model and 32% compared to the Trans-
former model. The consistency of these results across different languages emphasizes
the effectiveness of the pre-trained NMT model in the 1-1 strategy, thus demonstrating
its significant performance benefits compared to other models.

After comparing the datasets in the three languages, it is evident that English and Italian
produce similar outcomes, with BLEU-4 ratings of 28.46 and 27.11, respectively. On the
other hand, the Spanish dataset shows a relatively lower level of effectiveness, with a
BLEU-4 score of 8.84. The discrepancy might be ascribed to the utilization of shared
model parameters across the languages. In addition, the datasets for English and Italian
are larger than the Spanish dataset, which leads to its reduction. The disparities in dataset
sizes and parameter distribution jointly contribute to the reduced performance of the
model on the Spanish dataset compared to the English and Italian datasets.

We employed the Lang_detect library [8] within the Python programming language to
validate that the generated caption is same as that of the target languages. The results
of this validation are presented in Table 5.9, illustrating the comparative analysis be-



67

Models BL1 BL2 BL3 BL4 Avg.BL R-L CDr
CNN-LSTM 19.27 11.75 8.16 6.10 11.32 16.32 0.2014

CNN-Transformer 19.06 12.79 8.36 6.36 11.64 16.42 0.2079
CNN-Marian
NMT Decoder 24.26 17.69 10.25 8.84 15.26 18.55 0.2212

Table 5.8: Performance Metrics for Spanish caption Generation by a 1-1 model: A Com-
parative Analysis of BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, and CIDEr scores
across various models

Actual Language
English Italian Spanish Total

Predicted Language
English 24,724 276 0 25,000
Italian 102 24,587 311 25,000

Spanish 9 126 4865 5000

Table 5.9: The above table illustrates the number of times the model correctly/incorrectly
generated the caption when it was explicitly instructed about the target language

tween the total number of inference samples and the corresponding accurately captioned
instances in the target languages. The assessment of the 1-1 model is undertaken in-
dependently for each language. For the English dataset, which encompasses a total of
25,000 captions, our model accurately captioned 24,724 instances in English. However,
276 captions were erroneously classified as Italian. In the case of the Italian dataset,
comprising 25,000 examples, our model accurately captioned 24,587 instances as Italian.
Nonetheless, 102 captions were inaccurately labeled as English, and 311 as Spanish. Fi-
nally, for the Spanish dataset consisting of 5,000 examples, 4,865 captions were correctly
labeled as Spanish. Nevertheless, 9 captions were misclassified as English, and 126 as
Italian.

5.3.3 Research Question: 03

Compare the performance of pre-trained NMT model with the modified pre-trained
NMT model

Quantitative analysis

Figure 5.8 and Fig.5.9 offers valuable insights into the performance difference between
a model using a 1x1 convolution layer and a model using a fully connected layer. The
pre-trained Marian Neural Machine Translation (NMT) decoder has been utilized in this
experimental work. The empirical results clearly demonstrate that the model with a 1x1
convolution layer achieves a much faster convergence rate compared to the model using
a linear layer. More precisely, the evaluation loss reaches its lowest value of 1.1 after
around 7,000 training steps for the model with 1x1 convolutional layer. On the other
hand, the fully connected layer model achieves a loss of 1.4 but takes approximately
10,000 steps to converge. The noticeable discrepancy in the speed at which the model
converges suggests that including a 1x1 convolution layer improves the efficiency of the
training process.

The integration of the 1x1 convolutional layer in our model is grounded in its capacity
to offer substantial advantages. The 1x1 convolutional layer primarily utilizes fewer
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Figure 5.8: Graph depicting evaluation loss for pre-trained MarianNMT model with 1x1
convolution on the English MS-COCO dataset

Figure 5.9: Graph depicting evaluation loss for pre-trained MarianNMT model on the
English MS-COCO dataset
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parameters compared to the fully connected layer. It operates on local receptive fields
rather than forming connections between every input and every neuron. The decrease in
the number of parameters allows for a more efficient learning process, resulting in the
model converging quickly during training. The convolutional layer is able to effectively
utilize correlations within the input by capturing spatial hierarchies and local patterns,
surpassing the capabilities of a fully connected layer. The subsequent decrease in loss
implies that the model with the 1x1 convolutional layer performs better on new data,
suggesting a higher capacity to extract and understand significant features from the
input. The inherent advantages of the 1x1 convolutional layer, such as its efficient use
of parameters and improved extraction of features, result in more rapid convergence
during training and higher performance in reducing evaluation loss.

Qualitative Analysis

In the realm of qualitative analysis, a closer examination of Fig.5.10 unveils the model’s
adeptness in directing its attention to the pertinent regions of the image during caption
generation. Observing the process, it becomes evident that the model strategically fo-
cuses on the appropriate elements within the image for accurate captioning. Noteworthy
instances include the generation of the word "couple," where the model directs its atten-
tion to both buses, demonstrating a nuanced understanding of the scene. Similarly, when
conjuring the word "down," the model zeroes in on the lower section of the bus, align-
ing seamlessly with the intended focus. In essence, the model’s capability to maintain
context-aware attention, ensuring that the generated captions accurately encapsulate the
salient features of the depicted scenes. The incorporation of 1x1 convolutions, fostering
cross attention, emerges as a pivotal factor in enhancing the model’s focus and overall
performance during the caption generation process.

Examining Fig.5.11, a discerning observation reveals a noteworthy aspect of the model’s
caption generation process—it appears to lack precision in directing attention to the
appropriate elements within the image. The generated captions seem to scatter focus
indiscriminately, lacking a cohesive connection to the visual content. This raises a com-
pelling inference: the model, as depicted in the figure, may not be effectively leveraging
information from the image encoder during the captioning process. Instead, it seems
to heavily rely solely on the language decoder, potentially resorting to a form of rote
memorization. The scattered focus observed in the generated captions suggests that
connection between the visual and linguistic components is lacking . Consequently, the
model’s reliance on the language decoder without effectively incorporating information
from the image encoder raises concerns about its depth of understanding about the
image features.

After a careful analysis of the generated captions, a clear distinction becomes apparent
between Fig.5.10 and Fig.5.11. Significantly, the captions derived from Fig.5.10 demon-
strate a high level of grammatical fluency in comparison to those from Fig.5.11. The
difference in linguistic coherence suggests a strong conclusion: the modified pre-trained
model, depicted in Fig.5.10, seems to gain substantial advantages from the inclusion of
1x1 convolution layers. The impact of these layers is clearly obvious in the improved
linguistic quality of the generated captions, demonstrating that the use of convolutional
methods has a favorable effect on the model’s ability to generate language. Essentially,
this comparison highlights the crucial function of 1x1 convolution layers in enhancing
the language creation skills of the pre-trained model. The noticeable enhancement in
grammatical proficiency is evidence of the effectiveness of these structural changes in
maximizing the model’s performance for generating captions.
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Figure 5.10: Analyzing CNN encoder-modified pretrained MarianNMT transformer:
Saliency map depicting the model’s inference on English MS-COCO dataset, offering a
visual representation of attention and focus areas in caption generation

5.3.4 Research Question: 04

Compare the performance between single model, 1-1 model and M2 model?

