
SAARLAND UNIVERSITY

Faculty of Mathematics and Computer Science
Department of Computer Science

MASTER THESIS

CutOver : A Novel Joint Data
Augmentation Method for Image

Captioning Systems

submitted by

LAVANYA GOVINDARAJU
Saarbrücken
January 2024



Advisor:
Aliki Anagnostopoulou
German Research Center for Artificial Intelligence
Marie-Curie-Str. 1
Oldenburg, Germany

Reviewer 1: : Prof. Dr.-Ing. Daniel Sonntag
German Research Center for Artificial Intelligence
Saarland Informatics Campus
Saarbrücken, Germany

Reviewer 2: Prof. Dr. Antonio Krüger
German Research Center for Artificial Intelligence
Saarland Informatics Campus
Saarbrücken, Germany

Submitted
25, January 2024

Saarland University
Faculty MI – Mathematics and Computer Science
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany



Declarations

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,

(Datum/Date) (Unterschrift/Signature)



Acknowledgements

I extend my sincere gratitude to my advisor, Aliki Anagnostopoulo (M.Sc.), for the
unwavering guidance provided throughout the course of my thesis work. Her invaluable
advice, continual support, patience, and encouragement played a pivotal role from the
initial stages of setbacks to the triumphant completion of my thesis. The journey has
been enriched through her mentorship.

I am also grateful to Prof. Dr.-Ing. Daniel Sonntag and Prof. Dr. Antonio Krüger
for affording me the opportunity to undertake this thesis project. Their support and
the conducive environment provided at Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI) contributed significantly to the successful completion of my research.

Lastly, I want to express my deepest appreciation to my beloved parents and my support-
ive friends. Their unwavering encouragement and unconditional support have been my
pillars of strength throughout my academic journey. Their presence has made a profound
difference, turning challenges into opportunities and accomplishments.

Saarbrücken, January 2024, Lavanya Govindaraju



Abstract

Image Captioning is a challenging task involving the generation of textual descriptions
for images, requiring a seamless integration of computer vision and natural language
processing. Current image captioning models heavily rely on extensive training with
large-scale image-text datasets, demanding significant computational resources. How-
ever, applying data augmentation to vision-language learning, where images and cap-
tions are intricately linked, presents challenges. This study introduces "CutOver," a novel
joint data augmentation method for image captioning systems, combining CutMix from
computer vision and instance crossover augmentation from natural language processing
to preserve the semantic relationship between images and text during transformation.

Acknowledging the completion of all conducted experiments and the observed outcome
that the CutOver method did not yield the anticipated improvement in image captioning
system performance, this thesis recognizes the misalignment with initial expectations.
A detailed description, analysis, and insights into the factors contributing to the lack
of success with the proposed data augmentation approach are provided. The compre-
hensive examination of the limitations and challenges faced in implementing CutOver
contributes valuable knowledge to the understanding of its effectiveness within the
specific context of image captioning systems.
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Chapter 1
Introduction

1.1 Motivation and Problem Statement

In recent times, there has been a significant surge in research focusing on vision-language
integration. Image captioning, as a vital task within the realm of multimodal AI, has
garnered substantial attention due to its potential applications in fields such as content
generation, accessibility, and human-computer interaction. This task involves generating
descriptive textual captions based on the visual content of images, essentially bridging
the gap between the visual and textual modalities [1, 2, 3, 4, 5, 6, 7, 8].

The goal is to enable machines not only to perceive the content of images but also to
express it in human-like language. This synthesis of CV and NLP has the potential to
transform the way we interact with and understand visual data. At the heart of IC lies
the development of sophisticated models capable of understanding the visual context
of an image and generating coherent, contextually relevant textual descriptions. These
models, often based on deep learning architectures, have shown remarkable performance
in recent years, thanks in part to the availability of large-scale image-text datasets and
advances in neural network architectures.

However, achieving such levels of performance often comes at a cost - the need for
vast computational resources. Training state-of-the-art IC models, which are capable of
generating high-quality, human-like captions, requires extensive access to GPUs and
substantial computational power. One critical aspect that has contributed to the success
of deep learning models in various domains is the use of DA techniques.

The motivation for this thesis is grounded in the inherent challenges associated with
the resource-intensive nature of training IC models, which traditionally rely on large
image-text pairs for effective learning. This conventional training process demands sig-
nificant computational resources, presenting a hurdle in resource-limited environments
where access to such resources may be constrained. This issue is particularly empha-
sized in the paper [9], which underscores the need for interactive models, especially in
scenarios where abundant annotated data is not readily available. The conventional
method of offline training for IC relies on extensive annotated data, a requirement that

1
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becomes impractical, especially for user-specific images lacking large-scale annotations.
To address the inefficiency arising from the scarcity of annotated data and the compu-
tational demands, DA emerges as a crucial technique. DA allows for the generation of
diverse training instances from limited data, effectively enhancing the model’s ability to
generalize and perform well on various inputs.

The primary objective of this thesis is to respond to the challenge of data efficiency in
resource-constrained environments by developing precise and efficient DA techniques
explicitly tailored for IC. The aim is to make IC more accessible and viable in a broader
range of applications, especially those operating under constraints in terms of computa-
tional resources and annotated data availability. By advancing DA techniques, the thesis
seeks to enhance the efficiency and applicability of IC models, ultimately contributing to
the broader accessibility of this technology across different contexts and scenarios.

Data augmentation serves multiple purposes in deep learning, including increasing
the efficiency of training and acting as a form of regularization in various domains,
including CV [10, 11, 12, 13, 14, 15, 16] and NLP [17, 18, 19, 20, 21, 22, 23, 24]. In CV, DA
methods such as random cropping, rotation, and flipping have been widely employed
to improve the performance of image classification and object detection models [25].
These techniques help models generalize better to unseen data by introducing variability
during training. However, when it comes to vision-language tasks like IC, applying
conventional DA methods is not straightforward. Unlike in single modal tasks where
data augmentation can be performed independently on either the images or the text,
in IC, both modalities are intrinsically linked. Images and their corresponding textual
descriptions provide complementary information, and any transformation applied to
one modality must ensure that the semantic coherence between the two is preserved.

This unique challenge has motivated researchers to explore novel DA strategies tailored
explicitly for vision-language tasks. The objective is to diversify the training data while
maintaining the strong semantic relationships between images and their associated
captions. These efforts are essential not only to improve the performance of IC models
but also to ensure that these models can effectively assist in applications like assisting the
visually impaired, generating rich textual descriptions of visual content, and enhancing
human-computer interaction.

Figure 1: Impact of Image Augmentation on Caption Consistency. Left: ’A boy is sitting
on the left side of the grey sofa.’ Right: Augmentation shifts boy to the right and changes
sofa color to green, yet the caption remains unchanged. Illustrates the limitations of
monomodal approaches in adapting to augmented visual content.
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One promising avenue for addressing this challenge is the development of joint DA
techniques that operate simultaneously on both images and their textual descriptions.
In monomodal approaches, IC models concentrate primarily on a single modality, ei-
ther exclusively analyzing the visual content of images or solely processing the textual
descriptions associated with them. An illustrative example from Figure 1 showcases
a caption describing a scene where "a boy sits on the left side of a grey sofa", while the
applied image augmentation involves flipping and color contrast. Interestingly, despite
alterations in the image, the caption remains unchanged, highlighting the limitation of
monomodal approaches. Even when the boy’s position shifts to the right, and the sofa
color changes to green, the caption persists as "a boy is sitting on the left side of the grey
sofa."

Monomodal strategies inherently face constraints due to the restricted integration of
visual and textual information. The isolation of these modalities often leads to missed
opportunities to capture a richer context and achieve a deeper understanding of the
content within images. The thesis’s central focus is to address these limitations and
pioneer joint approaches in the field of IC.

The research initiative seeks to bridge the gap between visual and textual modalities,
striving to enhance the synergy between them to provide more comprehensive and
contextually relevant image captions. By exploring joint approaches, the thesis aims to
overcome the inherent drawbacks of monomodal systems, ultimately working towards
improved performance and usability in real-world applications. The objective is to
push beyond the limitations of monomodal paradigms and pave the way for more
sophisticated and integrated IC systems that better reflect the complexity and richness of
visual content.

1.1.1 Challenges and opportunities in joint DA for IC

As the demand for sophisticated IC systems continues to grow, there is a pressing need
for novel approaches to DA that can effectively address the unique challenges posed
by multimodal tasks. The primary challenge in developing joint DA techniques for IC
is to strike the right balance between introducing diversity into the training data and
preserving the semantic consistency between images and text. This balance is crucial
to ensure that the augmented data can effectively improve model performance while
avoiding the generation of incoherent or nonsensical captions.

1. Preserving semantic consistency: One of the primary challenges in developing joint
DA techniques for IC lies in preserving semantic consistency between images and text.
This involves the identification and manipulation of common elements shared between
modalities. Recognizing objects, entities, or concepts present in both images and captions
is essential. Equally important is ensuring that any transformations applied to these
common elements maintain their semantic meaning. For instance, if an image features a
"red car", any augmentation that changes the car’s color to blue should be accompanied
by a corresponding adjustment in the textual description to maintain consistency.

