
Course of study
Computer Science

Bachelor Thesis

– Title –

Asynchronous Federated Learning for Medical
Images: Enabling Privacy and User Interaction

submitted by
Tim Maurer

s8timaur@stud.uni-saarland.de
2566243

Saarbrücken,
January 21, 2025

mailto:s8timaur@stud.uni-saarland.de


Advisors
Abdulrahman Mohamed, M.Sc.
Hasan Md Tusfiqur Alam, M.Sc.
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Saarland Informatics Campus
Saarbrücken, Germany

Reviewers
Prof. Dr.-Ing. Daniel Sonntag
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Saarland Informatics Campus
Saarbrücken, Germany

Prof. Dr. Antonio Krüger
Ubiquitous Media Technology Lab, Universität des Saarlandes
Saarland Informatics Campus
Saarbrücken, Germany

Saarland University
Faculty MI – Mathematics and Computer Science
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany



Erklärung 

 

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine 
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. 

 

Statement 

 

I hereby confirm that I have written this thesis on my own and that I have not used 
any other media or materials than the ones referred to in this thesis 

 

 

 

Einverständniserklärung 

 

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in 
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird. 

 

Declaration of Consent 

 

I agree to make both versions of my thesis (with a passing grade) accessible to the 
public by having them added to the library of the Computer Science Department. 

 

 

 

 

Saarbrücken,______________________ _____________________________                  
                             (Datum/Date)                                        (Unterschrift/Signature)
            

            

        

 

                                                                                                                                                                     



 
 
Erklärung 
 
Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen 
Version übereinstimmt. 
 
 
Statement  
 
I hereby confirm the congruence of the contents of the printed data and 
the electronic version of the thesis. 
 
 
 
 
Saarbrücken,------------------------  ------------------------------------------- 
   (Datum/Date)  (Unterschrift / Signature)	



Acknowledgements

I would like to thank my supervisors, Prof. Dr. Antonio Krüger and Prof. Dr.-Ing.
Daniel Sonntag, for providing me the opportunity to write this thesis within their
groups in an exciting field of study. I could not have undertaken this journey with-
out my great advisors, Abdulrahman Mohamed and Hasan Md Tusfiqur Alam. Many
thanks to Abdulrahman for guiding me through the process from start to finish and
always giving me valuable advice and constructive criticism along the way. Thank
you, Hasan, for sharing your expertise and providing insightful feedback to enhance
the quality of my thesis. Special thanks should also go to Matthias, who not only
introduced me to Abdulrahman at the perfect time but also helped me develop the
initial concept for my thesis. Lastly, I would also like to thank Marta, for her constant
motivation and support. Her understanding and patience, especially during the long
hours I dedicated to this thesis, have been invaluable.



Abstract

Centralized machine learning often faces challenges related to data availability and
the limited involvement of expert users. In this study, we aim to explore approaches
that enable users to contribute data and train a shared model collaboratively across
multiple devices while maintaining data privacy. Federated Learning (FL) offers a
decentralized solution for such training processes, but synchronous FL algorithms
are not ideal for interactive settings, as they require simultaneous participation from
all users. Instead, we explore asynchronous federated learning using the state-of-
the-art FedBuff algorithm, which allows each user to train independently. Our work
focuses on applying FedBuff to the classification of Optical Coherence Tomography
(OCT) retina images within the medical domain. We compare its performance against
traditional centralized models and the widely used synchronous algorithm, FedAvg,
which has demonstrated effectiveness with this data type. Furthermore, we develop a
browser-based proof-of-concept application using modern web technologies to exam-
ine the challenges and limitations associated with implementing a collaborative and
interactive machine learning approach.

Our findings indicate that FedBuff is a viable approach for handling OCT im-
age data in relatively simple classification tasks; however, its performance declines
in more complex scenarios, such as multi-class classification problems, necessitat-
ing further investigation. Consistent with previous studies, we confirm that FedAvg
achieves performance comparable to centralized models for OCT data. While FedBuff
demonstrates lower performance compared to both FedAvg and centralized models,
it still achieves acceptable results. Additionally, during the development of our proof-
of-concept application, we identified several limitations related to web browsers and
the technologies used, as many of these technologies are still in their developmental
stages.
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1 | Introduction

In machine learning (ML), traditional, centralized training approaches can encounter
difficulties when data availability is limited. Additionally, domain experts without
technical ML knowledge are not directly involved in the training process, therefore
delaying the availability of new training data. These challenges are identified by Fails
and Olsen (2003), who introduce interactive machine learning (IML) to deal with these
issues. Their approach allows non-technical users to train an ML model with their
own data, either by manual classification or by correcting the output of the model.
We aim to combine IML with a collaborative approach, i.e. multiple users training a
shared model on their devices, each with their own dataset. Tseng et al. (2023) imple-
ment this concept with Co-ML, providing a tablet-based application where users can
collaboratively and interactively build ML image classification models across multi-
ple devices. While the goal of their approach is teaching dataset design practices, we
focus on enabling this collaborative and interactive approach for the real-world use
case of medical images, while preserving the privacy of the participating institutions
and individuals that provide the training data.

Usually, training an ML model on a centralized dataset is the most common ap-
proach. However, the data for an ML task may be distributed on several devices with-
out the possibility of sharing it, for example, in the medical domain due to privacy
concerns. Federated learning (FL) (McMahan et al., 2017) enables decentralized train-
ing of a shared ML model while the data stays on the participating clients’ devices.
This is achieved by aggregating locally computed updates to the model on a central
server. FL has already been proven to be viable for many use cases in medical imaging
(Lee et al., 2021; Haggenmüller et al., 2024; Islam et al., 2022). Several review and sur-
vey papers also confirm that FL is a promising approach for this use case (Moshawrab
et al., 2023; Guan et al., 2024).

In FL, there are two main kinds of algorithms: synchronous and asynchronous. In
synchronous FL (McMahan et al., 2017), all participating clients train simultaneously
after receiving the latest global model, orchestrated by the central server. The server
then waits for all client updates before incorporating them into the global model,
which can lead to delays, caused by slow clients. In asynchronous FL (Xie et al., 2019),
the clients train and send updates independently, without orchestration by the central
server. Each update is applied to the global model at the time of arrival. This leads
to higher efficiency in settings with varying update frequency. However, the asyn-
chronicity may lead to stale updates that are based on an older version of the global
model. Asynchronous FL can have several benefits, including flexibility in participa-
tion for the clients, as well as better scalability in scenarios with a large number of
collaborating devices. When choosing an algorithm for a collaborative and interactive
approach for medical images, several requirements need to be considered in terms of
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CHAPTER 1. INTRODUCTION

client flexibility, additional privacy features, and suitability for image classification
tasks.

FedBuff (Nguyen et al., 2022) is a promising asynchronous FL algorithm that sat-
isfies these requirements. Instead of adding each client update to the global model
immediately, they are aggregated into a buffer on arrival. The buffer is applied to the
global model after several updates have been collected. FedBuff is compatible with
secure aggregation for hiding individual client updates, as well as differential privacy
clipping and noise addition for protection against inference attacks. It outperforms
synchronous FL in terms of efficiency with low privacy settings and matches it with
higher privacy settings. The algorithm was tested on various use cases, including two
image classification tasks with various privacy budgets.

This work focuses on the diagnosis of diseases based on retina images obtained
through optical coherence tomography (OCT) (Kadir et al., 2023, 2024). OCT is a non-
invasive imaging technique using light waves to capture images from within optical
scattering media (Huang et al., 1991). It is widely used in medical imaging, especially
ophthalmology. FL has previously been successfully applied and tested on OCT image
data (Lo et al., 2021; Ran et al., 2023; Gholami et al., 2023). Themost common algorithm
used is FedAvg (McMahan et al., 2017), while the best-performing model architectures
are VGG19 (Simonyan and Zisserman, 2015) and ResNet-18 (He et al., 2015). The
methods employed include both transfer learning and training themodel from scratch.
The experiments across these publications show that the FL model performance is
similar to the models trained from centralized data. The application of asynchronous
FL formedical images, especially OCT scans, is an under-explored area in the research.
This work empirically investigates the performance of asynchronous FL on a recent
OCT image dataset by running simulations. Results are compared between different
FL algorithms and centralized training, as well as different model architectures and
use cases. For the experiments, the recently published Optical Coherence Tomography
Dataset for Image-Based Deep Learning Methods (OCTDL) (Kulyabin et al., 2024) is
used. It contains over 2000 images in seven different classes, including 1231 images
for age related macular degeneration (AMD), the same use case Gholami et al. (2023)
studied in a FL context.

In their survey about FL for medical images, Guan et al. (2024) stated that "FL
methods, while promising, can encounter difficulties during real-world implementation,
such as compatibility with existing hospital systems, integration challenges, and user
adoption hurdles". These challenges can be approached by a browser-based, interac-
tive FL system. Compatibility and integration are simplified with a web application
running in the browser, since it is the most ubiquitous platform on computer systems.
An interactive front-end application can improve user adoption by allowing non-ML
experts to provide and label new training data.