Quantitative analysis

In this comparative analysis, the efficacy of three distinct methodologies is assessed:
the Single model, 1-1 model, and M2 model. The outcomes, as delineated in Table 5.10,
underscore notable differentials in performance metrics. The evaluation is conducted on
the Spanish dataset utilizing the pre-trained Neural Machine Translation (NMT) decoder.
Notably, the M2 model emerges as a preeminent performer, exhibiting a commendable
+11% relative enhancement compared to the Single model. The respective BLEU-1 scores
for the M2 model and Single model are 74.50 and 66.68. Upon closer scrutiny, the M2
model manifests an exceptional +25% relative improvement over the Single model and
a substantial advancement over the 1-1 model, particularly discernible in the BLEU-4
score. This discerning analysis sheds light on the superior performance of the M2 model,
emphasizing its efficacy in comparison to alternative approaches.

The suboptimal performance of the 1-1 model can be attributed to its training on a
composite dataset encompassing English, Italian, and Spanish concurrently. Although
this approach is ambitious, it leads to a capacity bottleneck and diminished maintainabil-
ity. The inherent constraint in the parameter size of the pre-trained model impedes its
ability to effectively learn all three languages simultaneously. This limitation prompts
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Figure 5.11: Analyzing CNN encoder-pretrained MarianNMT transformer: Saliency
map depicting the model’s inference on English MS-COCO dataset, offering a visual
representation of attention and focus areas in caption generation

consideration of larger models, such as Lamma [74], which boasts a substantial 7 billion
parameters and holds the potential to yield superior results. Adding to the challenges,
the 1-1 model faces inherent difficulty due to the lower volume of the Spanish dataset
compared to English and Italian, further contributing to its suboptimal performance.
On the other hand, the Single model stands out by focusing exclusively on learning
one language, even though it has limited parameters. In addition, the Single model
utilizes transfer learning by incorporating knowledge from the Neural Machine Transla-
tion (NMT) decoder, hence improving its overall efficacy. The M2 model introduces an
innovative approach with cross-lingual transfer learning, where both the encoder and de-
coder undergo pre-training. This unique design allows the image encoder to seamlessly
adapt to the language decoder, facilitating the sharing of language-specific decoders. The
success of the M2 model is attributed to its effective utilization of pre-trained decoders,
highlighting the essentiality of leveraging pre-trained components to get exceptional
performance in multilingual tasks.

Ultimately, the M2 model surpasses both the 1-1 model and the Single model when it
comes to cross-lingual image captioning. Nevertheless, it is important to remark that
the 1-1 model possesses the advantage of concurrently training on three languages and
demonstrates favorable performance for all three languages in term of fluency and accu-
racy of the captions, as stated in Research Question.5.3.2. While the M2 model has shown
its ability to adapt, making changes to the 1-1 model, such adding a new language, poses
significant difficulties. Incorporating another language requires a thorough retraining



72

BL1 BL2 BL3 BL4 AVG-BL R-L CDr
Single Model 66.68 55.97 47.55 40.28 52.62 51.41 1.0183

1-1 Model 24.26 17.69 10.25 8.84 15.26 18.55 0.2212
M2 Model 74.50 66.11 58.76 52.07 62.85 56.44 1.2043

Table 5.10: Performance Metrics comparing the performance between Single model, 1-1
model and M2 model: A analysis of BL1: BLEU-1, BL2: BLEU-2, BL3: BLEU-3, BL4:
BLEU-4, Avg.BL: Average BLEU Scores, R-L: ROUGE-L, and CDr: CIDEr scores across
various approaches.

of the entire model as a cohesive unit, which requires a significant commitment of both
time and effort. Experiments conducted with the Transformer and LSTM frameworks
confirm this claim. When trained on a combined dataset of English and Italian, the LSTM
model took around 3 days to reach convergence, whereas the Transformer model reached
convergence in just 2 days. Yet, the complexity increases when dealing with a dataset
that includes three languages: English, Italian, and Spanish. Within this particular frame-
work, the LSTM model had a convergence period of approximately 5 days, whereas the
Transformer model required nearly 4.5 days to achieve convergence. This significant
increase in the period of instruction highlights the lack of feasibility in solely enhancing
languages to the 1-1 approach. The significant amount of time and resources required
for retraining emphasizes the need for more effective and adaptable approaches in the
development of multilingual models.

Qualitative Analysis

The visual analysis of Fig.5.12, Fig.5.13, and Fig.5.14 provides valuable insights into the
language generation capabilities of different approaches. Evidently, the single model,
depicted in Fig.5.12, stands out by producing more fluent sentences compared to its coun-
terparts. This proficiency can be attributed to its training approach, focusing solely on
one language, namely Spanish. The absence of parameter sharing with other languages
allows this model to tailor its linguistic nuances precisely, resulting in enhanced sentence
fluency. In stark contrast, the 1-1 model, as illustrated in Fig.5.13, exhibits a suboptimal
performance. The shared parameters across three distinct languages compromise its
ability to generate fluent sentences. Additionally, the model’s relatively smaller size
for a 1-1 configuration may contribute to its diminished capability, highlighting the
significance of appropriate model size in linguistic tasks. Turning attention to Fig.5.14,
the M2 model displays commendable caption generation in a few-shot setting, having
been trained on a mere 2000 Spanish samples. This success can be attributed to its
utilization of cross-lingual transfer learning, allowing the model to leverage knowledge
from multiple languages efficiently.

In summary, the visual evidence underscores the impact of training strategies and model
architectures on language generation. The single model excels due to its language-specific
training, while the 1-1 model faces challenges with shared parameters and a relatively
smaller size. The M2 model’s success in a few-shot setting attests to the efficacy of
cross-lingual transfer learning in harnessing linguistic proficiency from limited training
samples. Further illustrations showcasing the modified NMT transformer are provided
in the Appendix section. The redesigned NMT transformer generates captions that are
not only more precise but also demonstrate enhanced fluency.
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Figure 5.12: Analyzing CNN encoder-pretrained MarianNMT Transformer for Single
model approach: Saliency map depicting the model’s inference on Spanish MS-COCO
dataset, offering a visual representation of attention and focus areas in caption generation

5.3.5 Research Question: 05

Can adapting the M2 model to the image captioning task enable few-shot image
captioning?” (with Marian NMT Decoder)