2. Handling diverse image-caption pairs: The diversity of image-caption pairs presents
another significant challenge. Images can depict a wide range of scenes, objects, and
contexts, making it challenging to create a one-size-fits-all approach to joint DA. Addi-
tionally, textual descriptions accompanying images vary significantly in terms of length
and complexity. A robust joint DA strategy must be flexible enough to accommodate this
variability and adapt accordingly. Addressing these challenges is crucial for ensuring the
effectiveness and applicability of joint augmentation across diverse image-caption pairs.
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3. Utilizing Established Metrics for Evaluating Joint Data Augmentation: The chal-
lenge extends to utilizing robust evaluation metrics. Unlike single-modal tasks, vision-
language tasks such as Image Captioning (IC) demand more nuanced evaluation criteria.
Common metrics such as BLEU [26], METEOR [27], CIDEr [28], ROUGE-L [29], and
SPICE [30], which are used to assess the quality of generated captions. Establishing
nuanced evaluation criteria is imperative for accurately gauging the success of joint
augmentation methods in maintaining semantic coherence while introducing variability
into image-caption pairs.

1.1.2 The road ahead: investigating the potential of CutOver

In this context, this master’s thesis aims to introduce and explore a novel joint DA
method for IC systems, referred to as CutOver. The main idea behind CutOver is to
intelligently combine two distinct DA techniques — one from the domain of CV (CutMix)
and another from NLP (Instance Crossover Augmentation) [13, 31]. By integrating these
techniques into a joint augmentation strategy, CutOver seeks to overcome the challenges
of preserving semantic relationships while introducing variability into image-caption
pairs. CutMix, initially proposed as a regularization strategy for training strong image
classifiers with localizable features, involves replacing a rectangular region of an image
with a corresponding region from another image. This approach encourages the model to
focus on localizable features within images and has demonstrated success in improving
image classification tasks [13]. Instance crossover augmentation, on the other hand, lever-
ages concepts from NLP and aims to manipulate the textual descriptions associated with
images while preserving their semantic content. This technique introduces variations in
the textual modality, which can complement the visual variations introduced by CutMix.
The combination of these techniques in CutOver presents a unique opportunity to tackle
the challenges of joint DA for IC. By intelligently swapping and manipulating visual
and textual elements, CutOver aims to diversify the training data while maintaining
the semantic coherence of image-caption pairs. This research introduces CutOver as a
potential solution to the challenges posed by DA in vision-language tasks. However, it is
essential to acknowledge that not all novel approaches may be effective in addressing the
complex requirements of joint DA for IC. While CutOver holds promise, it is imperative
to conduct rigorous experiments and evaluations to assess its impact on model perfor-
mance. Moreover, it is possible that the introduction of such complex transformations
may not yield immediate improvements, and additional experiments may be necessary
to understand the potential reasons behind variations in model performance.

1.1.3 Unlocking the potential of joint DA

In conclusion, the advancement of DA techniques tailored for IC is essential for expand-
ing the frontiers of multimodal AI. The fusion of CV and NLP in IC opens up numerous
possibilities for applications that can benefit society at large. However, realizing these
possibilities demands overcoming the distinctive challenges posed by the joint DA. Cu-
tOver, as a novel technique, represents a significant step forward in addressing these
challenges. By amalgamating methodologies from CV and NLP, CutOver endeavors
to strike a delicate balance between introducing variability and preserving semantic
consistency in image-caption pairs. This research aims to scrutinize the potential of
CutOver in enhancing the robustness and performance of IC models. While CutOver
shows promise, acknowledging the complexity of the task is crucial. Not all approaches
may yield immediate improvements, necessitating additional experiments and analyses
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to understand the intricacies of joint DA for IC. Through these experiments and by
pushing the boundaries of innovation in DA, this master thesis aspires to contribute to
the ongoing advancement of vision-language models and their potential to transform the
way we interact with visual data. The exploration of CutOver and the broader landscape
of joint DA aims to bring us one step closer to realizing the full potential of IC in diverse
applications, from accessibility to content generation and beyond.

1.2 Approach and Contribution

The approach outlined in this master thesis centers around the development and evalua-
tion of a novel joint DA method, known as CutOver, designed specifically for enhancing
the performance and robustness of IC systems. CutOver represents a fusion of DA
techniques from both the CV and NLP domains, to strike a balance between introducing
diversity into the training data and preserving the essential semantic coherence between
images and their associated textual descriptions. This approach is poised to address the
challenges posed by DA in vision-language tasks and contribute to the ongoing evolution
of IC systems.

1.2.1 Approach: Developing CutOver and assessing its impact

The initial approach aimed to develop CutOver as a novel joint DA method by drawing
inspiration from existing techniques in CV and NLP. The steps in this approach included:

1. Understanding the challenges: Recognizing the complexities of joint DA for IC, the
approach started with a comprehensive understanding of these challenges. It involved
appreciating the delicate balance required between introducing variability and maintain-
ing semantic coherence in image-caption pairs.

2. Leveraging existing techniques: CutOver was designed by amalgamating two estab-
lished DA techniques — CutMix from CV [13] and instance crossover augmentation
from NLP [31].

3. CutMix: Originating as a regularization strategy for image classifiers, CutMix involved
replacing portions of one image with corresponding regions from another. This approach
aimed to encourage the model to focus on localized features, enhancing generalization.

4. Instance crossover augmentation: This technique focused on textual descriptions,
aiming to introduce textual variations while preserving semantic content.

5. Intelligent fusion: CutOver’s core innovation lies in its ability to intelligently combine
these techniques to maintain meaningful transformations between visual and textual
elements.

6. Implementation: CutOver was implemented as part of the data preprocessing pipeline
for IC models, generating augmented image-caption pairs.

7. Evaluation framework: An extensive evaluation framework was established to assess
CutOver’s impact on model performance, employing metrics such as BLEU, METEOR,
CIDEr, ROUGE-L, and SPICE.

8. Experiments and analysis: Rigorous experiments were conducted to evaluate the
performance of IC models trained with and without CutOver. The results were analyzed
to understand the extent to which CutOver improved the quality of generated captions.
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1.2.2 Contribution: Gaining insights into challenges and iterating on
solutions

The primary contribution of this research lies in the exploration of challenges encountered
during the development and evaluation of CutOver. While CutOver did not lead to
the expected improvements in this specific case, the insights gained are valuable and
contribute to the iterative nature of research:

1. Understanding limitations: The foremost contribution is a comprehensive understand-
ing of the limitations of CutOver in the context of IC. These limitations may include
unexpected interactions between visual and textual transformations or constraints spe-
cific to the datasets and models used.

2. Iterative research: This research underscores the iterative nature of scientific inquiry.
Not all novel approaches may yield immediate success, but the process of exploration
and experimentation contributes significantly to the field’s collective knowledge.

3. Analyzing variances: The analysis of experimental results provides insights into
potential reasons behind variations in model performance resulting from the novel
augmentation method. This analysis serves as a foundation for future investigations and
refinements.

4. Informing future work: The findings of this research inform future work in the domain
of joint DA for IC. Researchers can build upon these insights to develop more effective
strategies and address the challenges more precisely.

5. Comparative analysis: While CutOver did not achieve the desired outcomes, the
comparative analysis with existing augmentation techniques offers valuable guidance
for selecting DA strategies in vision-language tasks.

In conclusion, this revised perspective acknowledges that CutOver did not yield the
anticipated improvements in this specific case. However, it underscores the importance
of exploring challenges, understanding limitations, and contributing valuable insights
to the broader research community. Research is an iterative process, and even when an
approach does not lead to immediate success, the journey often uncovers valuable knowl-
edge that paves the way for future advancements in the field of vision-language models
and IC. This exploration of challenges and insights gained exemplifies the resilience
and adaptability of researchers, who continue to push the boundaries of knowledge,
even when faced with unexpected outcomes. It is through such endeavors that break-
throughs are eventually achieved, advancing our understanding and capabilities in
complex domains like multimodal AI and IC.

1.3 Thesis outline

In the opening chapter, we present the motivation and problem statement behind this
thesis and highlight the challenges and opportunities in developing the joint DA method
for IC systems. We then provide a concise overview of our approach and the major
contribution, concluding with an outline of the upcoming chapters.

In Chapter 2, we delve into relevant literature in the field. Our exploration includes a
discussion on both generic and recent IC architectures, with a focus on interactive IC.
The subsequent section reviews work related to standard and domain-specific datasets.
To provide a comprehensive understanding, we also outline relevant studies about both
basic and advanced DA techniques, covering transformations for both images and textual
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transformations.

In Chapter 3, we explore diverse deep learning concepts crucial to formulating our
proposed methods in this thesis. These include the fundamentals of deep learning, IC,
DA, object detection, attention mechanisms, and transformer architectures. Additionally,
we provide insights into the mathematical formulations and mechanisms of various
deep-learning model explanation techniques.

Chapter 4 shapes our proposed architecture and describes the pipeline. The initial section
offers a high-level synopsis of our benchmark architecture. Subsequent sections furnish
the intricate formulations for our selected object detector and corpora. Following this,
we expound on the CutOver augmentation method, elucidating its pipeline through
examples. The concluding section encapsulates the implementation details.

In Chapter 5, we delve into our experiments and results. The initial section provides
a comprehensive data description of the MS COCO dataset and the VizWiz dataset,
encompassing an overview, data source, and size, as well as the train/test split. The
subsequent chapter elucidates various evaluation metrics, including BLEU, ROUGE,
METEOR, CIDEr, and SPICE. Despite thorough exploration, our findings indicate that
the proposed method did not outperform the SOTA method or any other augmentation
methods. This comparison sheds light on the performance dynamics within the context
of different augmentation techniques.

Chapter 6, the discussion and future works, delves into the analysis and insights derived
from the study, providing a comprehensive discussion. We explore possible reasons for
the unexpected results and the underperformance of our proposed method, CutOver.
Additionally, the chapter outlines potential avenues for future research, providing a
roadmap for continued exploration in this domain.



Chapter 2
Related Work

The Related Work chapter is organized as follows: the first section provides an overview
of image captioning, delving into its architectures and interactive image captioning.
Subsequently, the chapter explores datasets relevant to image captioning. The following
section then introduces various data augmentation techniques, encompassing both image
and text augmentation strategies.