Deep learning (DL) in the browser has been made feasible by various JavaScript-
based deep learning frameworks (Ma et al., 2019), such as tensorflow.js or keras.js. For
browser-based deep learning, Google developed Teachable Machine, a no-code ML
web application (Carney et al., 2020). The user provides images from their device
via a user interface and then starts the training process. Once the training is fin-
ished, the model can be tested and exported. However, this approach focuses only
on local training without further interaction or FL integration. For browser-based
FL, frameworks based on both synchronous and asynchronous FL are proposed (Lian
et al., 2022; Ángel Morell and Alba, 2022). In these approaches, the user would simply
provide the training data in a folder on their device, also without additional interac-
tion. This work proposes a browser-based, interactive FL system. It highlights the
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CHAPTER 1. INTRODUCTION

challenges and limitations of previous works and presents a proof-of-concept (POC)
implementation based on modern web technologies.

Our first contribution is applying asynchronous FL to OCT retina images using
FedBuff. To the best of our knowledge, asynchronous FL has not been tested on this
kind of data. The next contribution lies in comparing FedBuff to centralized learning
and FedAvg, two methods that are established on OCT data in the literature. No-
tably, FedAvg has not been applied yet to the dataset we are using for the experi-
ments. Furthermore, we developed a proof-of-concept application that shows how a
browser-based FL application can be implemented using modern web technologies,
enabling a secure way to train a model collaboratively. The application makes use of
asynchronous FL to enable users to conduct the training process on their own behalf.
During the development process, we gain insights into the challenges and limitations
of such an application. These contributions aim to answer the following research
questions.

RQ1: How viable is an asynchronous FL approach to optimize machine learning-
based medical diagnosis using OCT retina images?

RQ2: How does asynchronous FL perform in terms of diagnostic accuracy for OCT
retina images compared to established centralized and synchronous FL meth-
ods?

RQ3: What are the challenges and limitations of implementing FL in a browser-based
environment, and how can they be addressed?
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2 | Related Work

This section provides a detailed overview of the related work. First, federated learn-
ing and its applications on various medical imaging tasks are presented. Then, asyn-
chronous federated learning and its state-of-the-art algorithm are introduced. Finally,
the current advancements in FL for OCT images, as well as browser-based deep learn-
ing and FL systems, are discussed.

2.1 Federated Learning

The term Federated Learning was first introduced by McMahan et al. (2017). It de-
scribes a decentralized learning paradigm, which enables training a shared ML model
with multiple participants (called clients), while the data remains on the participants’
devices. In their work, the authors present FederatedAveraging (Algorithm 1). On the
server side, a random subset of clients for the current communication round is se-
lected. Each selected client receives the current global model and computes multiple
stochastic gradient descent (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952)
steps on it for a fixed number of epochs on batches of fixed size, both defined by the
server. The server then aggregates all updates, once they arrive, by averaging them
based on the number of data points on each client. Afterwards, the next communica-
tion round starts. This iterative process continues until the model has trained for the
prescribed number of rounds.

Algorithm 1 FederatedAveraging
1: Input: Number of clients 𝐾 , number of communication rounds𝑇 , learning rate 𝜂
2: Initialize global model weights𝑤0
3: for each round 𝑡 = 1, 2, . . . ,𝑇 do
4: Server sends global model weights𝑤𝑡 to all clients
5: for each client 𝑘 = 1, 2, . . . , 𝐾 in parallel do
6: Client 𝑘 downloads global model𝑤𝑡
7: Client 𝑘 trains locally and updates weights to𝑤𝑘𝑡+1
8: Let 𝑛𝑘 be the number of samples on client 𝑘
9: end for
10: Server aggregates updates from all clients: 𝑤𝑡+1 = 1

𝑁

∑𝐾
𝑘=1 𝑛𝑘 ·𝑤𝑘𝑡+1

where 𝑁 =
∑𝐾
𝑘=1 𝑛𝑘 is the total number of samples across all clients

11: end for
12: Output: Final global model weights𝑤𝑇

The authors extensively tested their algorithm on image classification and lan-
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2.2. FL FOR MEDICAL IMAGES CHAPTER 2. RELATED WORK

guagemodels. They found that their approach is robust to unbalanced and non-ideally
distributed data. Furthermore, they highlight three properties of problems that are
ideal for applying federated learning.

1. Real-world data on edge devices is better suited for training than data available
in a centralized location.

2. The data is privacy sensitive or large in size.

3. The data can be labelled naturally through user interaction

2.2 FL for Medical Images

Image classification problems in the medical field satisfy all of the properties men-
tioned in the previous section. Therefore, it is natural that FL has been used in a va-
riety of medical cases. These include classifying thyroid ultrasound (Lee et al., 2021)
and melanoma images (Haggenmüller et al., 2024) for diagnosis, as well as identifying
brain tumors in MRI scans (Islam et al., 2022). To gain an overview of this field of
research, Guan et al. (2024) provide a comprehensive survey about FL for medical im-
ages, suggesting that FL appears to be useful for a large variety of tasks. These include
the classification and diagnosis of diseases from images obtained by different modal-
ities, such as X-rays or MRI scans, as well as segmentation tasks for identifying the
location of a tumor. In their own experiments on a dataset for Alzheimer’s Disease,
they found FL to achieve satisfactory performance compared to centralized training.
Similarly, Moshawrab et al. (2023) conducted an extensive review on the usage of FL
in disease prediction. The authors also identified that FL was successfully used on a
variety of tasks.

Both previously mentioned works also make it clear that FL in the medical do-
main faces several challenges in real-world applications. Two of them are especially
relevant for this work.

• Privacy and scalability need to be considered when looking at aggregation al-
gorithms (Moshawrab et al., 2023).

• Difficulties in real-world implementations, like compatibility with existing hos-
pital systems, integration challenges, and user adoption hurdles, need to be ad-
dressed (Guan et al., 2024).

Both of these challenges can be approached by asynchronous FL, especially the
state-of-the-art FedBuff algorithm, which is discussed in the next section.

2.3 Asynchronous FL

Asynchronous FL, as the name suggests, does not require synchronous training among
the clients. As the first algorithm of its kind, Xie et al. (2019) propose Asynchronous
Federated Optimization (FedAsync). It functions in a fully asynchronous manner,
meaning that each arriving model update from a client results in a new global model.
That way, slow clients, called stragglers, can no longer slow down the aggregation
process, a common problem in synchronous FL. However, with this approach, client
updates are potentially based on an older version of the global model, which is not
a concern in the synchronous approach. Therefore, a staleness function needs to be
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2.3. ASYNCHRONOUS FL CHAPTER 2. RELATED WORK

used in order to assign a lower weight to stale updates when incorporating them into
the global model. Then again, such fully asynchronous algorithms have issues with
privacy, since they are not compatible with secure aggregation (SecAgg) (Bonawitz
et al., 2016), as individual updates are not hidden. Furthermore, there are increased
communication costs caused by the higher update frequency, as each update needs
to be broadcast to all clients. Asynchronous FL algorithms are used in various appli-
cations, particularly in smart transportation and smart industry, as highlighted by a
recent survey paper (Xu et al., 2023).

Nguyen et al. (2022) introduce a semi-asynchronous algorithm called FedBuff (Al-
gorithm 2), exploring the design space between synchronous and fully asynchronous
FL. It aims to tackle the aforementioned challenges on privacy and scalability by not
updating the global model with each incoming update. The server holds a buffer
where client updates are stored. The global model is only updated once the buffer
holds K client updates, where K is a tunable hyperparameter. This leads to less com-
munication between the server and the clients, since the global model is updated less
frequently this way. Privacy improvements are achieved in two ways: FedBuff can
be extended with differential privacy (DP), implemented on the server side, and it
is compatible with SecAgg (Bonawitz et al., 2016), as by choosing K > 1, individual
updates are hidden in the aggregate. For DP, clipping can be applied to each client
update once received, before adding it to the buffer. Then, before the buffered updates
are applied to the global model, noise can be added to the aggregate.

Numerous other works use FedBuff as the asynchronous FL algorithm for com-
parison, or use it as a base for their own novel asynchronous FL algorithms (Islamov
et al., 2024; Su and Li, 2022; Zhang et al., 2023; Leconte et al., 2024). Thus, FedBuff
appears to be the state-of-the-art asynchronous FL algorithm and provides a good
starting point for exploring asynchronous FL for medical images.

Apart from the presented algorithms, there are other more recent approaches to
asynchronous FL. FedASMU (Liu et al., 2024) addresses the common issues by imple-
menting dynamic staleness-aware updates. During local training, clients periodically
request the latest global model from the server to reduce staleness. Then, the server
dynamically adjusts the weight of each client’s update using a function that considers
the staleness and the client’s local loss. However, the algorithm requires the server
to trigger local training on the client devices. FedFix (Vidal and Kameni, 2024) uses a
semi-asynchronous strategy similar to FedBuff. Instead of aggregating a fixed number
of client updates, it aggregates client contributions based on a fixed update interval
and dynamically adjusts weights for staleness. Still, FedBuff is the algorithm of choice
for the use case presented in this work. Table 2.1 provides an overview of the described
algorithms in this section and evaluates the following requirements for each of them:

• Client flexibility: Each participating client should be able to train and send
updates independently of the central server and other clients.