Quantitative analysis

The empirical results obtained from studies with various sample sizes reveal a noticeable
trend in the model’s performance. There is a noticeable decrease in the overall model
performance as the amount of training data decreases. Table.5.11 demonstrates the
observed pattern, where utilizing 22,000 samples for few-shot learning results in a BLEU-
4 score of 52. It is important to note that, even when the sample size is reduced to 2,000,
the BLEU-4 score remains constant at 52. Nevertheless, when the sample size is reduced
to 1,000, the BLEU-4 score decreases to 48. Further reduction to 500 samples yields a
score of 42. A further experiment employing zero-shot learning, without any training
data, produces a score of 5. Due to the structural similarities between Italian and Spanish
languages, the model is able to accurately predict some common tokens in zero-shot
learning, resulting in a BLEU-1 score of 34. These data emphasize how the model’s
performance is affected by different sample sizes and demonstrate the significant effect
on its ability to make accurate predictions, especially in situations involving languages
with limited resources. In the domain of few-shot learning, a similar trend may be
observed with the modified pre-trained Neural Machine Translation (NMT) model.
Table.5.12 shows that the BLEU score declines continuously as the number of samples
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Figure 5.13: Analyzing CNN encoder-petrained MarianNMT Transformer for 1-1 model
approach: Saliency map depicting the model’s inference on Spanish MS-COCO dataset,
offering a visual representation of attention and focus areas in caption generation

decreases, suggesting a clear relationship between the size of the training data and the
model’s performance.

After comparing Table.5.11 and Table.5.12, it is evident that the pre-trained NMT model
performs better than the modified pre-trained NMT model. The pre-trained NMT model
shows a relative performance decline of -12% compared to the modified pre-trained
NMT model, using a complete dataset of 22,000 samples. Nevertheless, when the sample
size is decreased to 500, the pre-trained NMT model demonstrates a relative performance
improvement of +8%.

The limitations of the 1-1 model are apparent in its inability to execute few-shot learning
tasks, primarily attributable to the model’s constrained size and limited capacity. The
selected model lacks the necessary parameters to adeptly adapt to the demands of few-
shot learning. A potential avenue for improvement arises by opting for a larger model
equipped with billions of parameters. The M2 model is characterized by its parameter-
sharing method between different modules, which facilitates the flow of information
in an inter-lingua space. This novel technique enhances the model’s flexibility and
overall effectiveness. In addition, the M2 model exhibits a significant improvement in
performance when applied to low-resource language pairs. The cross-linguistic impact
becomes apparent when multiple languages are incorporated into a unified module.
Significantly, low-resource languages demonstrate improved performance when trained
together with high-resource language pairings inside the same module. The utilization
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Figure 5.14: Analyzing CNN encoder-pretrained MarianNMT Transformer for M2 ar-
chitecture: Saliency map depicting the model’s inference on 2000 samples Spanish
MS-COCO dataset, offering a visual representation of attention and focus areas in cap-
tion generation

of this multi-way training technique offers significant benefits, especially for languages
that have a scarcity of available materials.

Therefore, the encoders in the M2 must encode the input in a way that enables any
decoder to generate captions. The decoders of the M2 model must have the ability to
generate output using the encoded information from any M2 encoder, demonstrating the
model’s versatility in handling different language combinations. By examining extensive
language models, as exemplified in the research conducted by Brown et.al. (2020) [22],
it becomes clear that larger models intrinsically contain the ability to perform very
well in cases where only a little amount of training data is available. This phenomena
highlights the significance of the size of the model in adapting to the necessary flexibility
for successful few-shot learning tasks.

Qualitative Analysis

In the qualitative analysis of our few-shot image captioning model, we first examined
the generated captions for their relevance and coherence. The model consistently demon-
strated a strong ability to provide captions that were contextually relevant to the given
images, showcasing a nuanced understanding of visual content. Analyzing the contents
of Fig. 5.15, wherein the model undergoes training on the complete dataset, it becomes
evident that the model excels in the generation of captions that precisely identify the
child is skiing on a snow-covered slope within the depicted image. In Fig. 5.16, where
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BL1 BL2 BL3 BL4 Avg.BL R-L CDr
Full dataset 74.50 66.11 58.76 52.07 62.86 56.44 1.2043

Few-shot: 2000 Samples 74.50 66.11 58.76 52.07 62.86 58.40 1.2616
Few-shot: 1000 Samples 71.90 62.84 55.24 48.43 59.60 56.37 1.129
Few-shot: 500 Samples 67.24 57.03 49.02 42.09 53.84 52.16 0.94

Zero-shot 34.51 17.18 9.09 5.09 16.46 24.34 0.1228

Table 5.11: Performance Metrics comparing the Few-shot perform on various sample size
using CNN encoder-Marian NMT decoder: A analysis of BL1: BLEU-1, BL2: BLEU-2,
BL3: BLEU-3, BL4: BLEU-4, Avg.BL: Average BLEU Scores, R-L: ROUGE-L, and CDr:
CIDEr scores across various approaches.

BL1 BL2 BL3 BL4 Avg.BL R-L CDr
Full dataset 80.3 72.38 65.41 59.05 69.39 63.25 1.6421

Few-shot: 2000 Samples 72.42 62.41 54.20 47.08 59.02 55.43 1.1886
Few-shot: 1000 Samples 70.25 60.37 52.08 44.92 56.90 54.33 1.0880
Few-shot: 500 Samples 65.01 54.08 45.71 38.55 50.83 49.63 0.8730

Table 5.12: Performance Metrics comparing the Few-shot perform on various sample size
using CNN encoder- modified Marian NMT decoder: A analysis of BL1: BLEU-1, BL2:
BLEU-2, BL3: BLEU-3, BL4: BLEU-4, Avg.BL: Average BLEU Scores, R-L: ROUGE-L, and
CDr: CIDEr scores across various approaches.

the dataset is constrained to 2000 samples, there is a marginal decline in the model’s
performance compared to the full dataset model. Despite this reduction, the model
remains adept at delivering reasonably accurate results, correctly discerning the presence
of a small child in the snowy scene. Further reducing the sample size to 1000, as depicted
in Fig. 5.17, results in a notable decline in accuracy. In contrast to previous identifications
of a child, the model now recognizes a man, stating "a man on skis on a hillside." This
deviation suggests a sensitivity to reduced data, leading to variations in the model’s
captioning outputs. Continuing the reduction in sample size to 500, as depicted in Fig.
5.18, there is a discernible but subtle decrease in accuracy. While the model still identifies
a child participating in skiing, it introduces a broader interpretation, describing the scene
as involving a couple of people in the snowy environment.

Even with diminishing sample sizes, the few-shot setup continues to showcase its ef-
fectiveness in generating fluent captions across various scenarios. Although there is a
gradual reduction in accuracy, the models consistently exhibit an impressive ability to
capture the essence of the depicted image. This persistence underscores the robustness
of the few-shot learning approach in effectively handling diverse datasets.

5.3.6 Research Question: 06

How do the results of image captioning using original data compare to those obtained
through machine-translated data?