2.1 Image Captioning

Image captioning is the computational task focused on generating descriptive textual
sequences, denoted as C = {t1, t2, . . . , tn}, where C represents the set of individual
textual elements. Each t is a specific word or token contributing to the sequence, collec-
tively aimed at articulating the content of a given image I. Image captioning involves
the AI task of generating concise and human-like descriptions for images using natural
language [32, 33, 34]. This process includes recognizing objects within the image and
understanding scene details, object properties, and their interactions. The challenge
lies in replicating the innate human ability to effortlessly correlate descriptions with
encountered images. The generated captions aim to be both concise and comprehensive,
summarizing the salient contents of the given image in a single sentence.

It represents a crucial undertaking at the intersection of the visual and linguistic do-
mains. It addresses the intricate task of imbuing images with human-like understanding,
enabling the recognition of contextual information within an image and subsequently
enriching it with meaningful captions. At its core, IC tackles a formidable challenge:
transforming the inherent visual content of an image, typically represented as a sequence
of pixels, into a coherent sequence of words that effectively describes the image’s con-
tent. This intricate process is intricately framed as an end-to-end sequence-to-sequence
problem, where the input image is sequentially converted into a sequence of words. The
architecture governing this framework hinges upon a fundamental design known as the
encoder-decoder model.

In the early stages of IC research, traditional approaches primarily relied on rule-based
systems and handcrafted features. These pioneering methods, including work by [35]

8
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and [36], followed predefined rules and templates to identify objects, their spatial po-
sitions, and relationships within images, subsequently generating textual descriptions.
Although serving as significant initial steps, these methods were constrained by their
rigidity, often producing generic and unexpressive captions. The advent of deep learning
introduced a transformation in IC, enabling the generation of more contextually relevant
and expressive descriptions. Seminal models such as show and tell[37] and show, attend,
and tell [38] marked this turning point. These models CNNs [39], including architectures
like ResNet [40] and VGGNet [41], as encoders to convert input images into feature
vectors. These feature vectors encapsulated the essence of the visual content, which was
then passed to decoder layers. RNNs [42], such as LSTM [43] and GRU [42], within the
decoder translated these feature vectors into meaningful output sequences.

2.1.1 Architectures

In this subsection, we present some of the generic and recent image captioning architec-
tures.

The Show, Attend, and Tell [38] architecture is a caption generator that incorporates the
attention mechanism in two variants: a hard attention mechanism and a soft attention
mechanism. Soft attention indicates the relative importance of each part of the image to
other parts. On the other hand, hard attention separates certain parts of the image, and
only those parts were considered to generate the caption while ignoring the rest. A CNN
is used as an encoder, and the feature maps are extracted from the lower convolution
layer instead of the fully connected layer. These feature maps were flattened to produce
annotation vectors corresponding to a part of the image. These annotation vectors were
concatenated to generate a matrix which is used by the attention model to determine
sections of the image more relevant to generate the next word. LSTM with an attention
module is used as a decoder that can selectively focus on specific regions of an image by
selecting a subset of all the feature vectors. The inputs of this LSTM model are previously
generated words, hidden states, and the context vector which is a dynamic representation
of the relevant part of the image input at time t. Both variants of the attentive model
are trained with stochastic gradient descent on three datasets; MS COCO dataset [44],
flickr30k [45], and flickr8K [46].

Figure 2: A basic architecture of Show, Attend and Tell [38]

Anderson et al. [47] proposed a combined Bottom-Up and Top-Down attention mecha-
nism that can calculate attention at the level of objects and other salient image regions.
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The bottom-up attention is implemented using Faster R-CNN [48]: an object detection
model that uses bounding boxes to identify and localize instances of objects belonging
to specific classes. Faster R-CNN functions as a ’hard’ attention mechanism, as it selects
only fewer image-bounding box features from a collection of possible configurations.
Faster R-CNN with ResNet-101 [49] is used as an encoder, trained with a multi-task loss
function to generate image feature vectors. In the decoder, two layers of LSTM are used:
the first is a top-down attention model to weigh each feature during caption generation.
And the second is a language model, trained with a cross-entropy loss function to gener-
ate the captions. Experiments were conducted on the MS COCO dataset and achieved a
BLEU-4 score of 36.9. This method allows attention to be calculated more naturally at
the level of objects and other salient locations.

Attention is all you need [50] revolutionized information processing, multimodal model
construction, and sequence-to-sequence architectures, introducing transformers as a
novel design to replace traditional RNN/LSTM for handling sequential data. Trans-
formers employ self-attention, enabling the model to focus on specific parts of input
sequences, facilitating better handling of long-range dependencies, and improving con-
nections within the same sentence. This attention mechanism is crucial for tasks like
translation, ensuring an accurate understanding of context and reference objects in
changing scenarios.

Meshed-Memory Transformer [51] was proposed to explore the applicability of trans-
formers in image captioning.

Figure 3: Meshed Memory Transformer architecture [51]

It comprises a multi-layer encoder for image regions and a multi-layer decoder that
generates the output sentence. Image regions are encoded on multiple levels, considering
both low-level and high-level relationships. The model can learn and encode prior
knowledge when modeling these relationships using memory-augmented attention.
Self-attention is based on a pairwise relationship and cannot model a priori relationships
between image regions. As a solution to this limitation, a memory-augmentation encoder
was proposed that extended the set of keys and values in the encoder with additional
slots to extract prior information. In contrast to the original decoder block in [50] which
only performs cross-attention between the last encoding layer and the decoding layers,
the M2 has a meshed connection with all encoding layers. The model then summed
these contributions after they had been modulated. The model was evaluated on the MS
COCO dataset, and Faster R-CNN with ResNet-101 was used to represent image regions.
The experiments demonstrated that the M2 transformer achieved a new state-of-art on
the MS COCO dataset.
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One of the recent IC models Lemon [52], a LargE-scale iMage captiONer was introduced
based on vision-language pre-training to improve the performance boost. Lemon uses the
VinVL comprising an image feature extractor and a transformer model as the reference
model. The multi-layer transformer model with a multi-head self-attention layer followed
by a feed-forward layer on each layer, is used for multimodal fusion. The sequence-to-
sequence attention mask is applied in each self-attention layer for the captioning block
for text generation with the encoder layers. The output representation is either used for
prediction at the end or as input to the following layer. On numerous IC benchmarks,
including coco caption, nocaps, and conceptual captions, lemon has attained new state-
of-the-art. Even when using a zero-shot manner, lemon has the outstanding capacity to
generate captions for a diverse range of long-tail visual objects.

Another vision-language architectures mPLUG [53] was introduced for cross-modal
understanding and generation. The goal of this architecture is to recursively exploit
the effectiveness of connected cross-modal fusion and the efficiency of asymmetric
co-attention for enhanced cross-modal learning.

Figure 4: The model architecture of mPLUG [53]

It consists of two unimodal encoders for pictures and text separately, transformer visual
encoder and text encoder are used to encode the input image patches and input text
into a sequence of embeddings respectively. Following this, the representations in both
the images and the languages are fed into a cross-modal skip-connected network that
is made up of several skip-connected fusion blocks. The cross-modal skip-connections
allow the fusion of the visual and the language representations to occur at different levels
in the abstraction hierarchy across the modalities rather than at the same level. In each
of the skip-connected fusion blocks, connected attention modal fusion is deployed to
each of the asymmetric co-attention layers with a fixed stride value. The asymmetric
co-attention block consists of a self-attention layer (SA), a cross-attention layer (CA), and
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a feed-forward network (FFN). The input text feature is initially sent to the SA layer,
and the visual feature is subsequently injected into the text feature by the CA layer. The
results of the SA and CA are summed together and given to the FFN layer for visual-
aware text representation. The connected attention model consists of the self-attention
layer and the feed-forward network. The output of the asymmetric co-attention layers
i.e., the image features and text features are connected and given to the SA layer and
the FFN. Lastly, the result of the cross-modal representations is fed into a transformer
decoder for sequence-to-sequence learning. Also, mPLUG excels in a broad range of
vision-language tasks such as IC, image-text retrieval, visual grounding, and visual
question answering.

2.1.2 Interactive image captioning

Automatic Judgment of Neural Network-Generated Image Captions [54] addresses
the growing need for effective and efficient methods to assess the quality of captions
generated by neural networks in the context of image captioning. The rise of deep
learning techniques and neural captioning models has significantly advanced the field
of IC, but there remains a critical challenge — evaluating the quality of generated
captions. Traditionally, human annotators have been relied upon to judge the quality
of captions, which is both time-consuming and potentially subject to biases. To tackle
this challenge, the authors propose a novel automatic judgment system for assessing
neural network-generated image captions. This system aims to provide objective and
consistent evaluation of captions, thus saving time and resources while maintaining a
high standard of quality assessment. The core of this system involves a multi-faceted
approach to caption quality evaluation. It integrates linguistic and visual features,
addressing aspects such as fluency, relevance, and diversity. Moreover, it incorporates
metrics related to the captions’ engagement with the content of the associated images,
ensuring a comprehensive evaluation. One notable contribution is the introduction of a
crowd-sourcing-based evaluation platform that provides a benchmark for comparing the
quality of captions across diverse image domains. This platform allows for the systematic
evaluation of neural network-generated captions, enabling researchers and developers
to gauge the performance of their models more effectively. The paper leverages various
automated metrics, including BLEU [26], METEOR [27], and TER [55], to systematically
assess the quality of neural network-generated captions. By combining these metrics
with a diverse set of features and a crowd-sourced evaluation platform, the authors
provide a comprehensive framework for caption quality assessment.