• Tested with image data: The algorithm should have been tested and validated
on one or more image datasets.

• TestedwithDP:Differential privacymeasures should be supported and be part
of the testing process.

• Easy implementation: For the purposes of this work’s proof-of-concept ap-
plication, the algorithm should be comparably easy to implement.
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2.3. ASYNCHRONOUS FL CHAPTER 2. RELATED WORK

Algorithm 2 FedBuff
Server
1: Input: Server learning rate 𝜂𝑔, buffer size 𝐾 , client SGD steps 𝑄
2: Output: Federated trained global model
3: Initialize buffer 𝑘 ← 0, Δ𝑡 ← 0
4: repeat
5: Sample available clients 𝑐 ⊲ async
6: Run FedBuff-client(𝑤𝑡 , 𝜂ℓ , 𝑄) on client 𝑐 ⊲ async
7: if client update received then
8: Δ𝑖 ← received client update
9: Δ𝑡 ← Δ𝑡 + Δ𝑖
10: 𝑘 ← 𝑘 + 1
11: end if
12: if 𝑘 == 𝐾 then
13: Aggregate updates: Δ𝑡 ← Δ𝑡/𝐾
14: Update global model: 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂𝑔Δ𝑡
15: Reset buffer: Δ𝑡 ← 0, 𝑘 ← 0
16: end if
17: 𝑡 ← 𝑡 + 1
18: until Convergence
Client
1: Input: Server model𝑤 , client learning rate 𝜂ℓ , client SGD steps 𝑄
2: Output: Client update Δ
3: 𝑦0 ← 𝑤

4: for 𝑞 = 1 to 𝑄 do
5: 𝑦𝑞 ← 𝑦𝑞−1 − 𝜂ℓ∇𝑔𝑞 (𝑦𝑞−1)
6: end for
7: Δ← 𝑦0 − 𝑦𝑄
8: Send Δ to server
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2.4. FL FOR OCT RETINA IMAGES CHAPTER 2. RELATED WORK

Algorithm Client Tested with Tested Easy
flexibility image data with DP implementation

FedAsync (Xie et al., 2019) ✓ ✓ x ✓
FedBuff (Nguyen et al., 2022) ✓ ✓ ✓ ✓
FedASMU (Liu et al., 2024) x ✓ x x

FedFix (Vidal and Kameni, 2024) ✓ ✓ x ✓

Table 2.1: Comparison between different asynchronous FL algorithms.

The key factor that contributed to choosing FedBuff is the way it can be extended
with differential privacy. In theory, local DP (Truex et al., 2020) can be applied to any
FL algorithm, where clients apply the necessary operations to their update before
sending it to the server. However, FedBuff applies DP on the server side, reducing the
workload of clients. More importantly, the authors explicitly verify in their experi-
ments that FedBuff performs well across different privacy budgets. For this reason,
FedAsync and FedFix were not chosen, even though they satisfy the other require-
ments. FedASMU provides a new approach to deal with stale client updates, which is
one of the biggest problems in asynchronous FL. Unfortunately, the training process
in FedASMU is triggered by the central server, making it unusable for an interactive
approach. In addition, the implementation is more difficult due to the higher number
of calculations and input parameters in the algorithm.

2.4 FL for OCT Retina Images

Several works explore FL on OCT retina images for various use cases. Lo et al. (2021)
apply FL to referable diabetic retinopathy (RDR) classification. Diabetic retinopathy
(DR) is a diabetes complication that can lead to vision loss; referable DR involves
only moderate or more severe cases of DR. They use OCT data from two universities
and 700 eye scans in total. The dataset is split into two classes, RDR and non-RDR.
A balanced distribution is achieved via random upsampling, and augmentations are
used to artificially increase the dataset size. The authors use transfer learning with a
VGG19 (Simonyan and Zisserman, 2015) architecture, pre-trained on ImageNet (Deng
et al., 2009). For evaluation, each institution trained an ML model on their internal
dataset. This model was then evaluated on internal validation data and on the external
data of the other institution. The experiments found that FL slightly outperforms the
internal and external models in terms of diagnostic accuracy.

A study on a larger scale was conducted by Ran et al. (2023), who focus on FL for
glaucoma detection. Glaucoma refers to a group of diseases that can lead to vision
loss and blindness by damaging the optic nerve. Their work involves a multi-centre
study across seven institutions, totaling 9326 OCT scans from 2785 individuals. The
authors use DenseNet121 (Huang et al., 2017) and ResNet10/18 (He et al., 2015)models,
without pre-training. Results from their experiments show that FL performs similarly
to the traditional, centralized model while significantly outperforming the individual
models trained on each institution’s data.

Gholami et al. (2023) test FL on age-related macular degeneration (AMD), using
three public OCT research datasets. AMDoccurswhen themacula, a part of the retina,
is damaged. It causes vision loss, mostly among people of age 50 or older. The data
is split into two categories, normal and AMD, to create a binary classification task.
The authors do not use transfer learning and train the models from scratch. As they
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2.5. BROWSER-BASED DL / FL SYSTEMS CHAPTER 2. RELATED WORK

use publicly available research datasets, they could also train a centralized model on
the entirety of the data. They found that synchronous FL, using a ResNet18 (He et al.,
2015) model architecture, achieves similar performance to the centralized model. Data
augmentation is also used here to artificially increase the sample size.

2.5 Browser-based DL / FL Systems

Deep learning in theweb browser has already beenmade feasible by various JavaScript
frameworks. Ma et al. (2019) compared their performance against TensorFlow (Abadi
et al., 2015), the state-of-the-art native ML framework, and found that for some tasks,
the JavaScript frameworks can reach comparable performance.

A no-code, browser-basedML application, called Teachable Machine (Carney et al.,
2020), is proposed and implemented by Google, helping people with no technical ML
knowledge to train a model for their use case. The tool supports building image and
sound classifiers using user-provided data that can be uploaded from the user’s device
through an intuitive interface. It uses TensorFlow’s JavaScript implementation for on-
device inference and training. The base model for image classification is a pre-trained
mobilenet (Howard et al., 2017), which is used for transfer learning. Fifteen percent
of the provided data is used for validation. Teachable Machine is dedicated to a single
user experience, without FL integration.

For browser-based synchronous FL, Lian et al. (2022) present their framework
WebFed. It implements synchronous FL on the server-side and communicates with
the clients via WebSockets. The clients use local DP to add noise to their update be-
fore sending it to the server. Experiments showed that their approach could reach
an accuracy close to conventional FL, while choosing an appropriate privacy budget
only has a subtle impact on the model’s performance. With the synchronous FL ap-
proach, however, a fixed number of clients need to participate in the training process
without the possibility of joining or leaving the training at any time. Also, clients
need to stay online until all communication rounds are finished. The authors men-
tion that there is a user interface for providing data, but no concrete details are given
on what such an interface could look like. Ángel Morell and Alba (2022) present an
asynchronous algorithm for FL in this context and implement it in their own plat-
form. Their approach allows clients to join and leave the training process at any time,
with their experiments showing that the platform can adapt well to these changes in
client availability. Their work, however, does not mention support for DP and does
not contain a user interface for providing the data.
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3 | Methods

In this work, models trained on centralized data are compared against models from
federated learning simulations in order to compare their performance. The model ar-
chitectures, as well as the methods to obtain these models, are detailed in this chapter.
Additionally, the implementation details for the POC application are covered.

3.1 Training Procedure

The training process for both centralized and federated learning is implemented using
PyTorch (Paszke et al., 2019) and executed on a NVIDIA GeForce RTX 3080 GPU. The
PyTorch base models for the architectures described in the next section are altered
in the classification layer, according to the number of classes for the use case. For
transfer learning, ImageNet (Deng et al., 2009) pre-trained weights are loaded into
the models. Then, all layers of the model are frozen. Two additional trainable dense
layers are added to learn more complex features, similar to Lo et al. (2021), before
adding the final classification layer with an output equal to the number of classes in
the respective use case.

The models are trained using the Adam optimizer (Kingma and Ba, 2017), as it is
used by Kulyabin et al. (2024) in their publication associated with the dataset used in
this work. Also, the authors apply a cross-entropy loss function in the training pro-
cess. However, we utilize weighted cross-entropy loss (Aurelio et al., 2019) in order to
deal with class imbalance, as during initial experiments, it has been shown to perform
better than an unweighted cross-entropy loss function. For each class 𝑗 , the weight
𝑤 𝑗 is calculated inversely proportional to its frequency in the training dataset:

𝑤 𝑗 =
𝑇

𝑁 ·𝐶 𝑗
for𝐶 𝑗 > 0

where 𝑁 is the total number of classes, 𝐶 𝑗 is the number of samples in class 𝑗 , and 𝑇
is the total number of samples. If a class has no samples, then 𝑤 𝑗 = 0. This can be
the case in federated learning simulations. The weights are further normalized such
that𝑤 𝑗 ∈ [0, 1]. Data augmentations are also applied similar to Kulyabin et al. (2024),
including random crop, vertical and horizontal flip, rotation, translation and gaussian
blur.