Quantitative Analysis

In Table 5.13, the initial row presents the outcomes of the translation training experiment.
Here, we translated the original English COCO dataset to Italian using a machine
translation model. To maintain consistency in the neural machine translation (NMT)
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Figure 5.15: Analyzing CNN-modified Pretrained MarianNMT transformer for M2
architecture in few-shot setting: Saliency map depicting the model’s inference on full
Spanish MS-COCO dataset, offering a visual representation of attention and focus areas
in caption generation

model, we utilized the Marian NMT model for translating the English captioning dataset
into Italian. Subsequently, we trained our image captioning model with this translated
Italian dataset. The results displayed indicate a notable improvement when compared
to our single model in Italian language. Both these model achieve a BLEU-4 score of 48.
However, it is crucial to acknowledge that this model encounters its own limitations,
particularly in terms of the fluency of generated captions. In the translate-test experiment,
our approach involved initially training a captioning model using the English COCO
dataset. Subsequently, we leveraged the inference generated from this captioning data to
perform translations into the target language, which, in this case, was Italian. To assess
the accuracy of the translated Italian inference captions, we conducted a comparison
using the BLEU score between the translated test data in Italian and the original Italian
captioning test data. This evaluation provided insights into the fidelity and precision
of the Italian captions produced through the translation process. It is evident that the
results exhibit poor performance, indicated by a BLEU-1 score of 14.

Qualitative Analysis

Upon analysis as illusrated in Fig5.19, it becomes apparent that the translation-trained
model renders the caption as "a black cat lying down." However, it fails to capture certain
visual details. In contrast as shown in Fig.5.20, the image captioning model, not only
conveys the cat’s posture but also extracts the additional information that the cat is
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Figure 5.16: Analyzing CNN encoder-modified pretrained MarianNMT transformer for
M2 architecture in few-shot setting: Saliency map depicting the model’s inference on
2000 samples of Spanish MS-COCO dataset, offering a visual representation of attention
and focus areas in caption generation

lying on grass. This comparison underscores the potential limitations of relying on a
translation model, especially when minute visual details are crucial.

Utilizing a translation model to convert captions into a target language gives rise to issues
regarding the potential diminishment of complex information. Relying exclusively on
English captions as an intermediate creates a bottleneck in the process. Using a translation
model to translate faulty English captions may unintentionally spread inaccuracies to
the translated annotations in the target language. In order to tackle these issues, there
is a pressing need for multi-modal systems that effectively combine visual and textual
information in a seamless manner. Implementing such technologies would guarantee a
more thorough depiction, reducing the likelihood of data loss and errors while generating
captions. This approach can significantly enhance the fidelity of cross-modal tasks,
offering a more reliable and accurate portrayal of visual content in different languages.



79

Figure 5.17: Analyzing CNN encoder-modified pretrained MarianNMT transformer for
M2 architecture in few-shot setting: Saliency map depicting the model’s inference on
1000 samples of Spanish MS-COCO dataset, offering a visual representation of attention
and focus areas in caption generation

BL1 BL2 BL3 BL4
translate-train 72.68 62.42 54.21 48.35
Translate-test 14.11 1.78 - -

Table 5.13: Performance Metrics for Italian caption Generation using translate-train
(translate the English data to Italian using NMT model) and translate-test methods
(translate English inference captions to Italian using NMT model): A Comparative
Analysis of BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, and CIDEr Scores Across
Various Models
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Figure 5.18: Analyzing CNN encoder-modified pretrained MarianNMT transformer for
M2 architecture in few-shot setting: Saliency map depicting the model’s inference on 500
samples of Spanish MS-COCO dataset, offering a visual representation of attention and
focus areas in caption generation
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Figure 5.19: Analyzing CNN encoder-pretrained Marian NMT transformer decoder for
Single model using Italian translation of English Dataset: Saliency map depicting the
model’s inference on translated dataset, offering a visual representation of attention and
focus areas in caption generation
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Figure 5.20: Analyzing CNN encoder-pretrained Marian NMT transformer decoder for
Single model: Saliency map depicting the model’s inference on Italian MS-COCO dataset,
offering a visual representation of attention and focus areas in caption generation



Chapter 6
Conclusion

In the concluding chapter, we bring together the threads of our exploration, extracting
valuable insights from the thorough examination and results outlined in this report.
Next, we examine the limitations of our approach and outline the future prospects of the
research.

6.1 Conclusion

In conclusion, the task of image captioning poses a formidable challenge for machine
intelligence, weaving together intricacies from both Computer Vision and Natural Lan-
guage Processing domains. Furthermore, there is no clear definition for the captioning
task itself, and there are numerous ways to generate captions with varied goals and styles.
Notably, a significant limitation lies in the predominantly English-centric exploration of
image captioning, excluding non-English speakers from the benefits of technologies. Rec-
ognizing this void, researchers are now actively exploring into the realm of cross-lingual
image captioning, seeking to bridge the language gap and make these advancements
accessible on a global scale.

In summary, this report presents a comprehensive evaluation and adaptation of the
M2 model initially proposed by Lyu et al [57] for multilingual machine translation. By
redesign the M2 architecture for the image captioning task. We conduct a systematic
exploration of various decoder models, including LSTM, Transformer, and pre-trained
transformer. Our findings unequivocally point to the pre-trained transformer as the
most effective choice. Furthermore, through additional modifying the pre-trained trans-
former with 1x1 convolution layer, we ultimately found that the adapted transformer
outperforms the alternative models.

Through extensive comparisons across single models, 1-1 models, and the M2 model
under diverse conditions, our investigation reveals the substantial benefits of multi-way
training for the M2 architecture. Notably, our research extends beyond conventional
settings to demonstrate the adaptability of the M2 in low-resource scenarios, showcasing
its capacity to generate meaningful captions even in a few-shot setting. The M2 has
proven to be versatile and adaptable to a wide range of training environments, making it
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an effective choice for image captioning for multi-lingual contexts. This will especially
help low-resource languages in few-shot settings by cross-lingual transfer learning,
transferring knowledge from high-resource languages.

In conclusion, our study not only validates the suitability of the M2 model for image cap-
tioning but also underscores the significance of leveraging pre-trained NMT transformer
architectures. The demonstrated versatility of the M2, coupled with its capacity to thrive
in varied training conditions, positions it as a robust choice for advancing the capabilities
of image captioning technologies across multilingual and resource-constrained contexts.

6.2 Limitations

In this section, we will draw attention to a few limitations of our proposed approach:

1. Our study is limited by its sole reliance on the MS-COCO dataset. While this is a
novel benchmark, other datasets like Flicker30K [63] or Conceptual12M [23] may
introduce unique challenges, such as diverse image characteristics and linguistic
complexities, that our architecture has not been tested on.

2. In our research, we used the Marian Neural Machine Translation (NMT) framework
from Hugging Face. Using a different pre-trained NMT transformer may present
different technical difficulties. Implementing another pre-trained model would
necessitate significant changes to ensure alignment between the image captioning
encoder and the characteristics of the NMT decoder model.

3. Choosing a different NMT model, other than MarianNMT, could lead to variations
in the quality of captions. Different models can demonstrate a range of linguistic
capabilities, which can impact the accuracy and dependability of the produced
captions.