Biswas et al. [56] proposed a novel IC architecture to increase the performance and
explainability of [38] by augmenting their visual attention mechanism. This model can
be used for various interactive machine learning and explainable artificial intelligence
techniques. This paper tackles the problem of "explanatory" IC, an approach that seeks
to provide captions that not only describe the content but also explain the underlying
rationale. It introduces a novel method that leverages both top-down and bottom-up
image features to enhance the descriptive and explanatory power of captions. The
approach combines various elements, including beam search and re-ranking, to optimize
caption generation. By doing so, it addresses the demand for interactive IC that caters
to users seeking in-depth and meaningful descriptions. The central idea is to fuse top-
down knowledge, such as object detection, with bottom-up features derived from the
image. This fusion allows for a more comprehensive understanding of the visual context
and object relationships, leading to captions that are both descriptive and explanatory.
The beam search technique, in combination with re-ranking, ensures that the generated
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Figure 5: Caption generation with augmented visual attention builds upon Show, Attend
and Tell [56]

captions not only adhere to predefined guidelines but also incorporate user-specific
preferences. The goal of this paper is to create a system that aligns with user expectations,
by offering not just a textual description but a deeper understanding of the image
content. In the realm of interactive IC, where user feedback plays a pivotal role, the
approach introduced in this work positions itself as a bridge between automated caption
generation and meaningful human interaction. By employing top-down and bottom-up
features, beam search, and re-ranking, the authors aim to enable a more fine-grained and
interactive captioning system that supports user preferences and serves as a model for
future developments in user-centric IC.

In the IC domain, most of the work is done in the English language compared to other
languages. [57] addresses the challenge of enhancing German image captions using a
combination of machine translation and transfer learning techniques. The primary focus
is on improving the quality and fluency of image captions generated in the German lan-
guage, which is particularly crucial for various applications, including accessibility and
content localization. The paper leverages machine translation to translate German cap-
tions into English and then back into German. This process aims to refine the captions by
aligning them with the natural language patterns in English, which has a more extensive
and diverse dataset available for training captioning models. The iterative translation
process helps correct language issues, improve word choice, and enhance overall caption
fluency. Additionally, the authors explore transfer learning, where models pre-trained
on English IC datasets are fine-tuned for the specific task of generating German captions.
This approach capitalizes on the wealth of pre-existing English captioning models and
fine-tunes them for German, taking advantage of the knowledge transfer. The paper
showcases how this combination of machine translation and transfer learning effectively
enhances German image captions. The proposed approach contributes to making im-
age captions more accessible, natural, and culturally appropriate for German-speaking
audiences. The study provides insights into the potential of cross-lingual and transfer
learning methods for improving the quality of generated captions in languages with
limited training data.

Another method to improve an IC model was proposed in [9] that represents a significant
milestone. Image captioning, a task involving generating natural language descrip-
tions for images, is traditionally reliant on large-scale annotated training data for the
development of state-of-the-art models [58, 59, 60]. However, the impracticality of this
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approach in resource-limited environments and the increasing demand for personalized
image captions in an interactive ML setting have paved the way for innovative solutions.
This paper introduces a transformative approach that aligns with the growing need for
data-efficient and adaptable IC models. The central premise revolves around integrat-
ing human feedback into the training process of IC models. It recognizes the inherent
challenges posed by the resource limitations in creating large-scale annotated datasets,
especially when the goal is to cater to user-specific images. In essence, the research
establishes a bridge between user interactions and the enhancement of IC capabilities.
This user-centric approach not only reduces the reliance on vast annotated datasets
but also builds user trust in AI/ML-based systems, a vital consideration in the age of
human-AI collaboration [61, 62, 63, 64]. The key components of this approach involve
starting with a base IC model, which has been pre-trained on the widely recognized MS
COCO dataset. This model serves as a foundation for generating captions for previously
unseen images. However, the innovative aspect comes into play when users engage
with the model by providing feedback on the generated captions and the corresponding
images. This feedback is harnessed for data augmentation, creating a wealth of addi-
tional training instances to facilitate the model’s gradual adaptation. To mitigate the
challenges of catastrophic forgetting, a critical problem when adapting models to new
data, the authors introduce a sparse memory replay component. The ultimate vision is
the development of highly customizable IC models that can seamlessly adapt to new
and diverse user-specific data, even in resource-constrained environments.

Putting Humans in the Image Captioning Loop [65] presents an innovative approach to
enhance IC models through interactive ML. Traditional training of IC models often relies
on large amounts of annotated data, which can be impractical in resource-limited settings.
To address this challenge, the authors propose an interactive system that leverages human
feedback to adapt the model to user-specific data efficiently. The proposed approach
consists of three key components: feedback collection, data augmentation, and model
update. In the feedback collection phase, the paper explores various methods to gather
user feedback. Users can provide different types of feedback, such as corrected captions,
marked objects or regions, and explicit alignment between corrected words and images.
The goal is to strike a balance between collecting rich feedback and maintaining user
engagement. The authors also consider the use of deep active learning acquisition
functions to select specific examples for feedback, potentially improving the efficiency of
feedback collection. Data augmentation plays a crucial role in maximizing the impact
of user feedback. The paper discusses different augmentation strategies, including
both caption-based and image-based techniques. Caption-based augmentation involves
methods like synonym replacement, back-translation, and paraphrasing. Image-based
augmentation includes various image transformations, such as cropping, warping, and
flipping. The authors also explore multi-modal augmentation, where both captions
and images are modified simultaneously to ensure they remain coherent. Finally, the
model update phase focuses on efficiently updating the model based on the augmented
training data. Instead of retraining the model from scratch, the paper explores batch-wise
model updates, allowing for more efficient adaptation to new information. The authors
address challenges such as avoiding catastrophic forgetting, expanding the decoder for
user-specific vocabulary, and integrating information about novel objects not previously
observed.
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2.2 Datasets

In this section, we highlight some of the frequently utilized datasets for IC tasks, encom-
passing both standard and domain-specific datasets.

1. Standard captioning datasets: Standard captioning datasets encompass a diverse
range of images and cover a wide array of topics, providing a general-purpose dataset
for captioning models.

The Microsoft common objects in context (MS COCO) [44] dataset was introduced for the
object recognition tasks in the context of scene understanding. This was done by collect-
ing many non-iconic images focusing on the common objects in their natural everyday
environment and different viewpoints. This dataset contains 91 object categories, 328,000
images having 2,500,000 labeled instances, and 5 captions for each of the images. One of
the major advantages of this dataset is that it has larger instances per category, thereby,
enhancing the 2D localization and improving the contextual information learning. The
flickr30k [45] dataset was introduced for the IC task. The pictures were collected from
the Flickr website, describing daily activities, events, and locations, annotated with
five captions each. This dataset comprises 31,783 images, 29,783 training images, 1000
testing images, and 1000 validation images. This dataset is often regarded as a popular
benchmark for the sentence-based IC.

2. Domain-specific datasets: Domain-specific datasets focus on particular domains or
industries, tailoring the data to specific contexts or applications.

The VizWiz dataset [66] is a challenging dataset designed for the visual question an-
swering tasks to facilitate the visually impaired people to address their everyday visual
questions. This was done by collecting the images directly taken by the visually impaired
individuals and recording a voice query about those images paired with ten captions for
each question. This dataset includes 23,431 training images, 117,155 training captions,
7,750 validation images, 38,750 validation captions, 8,000 test images, and 40,000 test
captions. The GoodNews dataset [67] is the largest news IC dataset that retrieves news
articles, images, and captions from the New York Times API ranging from 2012 to 2018.
This dataset consists of 466,000 images, 424,000 training images, 18,000 validation images,
and 23,000 testing images. The captions were annotated by the journalists and had only
a single caption for each image. Open Images V6-Localized Narratives was launched
in 2020 with the form of multimodal annotations namely, localized narratives [68] for
various IC tasks. The human annotator used a voice recording to describe each image in
the dataset while hovering their mouse over the described regions of the image. This
section with the local narratives now contains 1,671k images of the open images dataset
[69].

2.3 Data augmentation

In this section, we summarize some of the basic and advanced DA techniques for the
image and the text transformations respectively.

The two main problems in training a deep learning model are overfitting and underfitting.
Overfitting occurs when a model learns the information and noise in the training data to
the point where it has a negative effect on the model’s performance on new data. When
a model fits the training data too well, it is said to be overfit. Underfitting occurs when
the model is unable to capture the underlying trend of the data, i.e., it performs well on
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training data but poorly on testing data. Its presence simply indicates that the model or
algorithm does not sufficiently fit the data. This problem frequently arises when there is
insufficient data to train a model.

Many methods have been developed to alleviate the "overfitting" problem that persists in
big data-driven model-based deep CNNs. One such strategy is data augmentation. Data
augmentation lies at the heart of all successful applications of deep learning, ranging
from image classification [70] to speech recognition [71] due to its ease of implementation
and effectiveness in resolving the issue of underfitting and overfitting. It aims to deal
with a lack of training data and tries to introduce data variability into real-world data
via label-preserving changes. The outcomes of data augmentation are often referred to
as synthetic data, created data, simulated data, or artificial data.

2.3.1 Image augmentation

Different techniques have been explored for data transformations by leveraging the
substantial domain knowledge leading to improved generalizability. One among them is
the basic image transformations [72] such as
a) Rotation: The image can be rotated right or left on an axis at an angle between 1° and
359°.
b) Colour space: The color channels of the image can be changed.
Cropping: Crop a central patch of each image with mixed height and width dimensions.
c) Flipping: The image can be flipped horizontally, vertically, or both ways.
d) Scaling ratio: Image size can be increased or decreased.
e) Occlusion: Occlusion in an image occurs when an object hides a part of another object.
f) Salt and pepper: Salt and Pepper noise refers to the addition of white and black dots in
the image.
g) Blur: Blurring is to make something less clear or distinct.
h) Translation: The image can be moved horizontally, vertically, or both ways.
i) Contrast: The contrast of the image can be changed or altered.