Finding the best hyperparameter values for all training processes is done using
Optuna (Akiba et al., 2019). Optuna is an open-source hyperparameter optimiza-
tion framework which allows for efficient exploration of the hyperparameter space
by defining an objective function and dynamically selecting optimal values based on
past trials. Also, pruning strategies can be used to stop unpromising trials early, which
can significantly decrease the time it takes to complete the optimization process.

10
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3.2 Evaluation Metrics

To evaluate the performance of the trained models, we used metrics that account
for class imbalance. Balanced accuracy is used as it adjusts for class imbalance by
averaging the recall of each class. F1 score is the harmonic mean of precision and
recall and provides a good measure of the model’s accuracy, even with imbalanced
datasets. Macro-averaged F1 score calculates the F1 score for each class individually
and then averages them, such that each class contributes equally to the final score.
Let 𝑁 be the number of classes,𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖 be the true positives, false positives and
false negatives for class 𝑖 , respectively. Let 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
,

then:

Balanced Accuracy =
1
𝑁

𝑁∑︁
𝑖=1

𝑅𝑒𝑐𝑎𝑙𝑙𝑖

F1 Score𝑖 =
2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 · 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

Macro F1 Score = 1
𝑁

𝑁∑︁
𝑖=1

𝐹1𝑆𝑐𝑜𝑟𝑒𝑖

3.3 Models

ResNet (residual network) is a type of deep learning model used primarily for im-
age recognition tasks (He et al., 2015). It can be scaled in terms of the number of
layers (depth), which is denoted as a number in the model’s name. This work uses
a ResNet18 model, as in the literature on FL for OCT data, it is the most commonly
used one (Ran et al., 2023; Gholami et al., 2023). Through the experiments, we can
determine if FedAvg performs similarly well as observed by Gholami et al. (2023) on a
different dataset. Moreover, Kulyabin et al. (2024) trained a ResNet50 model on their
dataset to help validate its suitability for deep learning. Therefore, it is also used in
this work’s experiments in order to reproduce their results.

MobileNet architectures are a class of efficient models for vision tasks (Howard et al.,
2017). As the name suggests, these are intended for resource-constrained environ-
ments, such as mobile devices. Therefore, it is the model of choice for Google’s Teach-
able Machine application (Carney et al., 2020). By this time, the newest generation
is MobileNetV3 (Howard et al., 2019), which is tuned to mobile phone CPUs. As the
POC application is intended for use on a desktop computer, this work uses the V2 ar-
chitecture (Sandler et al., 2018) for its increased performance and efficiency compared
to version 1.

Following Lo et al. (2021), transfer learning with ImageNet (Deng et al., 2009) pre-
trained weights is used for both the ResNet18 and the MobileNetV2 model, with two
fully connected, trainable layers added before the final classification layer. Although
medical data is different from ImageNet images, it is a popular approach in the med-
ical domain (Morid et al., 2021). Also, in a federated learning setting, it is preferable
to reduce the amount of data sent between clients and the central server.

11
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3.4 Centralized Learning

The centralized models are trained for a fixed maximum number of epochs. The train-
ing loop employs an early stopping strategy after training for a minimum number of
epochs. After that, the training process is stopped if the model does not improve on
the target metric for a set number of consecutive epochs. In addition, the target metric
is passed to Optuna’s pruning strategy after each epoch to terminate the current trial
early if the model’s performance is worse than the majority of previous trials at the
same stage. After each trial, the weights of the best model among epochs are stored
on the disk. Finally, the best performing model in terms of validation metrics is tested
on previously unseen test data. The hyperparameters used for optimization are batch
size, learning rate, whether or not to apply data augmentation, and dropout value.

3.5 Federated Learning Simulations

All federated learning simulations are implemented using flower (Beutel et al., 2020).
The framework enables federating any machine learning workflow, allowing the use
of the same training loop implemented for the centralized learning. For FedAvg, the
framework’s implementation is used. FedBuff has a custom implementation in order
to simulate stale clients, which is detailed in section 4.4. Additionally, two practical
improvements suggested by Nguyen et al. (2022) in their publication on FedBuff are
implemented. Learning rate normalization is used to linearly scale the learning rate,
in case a client needs to train on a batch with a size smaller than the prescribed batch
size. The new learning rate is then set to 𝑙𝑟𝑛𝑒𝑤 = 𝑙𝑟 ∗ 𝑏/𝐵, where 𝑙𝑟 is the current
learning rate, 𝑏 is the size of the current batch and 𝐵 is the prescribed batch size.
Staleness scaling deals with updates of clients based on an older version of the model.
Their updates are scaled by 1/(1+

√
𝑠), where 𝑠 is the staleness of the update, i.e. how

many versions the update is behind the current global model.
The goal is to compare the two different FL algorithms under fair conditions,

which is achieved as follows. The simulations for both algorithms are run with the
same number of clients active in the training process. The training duration is de-
termined by the number of client updates arriving at the central server, similar to
the experiments conducted by Nguyen et al. (2022) in their publication for FedBuff.
The above mentioned metrics are compared with different update frequencies, i.e. the
number of clients selected for training each round in FedAvg, and the choice of buffer
size for FedBuff. For example, the number of total updates could be set to 100 and the
update frequency to 10. Then FedAvg will run for

#𝑢𝑝𝑑𝑎𝑡𝑒𝑠
𝑢𝑝𝑑𝑎𝑡𝑒 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

= 100/10 = 10

communication rounds. For FedBuff, this would mean choosing buffer size 10 and
running the training process until the buffer is filled 10 times.

The hyperparameters used in the optimization process are similar to the central-
ized learning. On the client side, each node receives the batch size, learning rate,
dropout value, number of local epochs and a boolean value whether or not to apply
augmentation. In addition, for FedBuff, there is also a server learning rate. For assess-
ing the performance after each global model update, the newly aggregatedweights are
sent to each client for evaluation. The server collects the evaluation results and cal-
culates their weighted average based on the number of samples of each client. During

12
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the optimization process, the aggregated target metric is passed to Optuna after each
update to the global model in order to use pruning. The resulting best model based
on evaluation results is then tested on the same unseen test data used for centralized
learning.

3.6 Proof-of-Concept Application

The proof-of-concept application aims to showcase how modern web technologies
can be combined to enable collaborative, interactive machine learning. This section
introduces these technologies and describes the application design in terms of archi-
tecture, user interface (UI) and workflow. Also, relevant implementation details are
being presented.

3.6.1 Technologies
ONNX Runtime (ONNX Runtime developers, 2021) is a cross-platform machine learn-
ing library that enables fast on-device inference and training. Most importantly, the
library is available for web browsers. It utilizes two modern browser API’s to en-
sure an efficient machine learning workflow: Web Assembly (Rossberg, 2022) and
WebGPU (Ninomiya et al., 2024). WebAssembly is a low-level, assembly-like language
for the browser, enabling web applications to execute code with near-native perfor-
mance. It can be a compilation target for many popular programming languages.
With WebGPU, browsers can use the system’s GPU for high-performance compu-
tations. It is the successor to WebGL 1, offering better compatibility with modern
GPUs. The implementation as a web application makes it easy to integrate with ex-
isting systems, since a web browser is present on nearly all computer systems. One
big advantage of ONNX Runtime over other browser-based ML libraries, such as Ten-
sorflow.js (Smilkov et al., 2019), is the compatibility with the ONNX (Open Neural
Network Exchange) format. Since models from the most popular ML frameworks can
be exported to ONNX, the application can easily work with existing models.

The POC application itself is implemented in Python using Flask (Grinberg, 2018),
a lightweight framework for creating web applications. The interactive elements of
the UI, including the ONNX Runtime integration, are implemented with JavaScript
and encapsulated in Web Components 2, a set of standardized APIs that allow for the
creation of reusable custom elements. The Web Components standard works across
modern browsers, making the application independent of any UI framework. One
more important browser API used is Indexed DB 3. It offers persistent storage within
the browser for large amounts of data, including files. This way, user data such as
uploaded images, inference results and other metadata is available between sessions,
even when the browser is closed.

3.6.2 Application Design
The architecture, which is shown in Figure 3.1, consists of twomain components. The
FL Server is responsible for receiving and aggregating updates from the individual
clients. It holds the current global model and stores any metadata related to it. Upon

1https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API (accessed 23.09.2024)
2https://developer.mozilla.org/en-US/docs/Web/API/Web_components (accessed 23.09.2024)
3https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API (accessed 23.09.2024)
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Figure 3.1: POC application: architecture overview.

request, clients are sent the current version of the model, together with the necessary
files and instructions for training. The FL Web Server serves the web application
and the necessary files to each client’s edge device. While the POC application fo-
cuses on image classification, other computer vision tasks, such as object detection
or image segmentation, can be implemented through the abstract classes provided by
the implementation. In the context of this work, the following simple workflow is
implemented.