4. Our analysis uncovered random linguistic errors that occur while employing a
1-1 model with language tokens superimposed on the image, which impacts the
overall performance of the model. Therefore, it is necessary to improve the process
of cross-modal grounding.

6.3 Future works

In this section, we outline potential directions for the future of this research:

1. Conduct experiments on diverse datasets like Flicker30K [63] or Conceptual12M
[23] with the aim of improving the models’ ability to generalize and withstand
variations. Through the evaluation of the model on diverse datasets, it is interesting
to determine its ability to perform in a broad range of scenarios.

2. Improve the model’s adaptability by introducing a more modular framework. This
involves organizing each component of the model into distinct and interchangeable
modules, facilitating simpler modification and adaptation. A modular design
allows for the smooth integration of new language in multilingual captioning
system.
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3. Improving cross-modal grounding to enhance the interaction between different
modalities in a more effective and detailed manner [87].

4. Optimize the performance of the M2 architecture specifically for zero-shot scenar-
ios.

5. Investigating various fusion mechanisms holds great potential as an interesting
path for future research. The objective is to expand the limits of multi-modal
learning by improving the interaction between the Image Encoder and Text Decoder.
Different fusion mechanisms can include attention mechanisms [76], cross-modal
interactions [76], or novel structures that effectively integrate visual and textual
information.

6. An interesting approach involves substituting the current self/cross attention
processes with other linear attention strategies, such as Efficient Attention [68] and
Flash Attention [26]. Exploring the integration of these attention mechanisms into
our framework has the potential to enhance information processing by making it
more efficient and effective.

7. Replacing the existing pretrained transformer text decoder by including advanced
causal Language Models (LLMs) such as Llama 2 [74], Mistral 13B [41], and OPT
[86].



Bibliography

[1] 2024. The architecture of Convolutional Neural Net-
works(CNN). https://www.analyticssteps.com/blogs/
convolutional-neural-network-cnn-graphical-visualization-code-explanation
(2024). Accessed on January 28, 2024.

[2] 2024. A Battle Against Amnesia: A Brief History and Introduction of
Recurrent Neural Networks. https://towardsdatascience.com/
a-battle-against-amnesia-a-brief-history-and-introduction-of-recurrent-neural-networks-50496aae6740
(2024). Accessed on January 28, 2024.

[3] 2024. Convolutional Neural Networks for Text Classifica-
tion. https://www.davidsbatista.net/blog/2018/03/31/
SentenceClassificationConvNets/ (2024). Accessed on January 28,
2024.

[4] 2024a. Ethnologue: How many languages are there in the world? https://
www.ethnologue.com/guides/how-many-languages (2024). Accessed on
January 28, 2024.

[5] 2024. García C., MS-COCO-ES, (2020), GitHub repository. https://github.com/
carlosGarciaHe/MS-COCO-ES (2024). Accessed on January 28, 2024.

[6] 2024. HDF5 for Python. https://github.com/Mimino666/langdetect
(2024). Accessed on January 28, 2024.

[7] 2024. Image captioning example. https://evergreen.team/assets/
images/articles/machine-learning/image_captioning_train.png
(2024). Accessed on January 28, 2024.

[8] 2024b. langdetect. https://www.h5py.org/ (2024). Accessed on January 28,
2024.

[9] 2024. MarianNMT. https://huggingface.co/docs/transformers/
model_doc/marian (2024). Accessed on January 28, 2024.

[10] 2024. Natural Language Toolkit (NLTK). https://github.com/nltk/nltk
(2024). Accessed on January 28, 2024.

[11] 2024. Residual blocks — Building blocks of
ResNet. https://towardsdatascience.com/
residual-blocks-building-blocks-of-resnet-fd90ca15d6ec (2024).
Accessed on January 28, 2024.

[12] 2024. RESNET101. https://pytorch.org/vision/main/models/
generated/torchvision.models.resnet101.html (2024). Accessed
on January 28, 2024.

86

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://towardsdatascience.com/a-battle-against-amnesia-a-brief-history-and-introduction-of-recurrent-neural-networks-50496aae6740
https://towardsdatascience.com/a-battle-against-amnesia-a-brief-history-and-introduction-of-recurrent-neural-networks-50496aae6740
https://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets/
https://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets/
https://www.ethnologue.com/guides/how-many-languages
https://www.ethnologue.com/guides/how-many-languages
https://github.com/carlosGarciaHe/MS-COCO-ES
https://github.com/carlosGarciaHe/MS-COCO-ES
https://github.com/Mimino666/langdetect
https://evergreen.team/assets/images/articles/machine-learning/image_captioning_train.png
https://evergreen.team/assets/images/articles/machine-learning/image_captioning_train.png
https://www.h5py.org/
https://huggingface.co/docs/transformers/model_doc/marian
https://huggingface.co/docs/transformers/model_doc/marian
https://github.com/nltk/nltk
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet101.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet101.html


[13] 2024. The Transformer Model. https://machinelearningmastery.com/
the-transformer-model/ (2024). Accessed on January 28, 2024.

[14] 2024. Understanding LSTM Networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/ (2024). Accessed on January 28, 2024.

[15] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375 (2018).

[16] Aliki Anagnostopoulou, Mareike Hartmann, and Daniel Sonntag. 2023. Putting
Humans in the Image Captioning Loop. arXiv preprint arXiv:2306.03476 (2023).

[17] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning
to learn by gradient descent by gradient descent. Advances in neural information
processing systems 29 (2016).

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/
abs/1409.0473

[19] Rajarshi Biswas, Michael Barz, Mareike Hartmann, and Daniel Sonntag. 2021. Im-
proving German Image Captions Using Machine Translation and Transfer Learn-
ing. In Statistical Language and Speech Processing - 9th International Conference, SLSP
2021, Cardiff, UK, November 23-25, 2021, Proceedings (Lecture Notes in Computer Sci-
ence), Luis Espinosa Anke, Carlos Martín-Vide, and Irena Spasic (Eds.), Vol. 13062.
Springer, 3–14. DOI:http://dx.doi.org/10.1007/978-3-030-89579-2_
1

[20] Rajarshi Biswas, Michael Barz, and Daniel Sonntag. 2020. Towards explanatory
interactive image captioning using top-down and bottom-up features, beam search
and re-ranking. KI-Künstliche Intelligenz 34 (2020), 571–584.

[21] Y-Lan Boureau, Jean Ponce, and Yann LeCun. 2010. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the 27th international conference on
machine learning (ICML-10). 111–118.