Figure 6: Different image augmentation techniques a) Rotation b) Color c) Crop d) Flip e)
Scale f) Occlusion g) Salt and Pepper h) Blur [73]

Other methods include advanced techniques like Cutout [10], a simple augmentation
technique that randomly masks out square regions of input during training to improve
the robustness and the performance of the convolution neural networks. In this method,
the network drops the units on the input stage rather than the intermediate layers, so
that visual features, including the objects eliminated from the input image, are similarly
removed from all subsequent feature maps. Cutout solves the problem of recognizing
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partial or occluded images by letting the model evaluate preferably on the minor features
rather than the major features of the image.

Mixup [11], a form of vicinal risk minimization [74] was proposed to reduce unenviable
problems such as memorization and sensitivity to adversarial examples of large deep
neural networks. This is a DA method that regularizes the neural network by training
the model on the convex pairs of examples and their labels. While certainly improving
classification performance, Mixup samples tend to be unnatural as it makes full use of
pixels. Mixup samples suffer from the fact that they are locally ambiguous and unnatural,
and therefore confuse the model, especially for localization.

Figure 7: A visual comparison of a) Mixup b) Cutout c) CutMix d) Attentive CutMix [75]

The regional dropout methods eliminate informative pixels from the training images
superimposing a patch of either black pixels [10] or random noise [76] leading to data loss
and inefficiency during training. To overcome these issues, CutMix [13]: an augmentation
strategy was proposed where the removed regions are replaced with the patches that are
cut and pasted within mini-batches from the training images. The ground truth labels are
combined proportionally to the area of the patches. Therefore, it has no uninformative
pixels during training, making training more efficient, and improving localization by
requiring the model to recognize the object from a partial view. CutMix has not only
shown performance boosts in the image classification tasks but also for a wide range of
localization tasks and transfer learning experiments. Furthermore, merely employing the
CutMix-imageNet pre-trained model for the object detection and the IC tasks improves
the overall performance.

Even though CutMix [13] has demonstrated significant effectiveness in classification
and localization performance, it hinders the practical results of the method. This is due
to the chances of cutting the unimportant background patch and pasting it onto the
second image simultaneously since the patch is cut of random size and location from the
image. As a result, it becomes more difficult for the model to overfit on a specific subject
and forced to learn more significant features associated with that subject rather than
the subject of interest. Attentive CutMix [77], an attention-based CutMix augmentation
strategy was introduced to address this shortcoming. In this method, a pre-trained
network decides the most meaningful or representative regions within the image then
the top "N" attentive region patches are selected to cut from the first image. In the
second image, these cutout patches are pasted in the exact location as in the first image.
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The experimental results on CIFAR-10 and CIFAR-100 [78] exhibit that this attention
method generates robust image fusing without additional training or testing costs and
outperforms the baseline methods by a considerable margin.

2.3.2 Text augmentation

Text data augmentation is based on the concept of semantically invariant transformation
[79], which means the data transformation should be done such that the newly generated
data does not change the class label. A range of research is done on different augmen-
tation techniques that can be applied to all types of texts, sentences, and paragraphs.
Examples of these diverse text DA methods are provided in the table 1.

Augmentation method, lexical embedding [80] is done on the Twitter corpus [81] for
analyzing annoying behaviors in social media. This approach used k-nearest neighbors
(knn), where each word in a tweet is replaced by their knn words based on the cosine sim-
ilarity between the word and its knn neighbors. A similar method, synonym replacement,
was proposed as a part of the EDA [21] technique. In this method, the model chooses n
words at random from the sentences that do not stop words, and each of these words is
replaced with a random synonym. Word replacement/lexical replacements [79] using the
thesaurus is the same as synonym replacement. But, in this method, hyperonyms are
preferred for lexical substitution (more general word, sparrow => bird) while hyponyms
are avoided (more specific word, bird => sparrow).

However, the synonym-based augmentation techniques can be applied to only a small
fraction of the vocabulary as the words having identical or nearly the same meanings
are too less. As a result, the synonyms are quite restricted, and the synonym-based
augmentation cannot build a wide range of patterns from the original texts. Kobayashi
[82] introduced a method known as contextual augmentation, in which the words are
replaced with substitute words that are predicted by a bi-directional LM, given the
context surrounding the original words to be augmented at the word positions. Here,
sample words are generated at each word position in the sentences for augmentation
at each update during model training. But in this case, the substitute word could
be the opposite of the original word which will change the label making contextual
augmentation incompatible with the annotated labels of the original sentences. As a
solution, LM with label-conditioned architecture was introduced, which fed also the
label into the bidirectional LM, resulting in an output calculated from the combined
information from both the label and the context.

Random insertion, random swap, and random deletion are the other EDA methods [21].
Random insertion finds a random synonym for a non-stop word in a sentence and inserts
that synonym into the sentence at random. Random swap chooses two words at random
from the sentence and swaps their positions. Random deletion eliminates each word
in the statement at random with a probability p. Similarly, Textual noise injection [79]
injects weak textual sounds: changes, additions, deletions of letters in words, changes of
the case, and modification of punctuation in the text. Spelling errors injection [79] is a
way of injecting the noise to create texts based on a list of the most common misspellings
in English to train the models, thus making them more resistant to this specific kind of
textual noise.

Data augmentation approaches like two-way translation and instance crossover [31]
were proposed for the detection of sentiment polarity of Spanish tweets. An external
machine translation service is employed in two-way translation to convert tweets to other
"pivot" languages and then back to Spanish. This allows to bring lexical and syntactical
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variants to tweets while retaining their sense in most cases. Instance Crossover is a new
augmentation concept focused on creating new data by mixing pairs of sentences with
the same label. This method divides the tokenized tweets into two halves, then randomly
samples and merges the first and second halves. The instance Crossover is a very rough
and naive method but is beneficial to add more data variability than two-way translation.

S.No. AUGMENTATION
METHODS

ORIGINAL TEXT AUGMENTED TEXT

1 Lexical embedding/
Synonym replace-
ment/ Word replace-
ment

A man laying on bench
holding leash of dog sit-
ting on ground.

A man resting on bench
holding collar of dog sit-
ting on ground.

2 Contextual augmenta-
tion

The movie is funny The actor is funny
The performance is
funny
The plot is funny
The scene is funny

3 Random insertion A girl is talking on the
phone while walking in
the park.

A girl is talking on the
speaking phone while
walking in the strolling
park.

4 Random swap A girl is walking on the
phone while speaking
in the park

5 Random deletion A girl is on the phone
while in the park.

6 Textual noise injection Alice’s dog is swim-
ming in the lake

Alice dog is Swimming
in the lke.

7 Spelling errors injec-
tion

The children are eagerly
waiting to receive their
gifts tomorrow.

The children are eagerly
waiting to recieve their
gifts tommorrow.

8 Two-way translation Hello, how are you?
Hallo, wie geht’s?

Hallo, wie geht’s?
Hello, how are you do-
ing?

9 Instance crossover The perfume is fabulous.
I like the perfume
The perfume has the
lavender aroma. Love
the fragrance.

The perfume is fabulous.
Love the fragrance.
The perfume has the
lavender aroma.I like
the perfume

Table 1: Examples of text DA techniques



Chapter 3
Technical Background

The technical background chapter provides a comprehensive overview of the essen-
tial elements underpinning the thesis work. From the fundamentals of deep learning
and image captioning to exploring data augmentation, object detection, and attention
mechanisms, we lay the groundwork for a detailed exploration in subsequent sections.

3.1 Deep learning

In this section, we present a brief overview of fundamental deep learning architectures,
focusing on CNNs and LSTM networks.

Figure 8: The image illustrates the anatomy of a deep neural network, revealing its hierar-
chical structure. The network comprises input, hidden, and output layers, interconnected
by nodes that symbolize the neural units. This visual representation provides a detailed
glimpse into the intricate design of deep learning, showcasing the flow of information
through the layers, ultimately reaching the network’s capacity for sophisticated compu-
tation and pattern extraction. [83]

Deep learning, a subfield of ML, has emerged as a game-changing paradigm that has

20
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revolutionized numerous domains through its ability to automatically learn intricate
patterns and representations from data. This transformative approach is built upon the
foundation of neural networks, particularly deep neural networks, which are designed
with multiple layers to extract complex features and hierarchies from raw information.
Deep learning’s ascent to prominence has been fueled by its remarkable achievements in
CV, NLP, and speech recognition, among other areas. Deep learning’s historical roots
can be traced back to pioneering work in the late 20th century, but it gained widespread
recognition and traction in the early 21st century. LeCun et al. [84] note that deep learning
models, inspired by the structure of the human brain, excel in representation learning.
This entails the automatic discovery of features that are essential for understanding and
making predictions about data. These models, commonly referred to as artificial neural
networks, have demonstrated exceptional prowess in tasks like image classification,
object detection, and speech synthesis.

One of the defining characteristics of deep learning is its ability to perform end-to-end
learning. This means that deep neural networks can directly map raw input data to
output predictions without relying on manual feature engineering. Schmidhuber [85]
highlights the transformative impact of this approach, which eliminates the need for
domain-specific feature extraction and allows the model to learn relevant representa-
tions from the data itself. This end-to-end learning has significantly streamlined the
development of AI systems, making them more adaptable to various applications.