• A user chooses one or more images. (Figure 3.2)

• The app suggests a label for each image based on the current model. (Figure 3.3)

• The user can then either accept the label or change it to a different one.
(Figures 3.4 and 3.5)

• The training session can be started using the current local dataset, after review-
ing all images. (Figure 3.6)

• As soon as the training is finished, the update is sent automatically to the central
server for aggregation.

14
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Figure 3.2: POC application: The user can upload images by clicking the “Select Im-
ages” button.

Figure 3.3: POC application: Labels are suggested after the user provides images by
running inference with the current state of the model.

Figure 3.4: POC application: Labels can be confirmed by clicking the green button
next to it. Here, the first two are confirmed and marked in green.
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(a) Dropdown (b) Select label (c) New label saved

Figure 3.5: POC application: The user can change a label by clicking the yellow button.
A dropdown appears where the new label can be chosen. Upon selection, the new
choice is stored.

Figure 3.6: POC application: Interface during the training process.
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4 | Experiments

In this chapter, the experimental setup is described in detail, showing the exact steps
taken to evaluate and compare the performance of the centralized and federated learn-
ing models. First, the dataset is presented together with the strategy to distribute the
data among clients in the federated learning setting, followed by the setup for the
models. Afterwards, the process for obtaining the centralized base models is shown.
Finally, the concrete conditions under which the federated learning setting for both
algorithms is simulated are explained. For all optimizations performed, the hyperpa-
rameter ranges are specified.

During the hyperparameter optimization process for each experiment, the macro
F1 score for the validation set is used to determine the best performing model, as F1
score is one of the most widely used metrics in deep learning applications for medical
imaging (Anaya-Isaza et al., 2021).

4.1 Data

For the experiments conducted in this work, theOCTDL (Kulyabin et al., 2024) (Optical
Coherence Tomography Dataset for Image-Based Deep Learning Methods) is utilized.
The dataset contains over 2000 OCT images, each labeled according to specific retinal
diseases: Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME),
Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein Occlusion
(RVO), and Vitreomacular Interface Disease (VID). Scans from normal eyes (NO) that
do not have one of the diseases are also included. A summary of the dataset is provided
in table 4.1. Furthermore, each record contains a patient id, so scans belonging to the
same patient can be identified. The authors trained a ResNet50 Model on the entirety
of their data and on combinations with other, previously published datasets.

Table 4.1: OCTDL dataset summary. The first two classes (AMD, NO) are used for the
binary AMD diagnosis use case.

Disease Label Number of Scans Number of Patients
Age-related Macular Degeneration AMD 1231 421
Normal NO 332 110
Diabetic Macular Edema DME 147 107
Epiretinal Membrane ERM 155 71
Retinal Artery Occlusion RAO 22 11
Retinal Vein Occlusion RVO 101 50
Vitreomacular Interface Disease VID 76 51
Total 2064 821
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The experiments deal with two use cases. The first one is AMD diagnosis, i.e.
classifying an OCT scan as either AMD or NO, since Gholami et al. (2023) also in-
vestigated this use case on previously published datasets. Secondly, the simulations
are run on a multi-class problem, including all classes of the dataset, following the
experiments conducted by Kulyabin et al. (2024) on OCTDL.

In order to test the resulting models on unseen data and to ensure a meaning-
ful comparison, 15% of the dataset is set aside as test data for all experiments. The
centralized experiments use another 15% for validation. Hereby, we ensure that each
patient’s data is exclusive to each of the subsets, in the same way the authors of the
dataset did. We also split the data on a patient’s level while distributing it among
clients in the federated learning setting. This helps create realistic conditions for the
experiments. Each client participating in the federated learning simulation reserves
20% of their data for validation. Because of the imbalanced nature of the dataset, a
stratified split is used here in order to ensure that each class is present in both the
training and validation set of each client.

4.2 Models

As mentioned in chapter 3, this work focuses on the ResNet and MobileNet architec-
tures. More precisely, PyTorch’s implementations for ResNet18, ResNet50 and Mo-
bileNetV2 are used. Transfer learning is applied to the ResNet18 and the MobileNetV2
model. The ResNet18 and ResNet50 models are also trained from scratch, follow-
ing the presented literature on FL for OCT retina images and the publication for the
dataset. For the multi-class use case, we train MobileNetV2 with transfer learning
and the ResNet50 model from scratch. An overview of the model architectures and
use cases is provided in table 4.2.

Table 4.2: Overview of model architectures and use cases. TL denotes transfer learn-
ing.

Model Use Cases
ResNet18 AMD Diagnosis
ResNet18 TL AMD Diagnosis
ResNet50 AMD Diagnosis, All OCTDL Classes
MobileNetV2 TL AMD Diagnosis, All OCTDL Classes

4.3 Centralized Learning

In the centralized learning experiments, themodels train for amaximumof 100 epochs.
After each epoch, the model is evaluated on the validation set. Thereby, the metric by
which we want to optimize the model is calculated based on the evaluation results.
The implemented early stopping strategy starts after epoch 20. Then, if the model
performance, i.e. the macro F1 score, does not improve for five epochs, the training is
stopped. During this process, the parameters of the best performingmodel are contin-
uously stored for testing purposes. The hyperparameter ranges used for optimization
are specified in table 4.3.
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4.4 Federated Learning Simulations

All federated learning simulations are run using 20 clients that participate in the train-
ing process. Our goal was to choose a number that is large enough so we can experi-
ment with different numbers of clients per aggregation round but also small enough
so each client receives a sufficiently large local dataset. Each FL algorithm is tested
with 10, 5 and 3 client updates per global model update. The simulations run until
the global model is updated 260 times, giving the models enough time to converge.
For the FL optimization, the number of local epochs for each client is defined as an
additional hyperparameter with a range from 1 to 10, following the experiments of
Gholami et al. (2023). The server learning rate for FedBuff uses the same range as
the client learning rate. These hyperparameters are also included in table 4.3. An
overview of how the FL experiments are run can be found in algorithm 3.

For FedAvg, the implementation provided by Flower is used. FedBuff, on the other
hand, uses a custom implementation within the framework. Flower does not pro-
vide support for asynchronous FL algorithms. However, with a few modifications to
FedAvg we can simulate FedBuff’s aggregation process, since only performance of
the model is tested rather than wall-clock time. First, the simulation selects clients
equal to the buffer size. Then, staleness is simulated by giving each client a random
staleness value. Nguyen et al. (2022) discovered during their experiments that client
delays and staleness in FedBuff follow a half-normal distribution. The maximum stal-
eness of a client is 𝑠𝑚𝑎𝑥 = 𝑅 − 𝑃𝑟 − 1, where 𝑅 is the current round and 𝑃𝑟 is the last
used parameter version. Then, each client receives parameters of the model version
according to their staleness. Finally, the aggregation logic on the server side and the
calculation of the update on the client side are implemented. Algorithm 4 illustrates
the described FedBuff implementation.

Table 4.3: Hyperparameters used in different learning strategies.

Hyperparameter Used for Values
Learning Rate Centralized, FedAvg, FedBuff [0.1, 0.0001]
Batch Size Centralized, FedAvg, FedBuff {8, 16, 32, 64, 128}
Apply Augmentation Centralized, FedAvg, FedBuff {True, False}
Dropout Centralized, FedAvg, FedBuff {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Client Epochs FedAvg, FedBuff [1..10]
Server Learning Rate FedBuff [0.1, 0.0001]
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Algorithm 3 Federated Learning Experiments
Run for each model configuration / use case combination in table 4.2 for both algo-
rithms: FedAvg, FedBuff
1: Input: Number of clients 𝑁 = 20, Number of global updates 𝑈 = 260, Model

configuration𝑀 , Classes for use case 𝐶𝐿, FL algorithm 𝐹

2: 𝐷 ← Load dataset with classes 𝐶𝐿
3: 𝐷train, 𝐷test ← Randomly split dataset 𝐷 into training set and test set (15%) on a

patient’s level
4: for each client 𝐶𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁 } do
5: Assign a subset 𝐷𝑖 of 𝐷train to client 𝐶𝑖
6: Reserve 20% of 𝐷𝑖 as local validation set for client 𝐶𝑖 using stratified split
7: end for
8: for each update frequency 𝑓 ∈ {10, 5, 3} do

/* FedAvg: f := clients per round, FedBuff: f := buffer size */
9: 𝑟 ← ⌊𝑈 /𝑓 ⌋
10: Set number of rounds in 𝐹 to 𝑟
11: Run hyperparameter optimization using 𝐹 with 𝐶1 . . .𝐶𝑁 on model𝑀
12: end for
13: Test the final model on 𝐷test