[22] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

87

https://machinelearningmastery.com/the-transformer-model/
https://machinelearningmastery.com/the-transformer-model/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1007/978-3-030-89579-2_1
http://dx.doi.org/10.1007/978-3-030-89579-2_1
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html


[23] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. 2021. Conceptual
12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual
Concepts. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 3558–3568. DOI:
http://dx.doi.org/10.1109/CVPR46437.2021.00356

[24] Aozhu Chen, Xinyi Huang, Hailan Lin, and Xirong Li. 2020. Towards annotation-
free evaluation of cross-lingual image captioning. In MMAsia 2020: ACM Multimedia
Asia, Virtual Event / Singapore, 7-9 March, 2021, Tat-Seng Chua, Jingdong Wang,
Qi Tian, Cathal Gurrin, Jia Jia, Hanwang Zhang, and Qianru Sun (Eds.). ACM,
69:1–69:7. DOI:http://dx.doi.org/10.1145/3444685.3446322

[25] Xianyu Chen, Ming Jiang, and Qi Zhao. 2021. Self-distillation for few-shot image
captioning. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision. 545–555.

[26] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAt-
tention: Fast and Memory-Efficient Exact Attention with IO-Awareness. In Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html

[27] Xuanyi Dong, Linchao Zhu, De Zhang, Yi Yang, and Fei Wu. 2018. Fast parame-
ter adaptation for few-shot image captioning and visual question answering. In
Proceedings of the 26th ACM international conference on Multimedia. 54–62.

[28] Desmond Elliott, Stella Frank, and Eva Hasler. 2015. Multilingual image description
with neural sequence models. arXiv preprint arXiv:1510.04709 (2015).

[29] Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. 2016. Multi30K:
Multilingual English-German Image Descriptions. In Proceedings of the 5th Workshop
on Vision and Language, hosted by the 54th Annual Meeting of the Association for Compu-
tational Linguistics, VL@ACL 2016, August 12, Berlin, Germany. The Association for
Computer Linguistics. DOI:http://dx.doi.org/10.18653/V1/W16-3210

[30] Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, and Mikel Artetxe.
2021. Multilingual Machine Translation: Closing the Gap between Shared and
Language-specific Encoder-Decoders. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty
(Eds.). Association for Computational Linguistics, 944–948. DOI:http://dx.doi.
org/10.18653/V1/2021.EACL-MAIN.80

[31] Jiahui Gao, Yi Zhou, Philip L. H. Yu, Shafiq R. Joty, and Jiuxiang Gu. 2022. UNISON:
Unpaired Cross-Lingual Image Captioning. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press,
10654–10662. DOI:http://dx.doi.org/10.1609/AAAI.V36I10.21310

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

88

http://dx.doi.org/10.1109/CVPR46437.2021.00356
http://dx.doi.org/10.1145/3444685.3446322
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://dx.doi.org/10.18653/V1/W16-3210
http://dx.doi.org/10.18653/V1/2021.EACL-MAIN.80
http://dx.doi.org/10.18653/V1/2021.EACL-MAIN.80
http://dx.doi.org/10.1609/AAAI.V36I10.21310


[33] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural Networks
18, 5-6 (2005), 602–610. DOI:http://dx.doi.org/10.1016/j.neunet.2005.
06.042

[34] Jiuxiang Gu, Shafiq R. Joty, Jianfei Cai, and Gang Wang. 2018. Unpaired Image
Captioning by Language Pivoting. In Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part I (Lecture Notes
in Computer Science), Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss (Eds.), Vol. 11205. Springer, 519–535. DOI:http://dx.doi.org/10.
1007/978-3-030-01246-5_31

[35] Fredrik K. Gustafsson. 2017. Neural Image Captioning for Intelligent
Vehicle-to-Passenger Communication. https://api.semanticscholar.org/
CorpusID:35378079

[36] Mareike Hartmann, Aliki Anagnostopoulou, and Daniel Sonntag. 2022. Interactive
machine learning for image captioning. arXiv preprint arXiv:2202.13623 (2022).

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 770–778.

[38] Sepp Hochreiter. 1998. The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6,
2 (1998), 107–116. DOI:http://dx.doi.org/10.1142/S0218488598000094

[39] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[40] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le,
Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling Up Visual and Vision-
Language Representation Learning With Noisy Text Supervision. In Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research), Marina Meila and Tong
Zhang (Eds.), Vol. 139. PMLR, 4904–4916. http://proceedings.mlr.press/
v139/jia21b.html

[41] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, and others. 2023. Mistral 7B. arXiv preprint arXiv:2310.06825
(2023).

[42] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016. DenseCap: Fully Convo-
lutional Localization Networks for Dense Captioning. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016. IEEE Computer Society, 4565–4574. DOI:http://dx.doi.org/10.1109/
CVPR.2016.494

[43] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, and
others. 2017. Google’s multilingual neural machine translation system: Enabling
zero-shot translation. Transactions of the Association for Computational Linguistics 5
(2017), 339–351.

89

http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1007/978-3-030-01246-5_31
http://dx.doi.org/10.1007/978-3-030-01246-5_31
https://api.semanticscholar.org/CorpusID:35378079
https://api.semanticscholar.org/CorpusID:35378079
http://dx.doi.org/10.1142/S0218488598000094
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
http://dx.doi.org/10.1109/CVPR.2016.494
http://dx.doi.org/10.1109/CVPR.2016.494


[44] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,
Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri
Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra Birch. 2018. Marian:
Fast Neural Machine Translation in C++. In Proceedings of ACL 2018, Melbourne,
Australia, July 15-20, 2018, System Demonstrations, Fei Liu and Thamar Solorio (Eds.).
Association for Computational Linguistics, 116–121. DOI:http://dx.doi.org/
10.18653/V1/P18-4020

[45] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for generat-
ing image descriptions. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 3128–3137.
DOI:http://dx.doi.org/10.1109/CVPR.2015.7298932

[46] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1412.6980

[47] Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. 2014a. Multimodal Neural
Language Models. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Conference
Proceedings), Vol. 32. JMLR.org, 595–603. http://proceedings.mlr.press/
v32/kiros14.html

[48] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. 2014b. Unifying visual-
semantic embeddings with multimodal neural language models. arXiv preprint
arXiv:1411.2539 (2014).

[49] Philipp Koehn. 2009. Statistical machine translation. Cambridge University Press.

[50] Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based
translation. In Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics. 127–133.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in Neu-
ral Information Processing Systems 25: 26th Annual Conference on Neural In-
formation Processing Systems 2012. Proceedings of a meeting held December 3-
6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett, Fernando C. N.
Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger
(Eds.). 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[52] Weiyu Lan, Xirong Li, and Jianfeng Dong. 2017. Fluency-guided cross-lingual image
captioning. In Proceedings of the 25th ACM international conference on Multimedia.
1549–1557.