Scalability is another hallmark of deep learning, enabling the handling of vast datasets
and intricate tasks. Goodfellow et al. [86] emphasize that deep neural networks are
designed to process high-dimensional and unstructured data, making them well-suited
for tasks such as image recognition, language translation, and natural language un-
derstanding. The flexibility of deep learning architectures further contributes to their
widespread adoption. CNNs [39] are tailored for CV tasks, while RNNs [42] excel in
processing sequential data like natural language.

Transfer learning, a technique frequently employed in deep learning, leverages pre-
trained models to bootstrap learning for new tasks. Bengio [87] discusses how this
approach has the potential to save significant training time and data, as models pre-
trained on one task can be fine-tuned for related tasks. Transfer learning has been
particularly valuable in areas like image classification, where models pre-trained on
massive image datasets can be adapted for specialized applications with relatively small
datasets.

3.1.1 Convolution neural networks

The architecture of a CNN [39] is inspired by the human visual system, designed to
recognize patterns and objects in images. It consists of multiple layers, each with spe-
cific functions in feature extraction, transformation, and classification. A typical CNN
architecture comprises the following key components:

1. Input layer: The input layer represents the raw image data, usually in the form of a
grid of pixel values. For color images, it consists of three channels (red, green, and blue),
while grayscale images have one channel. The input size is typically fixed, but CNNs
can handle various input sizes through techniques like resizing or cropping.

2. Convolutional layers: Convolutional layers are the core building blocks of CNNs.
They consist of a set of learnable filters (or kernels) that slide over the input image. Each
filter detects specific features or patterns, such as edges, corners, and textures, within a
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Figure 9: A convolutional neural network architecture [88]

local receptive field. Convolutional operations involve element-wise multiplications and
aggregation to produce feature maps. The depth of the feature maps corresponds to the
number of filters used in the layer. Multiple convolutional layers capture increasingly
complex and abstract features.

Convolution: (I ∗K)(x, y) =
∑
i,j,c

I(i, j, c) ·K(x− i, y − j, c)

3. Activation functions: Following the convolution operation, an activation function is
applied element-wise to introduce non-linearity to the model. One widely used activation
function is the Rectified Linear Unit (ReLU), defined as

ReLU: f(x) = max(0, x)

In this expression, "max" stands for the maximum function, comparing the input x with
zero and outputting the greater value. ReLU, by returning zero for negative inputs and
leaving positive values unchanged, facilitates the modeling of complex relationships in
the data. Its computational efficiency and ability to introduce non-linearity make ReLU a
preferred choice in various deep learning architectures.

4. Pooling layers: Pooling layers play a crucial role in reducing the spatial dimensions
of feature maps while retaining essential information in CNNs. The commonly used
technique, max-pooling, involves retaining the maximum value within a small region of
the feature map. In addition to max-pooling, average pooling is another technique where
the average value in a small region is calculated. These pooling operations contribute
to controlling the model’s size and computational complexity, while also introducing
translational invariance to enhance the network’s robustness.

Max-Pooling: P (x, y) = max
i,j

I(2x+ i, 2y + j)

Average Pooling: P (x, y) =
1

4

∑
i,j

I(2x+ i, 2y + j)

5. AdaptiveAvgPool2d: The utilization of adaptive average pooling plays a crucial role
in accommodating variable input sizes and ensuring consistent feature representation.
PyTorch provides the AdaptiveAvgPool2d layer, which offers a dynamic approach to
spatial pooling. Unlike traditional average pooling layers that rely on fixed kernel sizes,
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AdaptiveAvgPool2d allows the specification of the desired output size, adapting the
pooling window dynamically based on the input dimensions. This flexibility proves
especially valuable when dealing with CNN for CV tasks, where the spatial dimensions
of input tensors may vary. By incorporating AdaptiveAvgPool2d in the network de-
sign, we can seamlessly transition from convolutional layers to fully connected layers,
facilitating a uniform input size for subsequent operations. This layer is instrumental
in achieving consistent and effective feature extraction while accommodating diverse
input dimensions, contributing to the robustness and adaptability of the neural network
architecture.

6. Fully connected layers: Fully connected layers come after the convolutional and
pooling layers. Neurons in these layers are connected to every neuron in the previous
layer. They capture high-level abstractions and spatial hierarchies in the feature maps.
Fully connected layers are typically used for classification or regression tasks.

7. Output layer: The output layer’s structure depends on the specific task. In classifi-
cation tasks, it usually contains neurons corresponding to class labels, with a softmax
activation function to output class probabilities. In regression tasks, it may have a single
neuron with a linear activation function for numerical predictions.

Softmax: sσ(z)i =
ezi∑K
j=1 e

zj
, i = 1, 2, ...,K

8. Loss function: The selection of the loss function is a critical decision dependent on the
specific task at hand in ML. Commonly used loss functions include: MSE is commonly
employed in regression tasks, where the goal is to predict continuous numerical values.
It measures the average squared difference between the predicted and true values. The
formula is given by:

a. Cross-entropy loss (or log loss) for classification: This loss function is well-suited for
classification tasks. It measures the dissimilarity between the predicted class probabilities
and the true class labels. The formula for binary classification is often expressed as:

L(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) ,

where y is the true label and ŷ is the predicted probability.

b. MSE for regression: MSE is commonly employed in regression tasks, where the goal
is to predict continuous numerical values. It measures the average squared difference
between the predicted and true values. The formula is given by:

L(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2

where N is the number of samples, yi is the true value, and ŷi is the predicted value.

8. Optimization algorithm: Optimization algorithms like SGD, Adam, or RMSprop are
used to update the network’s parameters during training. The goal is to minimize the
loss function by adjusting the weights and biases.

9. Dropout: Dropout is a regularization technique used to prevent overfitting. It
randomly drops a fraction of neurons during training, forcing the network to learn more
robust features.

10. Batch normalization: Batch normalization normalizes the activations of each layer to
ensure stable and efficient training. It helps mitigate issues like vanishing gradients and
accelerates convergence.
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CNNs are designed to automatically extract hierarchical features from images. Each
layer, from convolutional to fully connected, plays a crucial role in transforming the
input data and learning representations that enable effective visual recognition tasks,
such as image classification and object detection. The architecture and components can
vary based on the specific CNN model and task at hand.

3.1.2 Long short-term memory

LSTM [43] networks represent an advancement in the domain of RNNs [40], strategically
crafted to overcome inherent challenges in modeling sequential data and circumvent
the vanishing gradient problem encountered by conventional RNNs. The ubiquity of
LSTMs in diverse applications, such as natural language processing, speech recognition,
and time series prediction, underscores their efficacy in capturing intricate temporal
dependencies. This elucidation delves into the intricacies of LSTM architecture and
provides a detailed exploration of the mathematical equations governing its operations.

Figure 10: LSTM cell architecture, here Xt: input time step, ht: output, Ct: cell state, ft:
forget gate, it: input gate, ot: output gate, C̃t : internal cell state [89]

At its essence, an LSTM comprises a memory cell that serves as the central repository for
information, maintaining and regulating the flow of data across various time steps. The
hallmark of LSTMs lies in their utilization of gating mechanisms, each serving a unique
purpose. The input gate it, forget gate ft, and output gate ot collectively empower the
network to selectively process and store pertinent information. This adaptability posi-
tions LSTMs as powerful tools for learning complex patterns within sequential data.

Now, delving into the mathematical underpinnings of LSTMs, the input gate it is defined
by the sigmoid function applied to a linear combination of input xt, previous hidden
state ht−1, and corresponding weights and biases:

it = σ(Wiixt + bii +Whiht−1 + bhi)

Similarly, the forget gate ft and output gate ot follow analogous formulations:

ft = σ(Wifxt + bif +Whfht−1 + bhf )

ot = σ(Wioxt + bio +Whoht−1 + bho)
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The candidate memory cell content c̃t is computed using the hyperbolic tangent function:

c̃t = tanh(Wigxt + big +Whght−1 + bhg)

The final memory cell state ct is determined by combining the previous memory cell
content ct−1, the forget gate ft, and the input gate it:

ct = ft ⊙ ct−1 + it ⊙ c̃t

Finally, the hidden state ht is computed based on the output gate and the hyperbolic
tangent of the memory cell content:

ht = ot ⊙ tanh(ct)

The intricate orchestration of architecture and mathematical formulations allows LSTMs
to effectively capture and retain information over extended sequences, making them
well-suited for tasks such as natural language processing, time series prediction, and
speech recognition. The flexibility of the gating mechanisms empowers LSTMs to learn
and adapt to complex patterns within sequential data, making them a powerful tool in
the realm of deep learning.

3.2 Image captioning

Image captioning is an interdisciplinary field that combines CV and NLP to automatically
generate descriptive and contextually relevant textual captions for images. This field
has gained substantial attention due to its wide-ranging applications, such as enhancing
accessibility tools for the visually impaired and improving content recommendation
systems.

Deep learning - The foundation of image captioning: The proliferation of deep learning
techniques has been instrumental in advancing IC. Deep neural networks, including
CNNs for image feature extraction and RNNs for sequence generation, form the backbone
of IC models. CNNs excel at capturing intricate visual details within images [90], while
RNNs are adept at processing sequential data, making them suitable for generating
coherent textual descriptions [37].

Multimodal data handling: IC is inherently multimodal, requiring the seamless integration
of visual and textual information. This integration involves encoding the visual content of
the image into a fixed-length vector using CNNs, which serves as input to an RNN-based
decoder responsible for generating captions word by word [38]. Attention mechanisms
have been pivotal in enhancing this process, enabling models to focus on relevant image
regions while generating captions [38].