Algorithm 4 FedBuff Implementation
1: Input: server learning rate 𝜂𝑔 , client learning rate 𝜂𝑙 , client SGD steps 𝑄 , buffer

size 𝐾 , number of rounds 𝑅
2: Output: Trained model
3: 𝑃 ← {} ⊲ map round number to parameters of that round
4: 𝐶𝑃𝑉 ← {𝑖 = 0 for each client} ⊲ map client to its last used parameter version
5: 𝑤1 ← get weights from random client
6: for 𝑟 = 1 : 𝑅 do
7: 𝑃 [𝑟 ] ← 𝑤𝑟 ⊲ save weights of current round
8: 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 ← select 𝐾 clients at random
9: for each client 𝑐 do
10: 𝑠𝑚𝑎𝑥 ← 𝑟 −𝐶𝑃𝑉 [𝑐] − 1 ⊲ calculate max staleness
11: 𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑎𝑙𝑒𝑛𝑒𝑠𝑠 (𝑠𝑚𝑎𝑥 ) ⊲ sample from halfnormal distribution
12: 𝑝𝑎𝑟𝑎𝑚𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑟 − 𝑠
13: 𝐶𝑃𝑉 [𝑝𝑎𝑟𝑎𝑚𝑉𝑒𝑟𝑠𝑖𝑜𝑛] ← 𝑟 ⊲ update last used paramter version
14: 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑃 [𝑝𝑎𝑟𝑎𝑚𝑉𝑒𝑟𝑠𝑖𝑜𝑛] ⊲ get parameters based on staleness
15: Run FedBuff-client(𝑝𝑎𝑟𝑎𝑚𝑠 , 𝜂𝑙 , 𝑄) on 𝑐
16: end for
17: 𝑈 ← collect client updates
18: Δ

𝑟 ←
∑

𝑢∈𝑈 Δ
𝑢

𝐾

19: 𝑤𝑟+1 ← 𝑤𝑟 − 𝜂𝑔Δ
𝑟

20: end for
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In the following chapter, the results of the previously described experiments are pre-
sented. Allmetrics collected during the testing of the finalmodels are shown in tabular
form, where themost important values and rows are highlighted in order to emphasize
the key findings. Furthermore, several charts are used to showcase the performance
difference between the centralized and federated learning approaches, as well as dif-
ferent model configurations. Finally, for the overall best performing models, we show
the learning curves for FedAvg and FedBuff. All of the code and the best performing
hyperparameters for each of the experiments can be found in the GitHub repository
provided in section 7.2. For the purposes of evaluating the differences in performance
among approaches and models, Cohen’s h is used to measure the effect size (Cohen,
1988), which is calculated as follows, given two probabilities 𝑝1 and 𝑝2:

effectSize(𝑝1, 𝑝2) = |2 ∗ arcsin(
√︁
𝑝1) − 2 ∗ 𝑎𝑟𝑐𝑠𝑖𝑛(

√︁
𝑝2) |

Per Cohen’s rule of thumb, we consider effect sizes around ℎ = 0.20 as small, ℎ = 0.5
as medium and ℎ = 0.8 as large differences.

5.1 Centralized Training

The centralized test results for AMD diagnosis are displayed in table 5.1. We utilize
the metrics presented in section 3.2 in order to evaluate a model’s performance. For
each model configuration, the balanced accuracy (Bal Acc), F1 score macro (F1 Macro)
and binary F1 score for AMD (F1 Score AMD) are shown. The best performing model
is ResNet18 without transfer learning, reaching an F1 macro score of 0.942. The other
models tested achieved a similar performance, with a small difference (ℎ = 0.092)
between the best and worst performing setup.

Results for the multi-class use case on the centralized models can be seen in table
5.2. In the experiments, the MobileNetV2 model with transfer learning performed

Table 5.1: Centralized performance metrics for AMD diagnosis. The best performing
model in terms of F1 macro score is marked with bold text.

Model Transfer Learning Bal Acc F1 Macro F1 Score AMD
ResNet18 x 0.953 0.942 0.972
ResNet18 ✓ 0.963 0.938 0.969
ResNet50 x 0.928 0.939 0.973
MobileNetV2 ✓ 0.930 0.919 0.961
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better than the ResNet50 model, with an F1 macro score of 0.600. The difference in
performance among models is also small here but more noticeable (ℎ = 0.182).

Table 5.2: Centralized performance metrics for multi-class use case. The best per-
forming model in terms of F1 macro score is marked with bold text.

Model Transfer Learning Bal Acc F1 Macro
ResNet50 x 0.663 0.509
MobileNetV2 ✓ 0.669 0.600

5.2 Federated Learning Simulations

Test metrics for AMD diagnosis using FedAvg can be seen in table 5.3. The best con-
figuration with an F1 macro score of 0.958 is the ResNet18 model without transfer
learning and three clients per round. The difference between the best and worst con-
figurations is moderate to small (ℎ = 0.332). Figure 5.1 visualizes the best metrics
achieved among centralized learning and FedAvg with ten (FedAvg 10), five (FedAvg
5) and three clients (FedAvg 3) per round. FedAvg outperforms the centralized models
in terms of F1 macro score by a small amount (ℎ = 0.074).

Table 5.3: Performance metrics for AMD diagnosis with FedAvg. For each number of
clients per round, the best F1 macro score is displayed with bold text. The overall best
performing model is also marked in bold.

Model Transfer Learning Bal Acc F1 Macro F1 Score AMD Clients per Round
ResNet18 x 0.923 0.928 0.967 10
ResNet18 ✓ 0.947 0.941 0.972 10
ResNet50 x 0.895 0.876 0.938 10
MobileNetV2 ✓ 0.918 0.907 0.955 10
ResNet18 x 0.937 0.946 0.975 5
ResNet18 ✓ 0.951 0.937 0.969 5
ResNet50 x 0.863 0.868 0.939 5
MobileNetV2 ✓ 0.939 0.925 0.963 5
ResNet18 x 0.955 0.958 0.981 3
ResNet18 ✓ 0.947 0.941 0.972 3
ResNet50 x 0.913 0.932 0.970 3
MobileNetV2 ✓ 0.930 0.919 0.961 3

For FedBuff, table 5.4 shows the metrics for the test set, where MobileNetV2 with
transfer learning shows the best performance with an F1 macro score of 0.792 and a
buffer size of three. The difference in performance between the best and worst con-
figurations is moderate to high (ℎ = 0.646). Metrics of the best models for FedBuff can
be seen in figure 5.2. FedBuff performed worse compared to the centralized training,
showing a medium difference in performance (ℎ = 0.456).

A comparison between all model architectures is presented in figure 5.3. For each
model, the F1 macro score of the centralized learning, FedAvg and FedBuff is dis-
played. ResNet18 and MobileNetV2 with transfer learning perform similarly well on
all three approaches. The ResNet18 and ResNet50 models trained from scratch per-
formed well in the centralized and FedAvg scenario, but worse on FedBuff. Table 5.5
provides an overview of the FL performances in terms of effect size. Each entry refers
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Figure 5.1: Comparison of test metrics for AMD diagnosis using FedAvg.

to the difference in performance between centralized learning and the respective FL
approach.

For the multi-class use case, all results for FedAvg and FedBuff are presented in ta-
ble 5.6 and table 5.7, respectively. Here, FedAvg performed better than the centralized
model by a small amount (ℎ = 0.164) with F1 macro score of 0.678. The metric com-
parisons can be found in table 5.4. The two used models differ in performance by a
medium amount (ℎ = 0.517), with the ResNet50 model yielding the highest score. For
FedBuff, the FL approach yielded worse results, with the MobileNetV2 model reach-
ing an F1 macro score of 0.295, which is a medium to large difference (ℎ = 0.623)
to the best centralized model. Both metrics are compared in figure 5.5. The overall
performance of the two models is shown in figure 5.6.

Figure 5.7 compares the learning curves of ResNet18 (5.7a) andMobileNetV2 (5.7b)
with transfer learning using FedAvg and FedBuff for AMD diagnosis. Also, the corre-
sponding performance of the centralized model is shown in the graphs. In ResNet18
with FedAvg, the F1 score rises quickly across all client counts, with more clients per
global update resulting in fewer updates needed to reach the maximum. ResNet18
with FedBuff shows slower, more gradual learning, with fewer clients per update (i.e.
lower buffer size) also needing fewer global updates to reach themaximum. The train-
ing process appears to be more stable with a lower buffer size. For MobileNetV2 with
FedAvg, learning is generally faster. The model stabilizes earlier for five clients, while
three clients showed a more unstable learning curve. In MobileNetV2 with FedBuff,
three clients show the best early performance, while 5 clients improve more slowly
and show amore unstable learning curve. Overall, FedAvg leads to faster initial learn-
ing, while FedBuff offers more gradual, steady improvements. MobileNetV2 generally
outperforms ResNet18 in terms of faster convergence, while ResNet18 shows a more
stable training process across both algorithms.
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Table 5.4: Performance metrics for AMD diagnosis with FedBuff. For each number of
clients per round, the best F1 macro score is displayed with bold text. The overall best
performing model is also marked in bold.