[53] Chin-Yew Lin and Eduard H. Hovy. 2003. Automatic Evaluation of Summaries
Using N-gram Co-occurrence Statistics. In Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics, HLT-NAACL
2003, Edmonton, Canada, May 27 - June 1, 2003, Marti A. Hearst and Mari Ostendorf
(Eds.). The Association for Computational Linguistics. https://aclanthology.
org/N03-1020/

90

http://dx.doi.org/10.18653/V1/P18-4020
http://dx.doi.org/10.18653/V1/P18-4020
http://dx.doi.org/10.1109/CVPR.2015.7298932
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v32/kiros14.html
http://proceedings.mlr.press/v32/kiros14.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/


[54] Chin-Yew Lin and Franz Josef Och. 2004. Automatic Evaluation of Machine Transla-
tion Quality Using Longest Common Subsequence and Skip-Bigram Statistics. In
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics,
21-26 July, 2004, Barcelona, Spain, Donia Scott, Walter Daelemans, and Marilyn A.
Walker (Eds.). ACL, 605–612. DOI:http://dx.doi.org/10.3115/1218955.
1219032

[55] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Com-
mon Objects in Context. In Computer Vision - ECCV 2014 - 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V (Lecture Notes in
Computer Science), David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuyte-
laars (Eds.), Vol. 8693. Springer, 740–755. DOI:http://dx.doi.org/10.1007/
978-3-319-10602-1_48

[56] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
2016. Multi-task Sequence to Sequence Learning. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/
abs/1511.06114

[57] Sungwon Lyu, Bokyung Son, Kichang Yang, and Jaekyoung Bae. 2020. Revisiting
Modularized Multilingual NMT to Meet Industrial Demands. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, 5905–5918. DOI:http:
//dx.doi.org/10.18653/V1/2020.EMNLP-MAIN.476

[58] Burak Makav and Volkan Kılıç. 2019. A new image captioning approach for visually
impaired people. In 2019 11th International Conference on Electrical and Electronics
Engineering (ELECO). IEEE, 945–949.

[59] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L. Yuille. 2015. Deep Cap-
tioning with Multimodal Recurrent Neural Networks (m-RNN). In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1412.6632

[60] Sidharth Mehra. 2024. Relationship between AI, ML, DL
and NLP. https://www.researchgate.net/figure/
Relationship-between-AI-ML-DL-and-NLP-7_fig8_343079524 (2024).
Accessed on January 28, 2024.

[61] Takashi Miyazaki and Nobuyuki Shimizu. 2016. Cross-Lingual Image Caption Gen-
eration. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics. DOI:http://dx.doi.org/10.18653/
V1/P16-1168

[62] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadel-
phia, PA, USA. ACL, 311–318. DOI:http://dx.doi.org/10.3115/1073083.
1073135

91

http://dx.doi.org/10.3115/1218955.1219032
http://dx.doi.org/10.3115/1218955.1219032
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://dx.doi.org/10.18653/V1/2020.EMNLP-MAIN.476
http://dx.doi.org/10.18653/V1/2020.EMNLP-MAIN.476
http://arxiv.org/abs/1412.6632
https://www.researchgate.net/figure/Relationship-between-AI-ML-DL-and-NLP-7_fig8_343079524
https://www.researchgate.net/figure/Relationship-between-AI-ML-DL-and-NLP-7_fig8_343079524
http://dx.doi.org/10.18653/V1/P16-1168
http://dx.doi.org/10.18653/V1/P16-1168
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135


[63] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hock-
enmaier, and Svetlana Lazebnik. 2015. Flickr30k Entities: Collecting Region-to-
Phrase Correspondences for Richer Image-to-Sentence Models. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015.
IEEE Computer Society, 2641–2649. DOI:http://dx.doi.org/10.1109/ICCV.
2015.303

[64] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From
Natural Language Supervision. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine
Learning Research), Marina Meila and Tong Zhang (Eds.), Vol. 139. PMLR, 8748–8763.
http://proceedings.mlr.press/v139/radford21a.html

[65] Frank Rosenblatt and others. 1962. Principles of neurodynamics: Perceptrons and the
theory of brain mechanisms. Vol. 55. Spartan books Washington, DC.

[66] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and others.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211–252.

[67] Antonio Scaiella, Danilo Croce, and Roberto Basili. 2019. Large scale datasets for
Image and Video Captioning in Italian. Italian Journal of Computational Linguis-
tics 2, 5 (2019), 49–60. http://www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3_
__scaiella_et_al.pdf

[68] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021.
Efficient Attention: Attention with Linear Complexities. In IEEE Winter Confer-
ence on Applications of Computer Vision, WACV 2021, Waikoloa, HI, USA, January
3-8, 2021. IEEE, 3530–3538. DOI:http://dx.doi.org/10.1109/WACV48630.
2021.00357

[69] NN Shinde, N Gawde, and N Paradkar. 2020. Social media image caption generation
using deep learning. International Journal of Engineering Development and Research 8
(2020), 222–228.

[70] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[71] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia Cascianelli, Giuseppe
Fiameni, and Rita Cucchiara. 2023. From Show to Tell: A Survey on Deep Learning-
Based Image Captioning. IEEE Trans. Pattern Anal. Mach. Intell. 45, 1 (2023), 539–559.
DOI:http://dx.doi.org/10.1109/TPAMI.2022.3148210

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

92

http://dx.doi.org/10.1109/ICCV.2015.303
http://dx.doi.org/10.1109/ICCV.2015.303
http://proceedings.mlr.press/v139/radford21a.html
http://www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3___scaiella_et_al.pdf
http://www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3___scaiella_et_al.pdf
http://dx.doi.org/10.1109/WACV48630.2021.00357
http://dx.doi.org/10.1109/WACV48630.2021.00357
http://dx.doi.org/10.1109/TPAMI.2022.3148210


[73] Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-MT - Building open trans-
lation services for the World. In Proceedings of the 22nd Annual Conference of the
European Association for Machine Translation, EAMT 2020, Lisboa, Portugal, November
3-5, 2020, Mikel L. Forcada, André F. T. Martins, Helena Moniz, Marco Turchi, Ari-
anna Bisazza, Joss Moorkens, Ana Guerberof Arenas, Mary Nurminen, Lena Marg,
Sara Fumega, Bruno Martins, Fernando Batista, Luísa Coheur, Carla Parra Escartín,
and Isabel Trancoso (Eds.). European Association for Machine Translation, 479–480.
https://aclanthology.org/2020.eamt-1.61/

[74] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and
others. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288 (2023).

[75] Satoshi Tsutsui and David Crandall. 2017. Using artificial tokens to control lan-
guages for multilingual image caption generation. arXiv preprint arXiv:1706.06275
(2017).

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Ad-
vances in neural information processing systems 30 (2017).

[77] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
Consensus-based image description evaluation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
IEEE Computer Society, 4566–4575. DOI:http://dx.doi.org/10.1109/CVPR.
2015.7299087

[78] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and
tell: A neural image caption generator. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer So-
ciety, 3156–3164. DOI:http://dx.doi.org/10.1109/CVPR.2015.7298935

[79] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer
learning. Journal of Big data 3, 1 (2016), 1–40.

[80] Lilian Weng. 2024. Multi-Head Attention. https://paperswithcode.com/
method/multi-head-attention (2024). Accessed on January 28, 2024.