3.3 Data augmentation

Data augmentation is a critical technique in ML and CV used to artificially increase the
size of a training dataset by applying various transformations to the original data. These
transformations create new, slightly modified versions of the existing data, which helps
improve the robustness and generalization ability of ML models, particularly in tasks
like image classification and object detection. In this explanation, we will delve into data
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augmentation, its importance, and its applications, supported by relevant citations. DA
serves several essential purposes in ML:

1. Increased diversity: By creating variations of the original data, data augmentation
introduces diversity into the training dataset. This diversity is crucial for preventing
models from overfitting to the specific examples in the training set.

2. Improved robustness: Augmented data exposes models to a broader range of sce-
narios and variations, making them more robust to different conditions, lighting, and
orientations.

3. Reduced overfitting: With a larger dataset, models are less likely to memorize the
training data and instead focus on learning the underlying patterns.

4. Better generalization: Augmentation techniques encourage models to generalize
better to unseen data by training them on a more representative set of examples.

Common DA techniques are:

1. Image augmentation: In computer vision, image augmentation is widespread. Tech-
niques include rotation, flipping, zooming, cropping, changing brightness, adding noise,
and applying geometric transformations like affine and perspective transformations.

2. Text augmentation: For natural language processing, text data can be augmented by
adding synonyms, changing word order, or introducing grammatical variations. This
helps improve text classification and sentiment analysis models.

3. Audio augmentation: In speech recognition and audio analysis, audio data can be
augmented by adding background noise, changing pitch, speed, or volume, and applying
time-stretching or time-shifting operations.

DA finds applications across various domains and ML tasks:

1. Image classification [90]: Augmenting image data is widely used in image classifi-
cation tasks. For example, in the ImageNet Large Scale Visual Recognition Challenge,
DA played a crucial role in improving model performance by artificially expanding the
training dataset.

2. Object detection [91, 92, 48, 93] : In object detection tasks, augmenting both images
and object bounding boxes helps train models to detect objects accurately under different
scales and orientations.

3. Semantic segmentation [94] : Augmentation is applied to pixel-level annotation
in semantic segmentation tasks to create diverse training samples, enabling models to
segment objects effectively in different contexts.

4. Speech recognition [95, 96]: In automatic speech recognition, augmenting audio data
with variations in speed, pitch, and background noise enhances the model’s ability to
recognize speech in real-world environments.

5. Text classification [97, 98]: For text classification tasks, augmenting textual data
with synonyms, paraphrases, or slight modifications of sentences increases the model’s
understanding of different phrasings and expressions.

6. Medical imaging [99]: In medical image analysis, DA helps train models to recog-
nize pathologies and abnormalities across various patient populations and imaging
conditions.

Data augmentation is a fundamental technique in ML and CV that enhances model
performance by increasing dataset diversity, improving robustness, and reducing overfit-
ting. It is widely employed in image classification, object detection, natural language
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processing, speech recognition, and medical imaging, among other domains. By creating
augmented versions of the data, ML models can generalize better and perform more
effectively in real-world scenarios.

3.4 Object detection

This section provides a concise overview of object detection and its different methods
like R-CNN, Fast R-CNN, and Faster R-CNN, emphasizing their key components and
workflow.

Object detection is a fundamental task in CV with numerous applications, from au-
tonomous driving and surveillance to image retrieval and augmented reality. This
technique involves identifying and locating objects of interest within images or video
frames, often bounding them with rectangles or polygons. In this detailed explana-
tion of object detection, we will explore the key concepts, methodologies, and recent
advancements in the field. Object detection addresses the challenge of simultaneously
classifying objects and determining their precise locations within an image or video
frame. Unlike image classification, which identifies the main object in an image, object
detection identifies multiple objects and their positions. The ability to detect and locate
objects in images is crucial for a wide range of applications, including self-driving cars,
medical imaging, and content-based image retrieval. Object detection is a crucial CV task
with numerous applications. Over the years, various methodologies, including R-CNN
[91], YOLO [93], and SSD [100], have been developed to address the challenges in object
detection. Recent advancements, such as EfficientDet [101] and DETR [102], continue to
push the boundaries of accuracy and efficiency. As object detection remains a vibrant
field of research, it holds the promise of further improvements in real-time, accurate, and
efficient object localization and classification.

Object detection is a complex task due to several challenges:

1. Object scale and size variation: Objects can appear at different scales and sizes within
an image, making it essential for detection models to handle scale variations.

2. Object occlusion: Objects may be partially or fully occluded by other objects or
elements in the scene, requiring models to handle occlusions robustly.

3. Cluttered backgrounds: Cluttered or complex backgrounds can make it challenging
to distinguish objects from their surroundings.

4. Object pose and orientation: Objects can appear at various poses and orientations,
requiring models to be rotation-invariant.

5. Real-time processing: Many applications, such as autonomous driving, demand
real-time object detection, imposing strict computational constraints.

Several methodologies have been developed for object detection over the years. Some of
the prominent ones include:

3.4.1 Region-based convolutional neural networks

R-CNN [91] represents a landmark in the evolution of object detection methodologies
within CV. Conceived to address the limitations of earlier approaches, R-CNN introduced
a paradigm shift by decoupling the tasks of region proposal and object classification into
a two-stage process.
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Figure 11: The architecture of R-CNN [91]

The key components of the R-CNN family include:

1. Region proposal: In the initial stage, a selective search algorithm is employed to
propose a set of candidate regions within an image that is likely to contain objects. These
proposed regions serve as the input for subsequent processing.

2. Feature extraction: Each proposed region is then individually processed through a
CNN to extract relevant features. This stage involves resizing the region to a fixed size
and passing it through pre-trained CNN layers to obtain a feature representation.

3. Object classification: The extracted features from each region are used for object
classification through a set of fully connected layers. In the original R-CNN, a support
vector machine is employed for classification.

4. Bounding box regression: Additionally, R-CNN includes a bounding box regression
step to refine the proposed regions, improving the localization accuracy of the detected
objects.

While groundbreaking, the original R-CNN suffered from computational inefficiencies
due to the independent processing of each region. This limitation led to subsequent
improvements in the R-CNN family, including:

3.4.2 Fast region-based convolutional neural networks

Figure 12: The architecture of Fast R-CNN [92]

Fast R-CNN [92] is a significant advancement within the R-CNN family, aiming to ad-
dress computational inefficiencies present in the original R-CNN. Fast R-CNN introduced
key improvements, streamlining the two-stage process of region proposal and object
classification, and significantly enhancing the speed and efficiency of object detection.
This method improved the speed of object detection by introducing RoI pooling and



29

using a single network for both region proposal and object classification. Faster R-CNN
introduced the RPN for generating region proposals.

Introducing the Key Components and Workflow:

1. Region proposal: Fast R-CNN replaces the selective search algorithm used in the
original R-CNN with a RPN. The RPN generates region proposals directly as a part of
the end-to-end training process. The RPN operates on the convolutional feature maps
obtained from the input image, generating region proposals based on predefined anchor
boxes and their associated scores.

2. Feature extraction: The entire image is passed through a CNN to obtain convolutional
feature maps. The proposed regions are then aligned with the feature maps, enabling
accurate extraction of features for each region.

3. RoI pooling: Fast R-CNN introduces RoI pooling, which efficiently extracts a fixed-
size feature map for each region proposal, regardless of its size or aspect ratio. RoI
pooling is crucial for maintaining spatial information and ensuring that the extracted
features align properly with the region of interest.

4. Object classification and bounding box regression: The RoI-pooled features are then
passed through fully connected layers for object classification and bounding box regres-
sion. A softmax layer provides object class probabilities, and bounding box regression
refines the predicted bounding box coordinates.

5. Training and backpropagation: Fast R-CNN is trained end-to-end, allowing for joint
optimization of both region proposal generation and object classification tasks. The
model is trained using a multi-task loss function, encompassing classification loss and
regression loss for bounding box refinement.

Some of the advantages are as follows:

Improved efficiency: By sharing convolutional features across region proposals, Fast
R-CNN significantly reduces redundant computations, making it more computationally
efficient compared to the original R-CNN.

End-to-end training: The end-to-end training process simplifies the model and enables
seamless optimization, leading to improved performance.

Fast R-CNN’s innovations have had a lasting impact on the field of object detection,
paving the way for subsequent advancements such as Faster R-CNN and contributing to
the development of faster and more accurate models for real-world applications in CV.

3.4.3 Faster region-based convolutional neural networks

Faster R-CNN [48] represents a groundbreaking evolution within the R-CNN family.
Addressing the limitations of its predecessors, Faster R-CNN introduces an end-to-end
trainable architecture that integrates the region proposal generation process directly into
the network, further enhancing the efficiency and accuracy of object detection.

Let’s explore the key components and workflow of Faster R-CNN, where a transfor-
mative addition is the integration of a RPN directly into the architecture, allowing for
convolutional generation of region proposals and scores, thereby optimizing the entire
object detection process

1. Region proposal network: A crucial innovation in Faster R-CNN is the integration of
an RPN into the network architecture. The RPN operates convolutionally on the feature
maps, efficiently proposing regions with associated scores for potential objects. RPN



30

Figure 13: An illustration of Faster R-CNN model [48]

generates region proposals based on predefined anchor boxes and their corresponding
scores, creating a more unified and streamlined detection pipeline.

2. Anchor boxes: Faster R-CNN employs anchor boxes of different scales and aspect
ratios to efficiently capture objects of varying shapes and sizes. These anchor boxes serve
as reference templates for the RPN during proposal generation.

3. RoI pooling and feature extraction: RoI pooling is utilized to align and extract
fixed-size feature maps for each region proposal. This ensures that spatial information
is preserved and accurately aligned with the regions of interest. The features extracted
from RoI pooling are then used for subsequent object classification and bounding box
regression.