Model Transfer Learning Bal Acc F1 Macro F1 Score Binary Clients per Round
ResNet18 x 0.755 0.651 0.737 10
ResNet18 ✓ 0.618 0.603 0.784 10
ResNet50 x 0.517 0.489 0.856 10
MobileNetV2 ✓ 0.811 0.773 0.873 10
ResNet18 x 0.697 0.662 0.801 5
ResNet18 ✓ 0.806 0.787 0.891 5
ResNet50 x 0.561 0.565 0.820 5
MobileNetV2 ✓ 0.686 0.663 0.815 5
ResNet18 x 0.563 0.567 0.838 3
ResNet18 ✓ 0.685 0.668 0.823 3
ResNet50 x 0.564 0.568 0.824 3
MobileNetV2 ✓ 0.819 0.792 0.890 3

Figure 5.2: Comparison of test metrics for AMD diagnosis using FedBuff.

Figure 5.3: Test performance of different model configurations on AMD diagnosis. TL
denotes transfer learning.
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Figure 5.4: Comparison of test metrics for the multi-class use case using FedAvg.

Figure 5.5: Comparison of test metrics for the multi-class use case using FedBuff.

Figure 5.6: Test performance of different model configurations on the multi-class use
case. TL denotes transfer learning.
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(a) ResNet18 (transfer learning)

(b) MobileNetV2 (transfer learning)

Figure 5.7: Validation learning curves of best models in AMD diagnosis, FedAvg /
FedBuff.
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Table 5.5: Effect sizes between centralized and FL model performance for AMD diag-
nosis. TL indicates that the model uses transfer learning.

Model FedAvg FedBuff
ResNet18 0.074 (small) 0.756 (large)
ResNet18 TL 0.014 (small) 0.456 (medium)
ResNet50 0.030 (small) 0.936 (large)
MobileNet TL 0.023 (small) 0.461 (medium)

Table 5.6: Performance metrics for the multi-class use case with FedAvg. For each
number of clients per round, the best F1 macro score is displayed with bold text. The
overall best performing model is also marked in bold.

Model Transfer Learning Bal Acc F1 Macro Clients per Round
ResNet50 x 0.394 0.424 10
MobileNetV2 ✓ 0.613 0.601 10
ResNet50 x 0.527 0.546 5
MobileNetV2 ✓ 0.618 0.613 5
ResNet50 x 0.617 0.678 3
MobileNetV2 ✓ 0.670 0.658 3

Table 5.7: Performance metrics for the multi-class use case with FedBuff. For each
number of clients per round, the best F1 macro score is displayed with bold text. The
overall best performing model is also marked in bold.

Model Transfer Learning Bal Acc F1 Macro Buffer Size
ResNet50 x 0.126 0.107 10
MobileNetV2 ✓ 0.277 0.259 10
ResNet50 x 0.185 0.158 5
MobileNetV2 ✓ 0.267 0.295 5
ResNet50 x 0.142 0.114 3
MobileNetV2 ✓ 0.204 0.194 3

Table 5.8: Effect sizes between centralized and FL model performance on the multi-
class use case.

Model FedAvg FedBuff
ResNet50 0.345 (small-medium) 0.772 (large)
MobileNet-TL 0.122 (small) 0.623 (medium-large)
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In this chapter, we discuss and interpret the experimental results from the previous
chapter and review challenges and limitations regarding the POC application. Here,
we aim to give a thorough answer to the research questions presented in chapter 1.

RQ1: How viable is an asynchronous FL approach to
optimize machine learning-based medical diagnosis
using OCT retina images?

Our results regarding asynchronous FL using FedBuff on the tested model architec-
tures and configurations are provided in table 5.4 for the binary AMD classification.
In the binary classification problem, FedBuff reached an F1 macro score of 0.792. The
best performing configuration uses theMobileNetV2model with transfer learning and
three clients per round (≡ buffer size), closely followed by the pre-trained ResNet18
with five clients per round.

Table 5.7 shows the results for the mutli-class use case. Here, FedBuff performed
significantly worse, with an F1 macro score of 0.295, using a MobileNetV2 model with
transfer learning and five clients per round. This is likely caused by the considerably
different sample size in each class of the dataset. In table 4.1, we can see that the most
represented class (AMD) holds 1231 samples, while the class with the least number of
scans (RAO) only provides 22 data points from 11 patients. Splitting the data among
20 clients on a patient’s level causes some clients to not have any samples of the RAO
class.

Using these results and insights, we can see that asynchronous FL using FedBuff
is a viable approach for the binary classification use case, with room for improve-
ment, but it requires more investigation to optimize its performance further. How-
ever, for the multi-class use case, FedBuff cannot provide a well-performing model for
our setup. Additional experiments are needed to investigate the behaviour of FedBuff
further in this use case. Overall, we think that asynchronous FL is a valid approach for
OCT medical diagnosis, and warrants further investigation across different medical
use cases using different algorithms.
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RQ2: How does asynchronous FL perform in terms of
diagnostic accuracy for OCT retina images compared
to established centralized and synchronous FL meth-
ods?

For binaryAMD classification, the centralizedmodels all showed similar performance.
In the overview provided by table 5.1 we can see that the best performing model
reaches an F1 macro score of 0.942. FedAvg yields similar results across models, as de-
picted in figure 5.1. FedBuff’s performance is noticeably lower, but only by a medium
effect amount, reaching an F1 macro score of 0.792, as seen in figure 5.2. This be-
haviour can be caused by multiple factors. Asynchronous FL can introduce staleness,
i.e. client updates which are based on an older version of the global model. Also,
FedBuff requires the server learning rate as a new hyperparameter. This increases the
searchable parameter space during the optimization process, which as a result, may
require more trials to find good values. Fine-tuning of the additional layers may also
be necessary for models using transfer learning in FedBuff.

Table 5.2 shows that the centralized models for the multi-class use case did not
perform well with our setup, with the best model reaching an F1 macro score of 0.600
on the test set. The cause may be the distribution of data between the training, valida-
tion and test datasets. As described by Kulyabin et al. (2024), we split the dataset on a
patient’s level, meaning that one person’s data is only present in one of the subsets. It
is possible that a different random distribution of data caused the drop in performance.
In the federated setting, FedAvg and FedBuff show the same behaviour as those ob-
served in the AMD diagnosis. FedAvg performed slightly better than the centralized
models, with an F1 macro score of 0.678. FedBuff performed worse, reaching a score
of 0.295. The respective comparisons can be seen in figures 5.4 and 5.5.

After the described experiments, we ran an additional trial to investigate if the
data distribution in the multi-class use case can be the cause for the poor performance
of our centralized models. We trained the ResNet50 model for 100 epochs with fixed
hyperparameters under ideal conditions, i.e. ensuring an equal distribution of classes
among training, validation and test data. We achieved a balanced accuracy of 0.820
and an F1 macro score of 0.810, which is significantly closer to the metrics reported by
the dataset authors. Based on this result, we can see that our assumption is plausible.

A comparison of different model architectures and configurations in figures 5.3
and 5.6 reveals that the pre-trained ResNet18 and MobileNetV2 models perform the
best in AMD diagnosis when taking all three approaches into account. The models
trained from scratch performed slightly better in some cases, but significantly worse
in FedBuff. For themulti-class use case, MobileNetV2 using transfer learning performs
better than the ResNet50 model trained from scratch, except for FedAvg.

In accordance with the reproducibility terms outlined by Gundersen and Kjensmo
(2018) we compare our results with the related work. The results exhibit method
reproducibility for the work by Gholami et al. (2023). On two out of three datasets
they tested, ResNet18 performed similarly to the centralized models using FedAvg.
As shown in table 6.1, the differences between the centralized and FedAvg models
are similar to the results of our experiments. To measure the effect size between
results, we use Cohen’s h, as described in section 5. We did not achieve experiment
reproducibility regarding the results reported by Kulyabin et al. (2024). They trained
a ResNet50 model on the entirety of the OCTDL dataset and reached an F1 score of
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0.866, whereas our experiments yielded a score of 0.600. However, for a subset of the
dataset used for AMD diagnosis (AMD, NO), we showed method reproducibility by
training a ResNet50 model with a final F1 score of 0.939.

Table 6.1: Effect sizes between centralized and FL model performance for AMD di-
agnosis between our results and the results of Gholami et al. (2023) on two of their
datasets (DS1, DS2).

Results Difference Centralized / FedAvg
Our results 0.074 (small)
Gholami et al. (2023) DS1 0.012 (small)
Gholami et al. (2023) DS2 0.087 (small)

In figure 5.7, we show the validation learning curves for FedAvg and FedBuff for
the models using transfer learning, as they yielded the best results on FedBuff. The
graphs suggest that the ResNet18 model is the better choice for a more stable train-
ing process, whereas MobileNetV2 achieves faster convergence in our experiments.
These models are potentially viable for the interactive browser-based FL application
presented in this work, as they performed similarly well with asynchronous FL. Fur-
thermore, both have relatively small file sizes, around 13 mb for MobileNetV2 and
45 mb for ResNet18. The number of trainable parameters is also much smaller with
transfer learning, which leads to fewer computational resources needed on the client
side.