[81] Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 10 (1990), 1550–1560.

[82] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and
others. 2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[83] Yike Wu, Shiwan Zhao, Jia Chen, Ying Zhang, Xiaojie Yuan, and Zhong Su. 2019.
Improving Captioning for Low-Resource Languages by Cycle Consistency. In IEEE
International Conference on Multimedia and Expo, ICME 2019, Shanghai, China, July 8-12,
2019. IEEE, 362–367. DOI:http://dx.doi.org/10.1109/ICME.2019.00070

93

https://aclanthology.org/2020.eamt-1.61/
http://dx.doi.org/10.1109/CVPR.2015.7299087
http://dx.doi.org/10.1109/CVPR.2015.7299087
http://dx.doi.org/10.1109/CVPR.2015.7298935
https://paperswithcode.com/method/multi-head-attention
https://paperswithcode.com/method/multi-head-attention
http://dx.doi.org/10.1109/ICME.2019.00070


[84] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and
Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015 (JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei
(Eds.), Vol. 37. JMLR.org, 2048–2057. http://proceedings.mlr.press/v37/
xuc15.html

[85] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2020. Why Gradi-
ent Clipping Accelerates Training: A Theoretical Justification for Adaptivity. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?
id=BJgnXpVYwS

[86] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, and others. 2022.
Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

[87] Xi Zhu, Zhendong Mao, Chunxiao Liu, Peng Zhang, Bin Wang, and Yongdong
Zhang. 2020. Overcoming Language Priors with Self-supervised Learning for Visual
Question Answering. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 1083–1089.
DOI:http://dx.doi.org/10.24963/IJCAI.2020/151

94

http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS
http://dx.doi.org/10.24963/IJCAI.2020/151


Appendix A
Appendix

Figure A.1: Analyzing CNN encoder-LSTM decoder for Single model: Saliency map
depicting the model’s inference on English MS-COCO dataset, offering a visual represen-
tation of attention and focus areas in caption generation
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Figure A.2: Analyzing CNN encoder-LSTM decoder for Single model: Saliency map
depicting the model’s inference on Italian MS-COCO dataset, offering a visual represen-
tation of attention and focus areas in caption generation
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Figure A.3: Saliency map of a CNN-TransformAnalyzing CNN encoder-transformer
decoder for Single model: Saliency map depicting the model’s inference on English MS-
COCO dataset, offering a visual representation of attention and focus areas in caption
generation
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Figure A.4: Analyzing CNN encoder-transformer decoder for Single model: Saliency
map depicting the model’s inference on Italian MS-COCO dataset, offering a visual
representation of attention and focus areas in caption generation
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Figure A.5: Analyzing CNN encode-modified pretrained MarianNMT decoder for Single
model: Saliency map depicting the model’s inference on Italian MS-COCO dataset,
offering a visual representation of attention and focus areas in caption generation
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Figure A.6: Analyzing CNN encoder-modified pretrained MarianNMT decoder for Single
model: Saliency map depicting the model’s inference on Spanish MS-COCO dataset,
offering a visual representation of attention and focus areas in caption generation
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Figure A.7: Analyzing CNN encoder-pretrained MarianNMT decoder for Single model:
Saliency map depicting the model’s inference on Italian MS-COCO dataset, offering a
visual representation of attention and focus areas in caption generation
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Figure A.8: Analyzing CNN encoder-pretrained MarianNMT decoder for Single model:
Saliency map depicting the model’s inference on Spanish MS-COCO dataset, offering a
visual representation of attention and focus areas in caption generation
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Figure A.9: Analyzing CNN encoder-LSTM decoder for 1-1 model: Saliency map depict-
ing the model’s inference on English MS-COCO dataset, offering a visual representation
of attention and focus areas in caption generation
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Figure A.10: Analyzing CNN encoder-LSTM decoder for 1-1 model: Saliency map depict-
ing the model’s inference on Italian MS-COCO dataset, offering a visual representation
of attention and focus areas in caption generation
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Figure A.11: Analyzing CNN encoder-LSTM decoder for 1-1 model: Saliency map depict-
ing the model’s inference on Spanish MS-COCO dataset, offering a visual representation
of attention and focus areas in caption generation
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Figure A.12: Analyzing CNN encoder-transformer decoder for 1-1 model: Saliency
map depicting the model’s inference on English MS-COCO dataset, offering a visual
representation of attention and focus areas in caption generation
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Figure A.13: Analyzing CNN encoder-transformer decoder for 1-1 model: Saliency
map depicting the model’s inference on Italian MS-COCO dataset, offering a visual
representation of attention and focus areas in caption generation
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Figure A.14: Analyzing CNN encoder-transformer decoder for 1-1 model: Saliency
map depicting the model’s inference on Spanish MS-COCO dataset, offering a visual
representation of attention and focus areas in caption generation
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Figure A.15: Analyzing CNN encoder-modified pretrained MarianNMT decoder for M2
architecture in few-shot setting: Saliency map depicting the model’s inference on full
Spanish MS-COCO dataset, offering a visual representation of attention and focus areas
in caption generation
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Figure A.16: Analyzing CNN encoder-modified pretrained MarianNMT decoder for M2
architecture in few-shot setting: Saliency map depicting the model’s inference on 2000
samples of Spanish MS-COCO dataset, offering a visual representation of attention and
focus areas in caption generation
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Figure A.17: Analyzing CNN encoder-modified pretrained MarianNMT decoder for M2
architecture in few-shot setting: Saliency map depicting the model’s inference on 1000
samples of Spanish MS-COCO dataset, offering a visual representation of attention and
focus areas in caption generation
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Figure A.18: Analyzing CNN encoder-modified pretrained MarianNMT decoder for M2
architecture in few-shot setting: Saliency map depicting the model’s inference on 500
samples of Spanish MS-COCO dataset, offering a visual representation of attention and
focus areas in caption generation
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Figure A.19: Analyzing CNN encoder-pretrained MarianNMT decoder for M2 architec-
ture in few-shot setting: Saliency map depicting the model’s inference on full Spanish
MS-COCO dataset, offering a visual representation of attention and focus areas in caption
generation
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Figure A.20: Analyzing CNN encoder-pretrained MarianNMT decoder for M2 architec-
ture in few-shot setting: Saliency map depicting the model’s inference on 2000 samples
of Spanish MS-COCO dataset, offering a visual representation of attention and focus
areas in caption generation
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Figure A.21: Analyzing CNN encoder-pretrained MarianNMT decoder for M2 architec-
ture in few-shot setting: Saliency map depicting the model’s inference on 1000 samples
of Spanish MS-COCO dataset, offering a visual representation of attention and focus
areas in caption generation
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Figure A.22: Analyzing CNN encoder-pretrained MarianNMT decoder for M2 architec-
ture in few-shot setting: Saliency map depicting the model’s inference on 500 samples of
Spanish MS-COCO dataset, offering a visual representation of attention and focus areas
in caption generation
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