Overall, in order to answer RQ2, we chose FedBuff as the asynchronous FL al-
gorithm and compared it to centralized learning and FedAvg as the established FL
approach. As far as we know, this is the first work applying FL to the OCTDL dataset
used in our experiments. We found that FedAvg performs similarly well to the central-
ized learning, whereas FedBuff performs noticeably worse than FedAvg and central-
ized learning, but only by a medium amount. However, with the additional benefits
of asynchronous FL in mind, we believe that our results show the potential of using
such algorithms, especially with larger or more balanced datasets, to better under-
stand suitable use cases.

RQ3: What are the challenges and limitations of im-
plementing FL in a browser-based environment, and
how can they be addressed?

In research question 3, we ask which challenges and limitations exist for the imple-
mentation of FL in a browser-based environment and how we can address them. The
very first challenge that needs to be solved to implement a browser-based FL applica-
tion is the choice of algorithm. In order to enable users to conduct the training process
on their behalf, an asynchronous FL algorithm is needed that allows each client to send
their local update at any time. As discussed in the previous section, asynchronous FL
is a viable approach for one of the possible use cases of such an application in medical
imaging, i.e. diagnosing OCT retina images. Here, FedBuff provides a good starting
point for further investigation. Limited client resources also need to be kept in mind
while choosing a suitable model. The ResNet18 and MobileNetV2 models, which per-
formed best in our experiments, are relatively small in terms of file size and have only
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a few trainable parameters when using transfer learning.
Another challenge, as mentioned by Guan et al. (2024), is the compatibility and in-

tegration with existing hospital systems and user adoption. By providing a browser-
based application, we eliminate the need for installation of third-party software by
leveraging the capabilities of modern browsers, which are already included in most
operating systems. In order to ensure user adoption, the application provides an in-
teractive user interface which guides the user through the data collection and training
process.

On the technical side, the training process on the client’s device needs to be im-
plemented efficiently in order to not require a large amount of resources in terms of
time and computational power. Machine learning frameworks for the browser offer
solutions for this challenge. ONNX Runtime (ONNX Runtime developers, 2021) is the
library of choice for this task. It is chosen over tensorflow.js (Smilkov et al., 2019) used
by Google in their browser-based ML application (Carney et al., 2020). One reason is
that ONNX Runtime is ML framework agnostic, supporting any model that can be ex-
ported to the ONNX file format. Another important difference is that ONNX Runtime
supports WebGPU, the newest standard for executing computations directly on the
user’s graphics card, whereas tensorflow.js supports the older WebGL standard.

During the development of the POC application, several limitations started to
show. As the ONNX Runtime integration for the web is relatively new, not all its
functionalities for model training have been implemented yet for the web. One of
the shortcomings is that the learning rate of the optimizer cannot be changed, so
clients need to train with a default learning rate of 0.001. Also, only a small set of
loss functions have been implemented so far. Weighted cross-entropy loss, as used
during our FL experiments, can also not be used, as the loss function needs to be fully
defined on the server side while generating the necessary files for on-device train-
ing. Furthermore, WebGPU is supported only for inference at the time, whereas the
training process is limited to the WebAssembly backend. Regarding the web browser
itself, it is important to note that the size of the local dataset stored in the browser’s
IndexedDB cannot be arbitrarily large. Each browser determines the storage limit
differently based on available disk space. Lastly, the WebGPU API is currently only
available in developer builds of modern browsers, which may not be allowed on sys-
tems with high-security standards.
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This work aimed to gain insights into the performance differences of asynchronous
FL in comparison to synchronous FL and centralized learning. Asynchronous FL al-
gorithms help enable a browser-based interactive FL approach without requiring a
synchronous training process. To demonstrate how such an application could be im-
plemented using modern web technologies, a proof-of-concept application was devel-
oped in the context of this work. It helped us understand the current challenges and
limitations of realizing such an approach.

Our main contribution was applying FL to the OCTDL dataset, further confirming
that FL is a viable strategy for OCT data. In addition to FedAvg, an established syn-
chronous algorithm, we also tested asynchronous FL by using FedBuff, which had not
been applied to OCT data yet. Several model architectures were compared to evalu-
ate their differences in performance across the mentioned learning approaches. We
tested a ResNet18 model, with and without transfer learning, and a ResNet50 model
to reproduce results from the related works. Additionally, a MobileNetV2 model with
transfer learning was included in the experiments, as it is optimized for resource-
constrained environments in terms of file and parameter size, making it a potentially
good fit for our browser-based application.

Our experiments demonstrated that federated learning with FedAvg yielded simi-
lar, slightly better results compared to centralized learning for binary AMD diagnosis
and the multi-class classification of retinal diseases using OCT images. FedBuff per-
formed worse than both synchronous FL and centralized learning, with a medium
difference for the binary classification and a medium to high difference in the multi-
class use case. When comparing model architectures, all models showed similar per-
formance in centralized learning and FedAvg, with the pre-trained ResNet18 and Mo-
bileNetV2 models performing significantly better on FedBuff. Our results confirmed
the reproducibility of prior work on FL for AMD diagnosis using the ResNet18 model.
For centralized learning on the multi-class use case, however, we did not achieve ex-
periment reproducibility, as our ResNet50 model performed significantly worse.

The development of the POC application demonstrated how an interactive browser-
based FL approach could be implemented, from the interactive front-end to the FL
aggregation process on the server, using state-of-the-art technologies. Our FL appli-
cation can work as an additional service module for building trust and encouraging
users to engage with interactive deep learning (IDL) systems (Sonntag et al., 2024),
particularly in domains where privacy is essential.

We used ONNX Runtime for client-side training for its compatibility with pop-
ular ML frameworks and support for modern browser features, such as WebAssem-
bly and WebGPU. The browser-based approach tackled various challenges in terms
of compatibility, integration, and user adoption. During development, a number of
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limitations arose from ONNX Runtime’s early-stage support for the web. These in-
cluded fixed learning rates and limited loss functions. Furthermore, browsers imposed
storage limits for local datasets and only supported the WebGPU standard in special
developer builds. Despite these limitations, the utilized technologies could already
work together to enable efficient training on the client side with support for feder-
ated learning to collaboratively train a model across devices.

7.1 Future Work

As discussed in Chapter 6, FedBuff achieved fair performance in the binary classifica-
tion of OCT data, though there is room for improvement. Future work could explore a
more extensive optimization process. Since FedBuff introduces a server learning rate
as an additional hyperparameter, further experimentation may be required to identify
optimal conditions. In our experiments with transfer learning, we used a fixed num-
ber of fully connected layers with a predetermined size before the final classification
layer. Both the number and size of these layers could be included in the hyperpa-
rameter optimization for fine-tuning. Another direction for improvement is adjusting
the number of clients in the training process. Testing different values could reveal
whether performance improves with fewer clients, providing insights into how finely
the dataset can be partitioned before performance degrades. Additionally, FedBuff
could be applied to other class combinations within the dataset to see how complex
of a task it can handle. Testing it on larger or combined OCT datasets may also show
whether a bigger sample size enhances performance. Beyond FedBuff, experiment-
ing with other asynchronous FL algorithms would be an interesting extension of this
research. Instead of image classification, other computer vision tasks, such as object
detection, can be tested with FedBuff or other asynchronous FL algorithms.

In addition, applying active learning techniques of OCT datasets, as discussed in
(Kadir et al., 2024, 2023), for sample selection in FedBuff’s training can be a promis-
ing direction. Integrating active learning strategies will enable the model to selec-
tively query the most informative and uncertain data points from clients, ensuring
that only the most valuable samples are labeled and used for training. This approach
can significantly reduce labeling costs, which is particularly advantageous in a med-
ical imaging context, where obtaining labeled data is often challenging, scarce, and
expensive. By focusing on the most impactful data points, this integration could en-
hance the efficiency and performance of FedBuff, leading to better model accuracy
while minimizing the need for extensive manual labeling efforts.

A reasonable next step for the POC application would be to conduct user studies
to gain insights into user adoption and performance in a real-world scenario. Another
direction would be to implement other computer vision tasks in the application, such
as image segmentation or object detection. An interesting addition could also be in-
tegrating from the field of explainable artificial intelligence, such as class activation
maps (Selvaraju et al., 2017), for example, helping users understand and trust the ma-
chine learning process. Moreover, enabling administrators within the application to
deploy new training tasks could enhance functionality. Administrators could upload
ONNX models, define classes, select the type of task (e.g., classification or segmen-
tation), select the algorithm, provide training instructions and oversee the training
progress. Finally, the application could allow clients to participate in multiple differ-
ent tasks with multiple local datasets for each use case.
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7.2 Code Availability

All of our results and the code to generate them can be found in this GitHub repos-
itory: https://github.com/tmaurer42/octdl-training. The source code for the
proof-of-concept application is available here: https://github.com/tmaurer42/interactive-
fl-poc.
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