4. Object classification and bounding box regression: Fully connected layers process
the RoI-pooled features for object classification, providing class probabilities through a
softmax layer. Simultaneously, bounding box regression refines the predicted bounding
box coordinates for increased localization accuracy.

Examining the advantages of Faster R-CNN reveals its prowess in delivering an end-to-
end trainable model, efficient proposal generation through the integration of an RPN, and
adaptability to diverse object sizes, collectively enhancing the efficiency and performance
of object detection.

End-to-end training: Faster R-CNN introduces an end-to-end trainable model, allowing
for joint optimization of the RPN and object detection network. This unified training
process enhances model efficiency and performance.

Improved speed and accuracy: The integration of the RPN eliminates the need for a separate
proposal generation step, resulting in a more efficient and accurate detection system
compared to previous R-CNN variants.

Flexibility and adaptability: The use of anchor boxes provides flexibility in handling objects
of different sizes and aspect ratios, contributing to the model’s adaptability across diverse
datasets and scenarios.

Faster R-CNN has established itself as a cornerstone in object detection methodolo-
gies, setting the stage for subsequent advancements in the field and demonstrating the
potential for unified, end-to-end trainable architectures in CV.
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3.5 Attention mechanism

This section delves into attention mechanisms, exploring both soft and hard attention
mechanisms. It elucidates their key components, workflow, significance, and diverse
applications.

Neural networks have revolutionized the field of ML, demonstrating remarkable capa-
bilities in various tasks, from image recognition to NLP. However, traditional neural
networks have inherent limitations when it comes to processing sequences of data, where
different parts of the input may carry varying levels of importance. This limitation
becomes evident in scenarios where a model needs to focus selectively on specific ele-
ments within the input data. Herein lies the motivation for the introduction of attention
mechanisms in neural networks. Attention mechanisms are essential in neural networks
due to their ability to selectively weigh and prioritize different parts of the input data,
effectively mimicking the human cognitive process of selectively focusing on relevant
information. This feature becomes particularly crucial in scenarios where traditional
neural networks may struggle, including:

1. Variable-length sequences: In many real-world applications, data comes in the form
of variable-length sequences. For example, in NLP, sentences vary in length, and in image
analysis, the number of objects in an image may differ. Traditional neural networks with
fixed-sized inputs, struggle to handle such variability efficiently. Attention mechanisms
allow the model to adapt to varying input lengths by focusing more on relevant elements
while ignoring or de-emphasizing irrelevant ones.

2. Long-range dependencies: Certain tasks require capturing dependencies between
distant elements in a sequence. For instance, in language translation, understanding the
relationship between words at the beginning and end of a sentence is vital. Traditional
neural networks, which typically employ fixed-size windows or filters, may fail to
capture long-range dependencies effectively. Attention mechanisms enable the model to
establish connections between distant elements by assigning higher attention weights to
those elements, facilitating better information flow.

3. Multiple sources of information: In complex tasks, multiple sources of information
may be available simultaneously. For example, in machine translation, a model may
benefit from considering both the source sentence and its translation contextually. Tra-
ditional neural networks often struggle to incorporate and integrate information from
multiple sources efficiently. Attention mechanisms provide a solution by allowing the
model to attend to relevant parts of each source selectively.

4. Ambiguity and noise: Real-world data is often noisy and ambiguous. Traditional
neural networks are vulnerable to being misled by noisy or ambiguous information,
as they treat all input elements equally. Attention mechanisms enable the model to
reduce the impact of noise and ambiguity by emphasizing more reliable and contextually
relevant elements.

Incorporating attention mechanisms into neural networks mitigates these limitations
and enhances their capacity to handle complex, variable, and information-rich data. The
concept of attention itself draws inspiration from human cognition, where our brains
naturally allocate attention to the most relevant aspects of a situation. This alignment with
cognitive processes has contributed to the success of attention mechanisms in ML tasks.
Several notable architectures have leveraged attention mechanisms to achieve state-of-
the-art results. For instance, the transformer model, introduced by [50], relies heavily on
self-attention mechanisms to process sequences and has become the cornerstone of many
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natural language processing tasks. This demonstrates the profound impact that attention
mechanisms can have on model performance. Attention mechanisms are indispensable
in neural networks due to their ability to address the limitations of traditional models
in handling variable-length sequences, capturing long-range dependencies, integrating
information from multiple sources, and mitigating the impact of noise and ambiguity.
These mechanisms align with human cognitive processes, making them a powerful tool
in various ML tasks and serving as a foundation for many recent breakthroughs in the
field.

Attention mechanisms in neural networks draw inspiration from the concept of "attention"
in human cognition, a fundamental aspect of perception and information processing. In
the context of ML, attention mechanisms have been adapted to replicate and enhance this
cognitive process. Understanding the theoretical foundations of attention mechanisms
requires an exploration of both their cognitive origins and their ML applications. Atten-
tion is a cognitive process that allows humans to focus selectively on specific elements
of their sensory input, enhancing the processing of relevant information while filtering
out distractions. This cognitive mechanism is closely tied to our ability to perceive and
make sense of the world. It operates at various levels, from simple sensory attention,
such as focusing on a specific sound in a noisy environment, to more complex cognitive
attention, such as reading comprehension or problem-solving. One of the key principles
of attention in human cognition is the idea that attention is not uniformly distributed but
can be selectively allocated to specific regions or objects. This allocation is often guided
by factors such as saliency, relevance, and context. For example, when reading a book,
your attention shifts from word to word, with a greater focus on the current word and its
surrounding words, while other parts of the page are processed with lower attention.

In the field of ML, attention mechanisms have been adapted to mimic and enhance this
selective focus on relevant information. The introduction of attention mechanisms has
significantly improved the performance of various deep learning models, particularly in
tasks involving sequences or structured data. The fundamental idea behind attention
mechanisms in ML is to enable models to weigh and prioritize different elements of the
input data dynamically. This is achieved through the computation of attention weights,
which determine how much focus or "attention" should be assigned to each element in
the input sequence. The weights are computed based on learned parameters and the
context of the current processing step.

The theoretical foundation of attention mechanisms in neural networks is rooted in
the human cognitive process of selective attention. By adapting this concept to ML,
attention mechanisms have transformed the field, enabling models to dynamically focus
on relevant information within data sequences. This has led to significant improve-
ments in various applications, making attention mechanisms a cornerstone of modern
deep learning architectures. Understanding the cognitive origins of attention and its
integration into ML is essential for appreciating the power and versatility of attention
mechanisms in solving complex tasks. Attention mechanisms in deep learning can be
broadly categorized into different types based on their characteristics and the way they
allocate attention. These mechanisms are instrumental in enhancing the capabilities of
neural networks by enabling them to selectively weigh and focus on specific parts of
input data. Two primary types of attention mechanisms that have gained prominence
are hard attention and soft attention.
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3.5.1 Soft attention

Soft attention [103] is a mechanism in deep learning, widely used in various applications
to selectively focus on specific elements of input data. It operates by assigning attention
scores to elements and then calculating a context vector as a weighted sum of these
elements.

Key components and workflow

Attention scores (α): For a given input sequence, soft attention computes attention scores
(α) for each element. These scores represent the significance or relevance of each element
to the task at hand.

αi = f(query,keyi).

Here, ′query′ represents the context or target information that guides attention, and ′key′i
denotes the i-th element in the input sequence. The function ’f’ computes the attention
scores.

Attention weights (ω): The attention scores are transformed into attention weights (ω)
using a softmax function to ensure that they sum up to 1.

ωi =
eαi∑

j in input_sequence e
αj

.

The softmax function normalizes the attention scores, making them interpretable as
probabilities.

Context vector (c): Finally, soft attention calculates the context vector (c) by taking a
weighted sum of the input elements, where the weights are determined by the attention
weights (ω).

c =
∑

i in input_sequence

(ωi · valuei).

Here, ′value′i represents the value or content associated with the i-th element in the input
sequence.

Significance

Before delving into practical applications, let’s explore the significance of soft attention,
understanding its pivotal role in enhancing the performance of various tasks by dynami-
cally focusing on relevant information within input sequences. Soft attention’s weighted
information retrieval and differentiability make it a versatile and valuable tool in neural
networks. Its adaptability and effectiveness in enhancing model performance continue
to drive innovations across various domains, making it a cornerstone of modern deep
learning. By intelligently selecting and processing information, soft attention contributes
to the interpretability and efficiency of neural network models. Its mathematical formu-
lation and application versatility ensure its continued prominence in the field of artificial
intelligence.
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Applications

Now, we turn our attention to practical applications, starting with a focus on how soft
attention is instrumental in various domains.

1. NLP: Soft attention plays a crucial role in tasks like machine translation, where it helps
models align words in the source and target languages effectively. In this context, ’query’
could be the hidden state of the decoder, ’key _i’ corresponds to the encoder’s hidden
states, and ’value _i’ contains the encoded input words.

2. CV: Soft attention enhances image classification and object detection. In image
classification, ’query’ is derived from the current image features, ’key _i’ represents
the image regions, and ’value _i’ contains the visual content. Soft attention can also be
applied to text-to-image generation tasks, aligning words in descriptions with regions in
images.

3. Reinforcement learning: Soft attention helps agents focus on relevant information
when making decisions. In reinforcement learning, it aids in selecting important states
or actions in a dynamic environment.

Figure 14: Examples of soft (top) and hard (bottom) attentions [38]

3.5.2 Hard attention

Hard attention [38] is a distinct approach within the spectrum of attention mechanisms,
presenting a departure from the probabilistic weighting characteristic of soft attention.
In contrast to soft attention, which allocates non-zero weights to all elements in the
input sequence, hard attention selectively focuses on a subset of elements with non-zero
weights. This deterministic selection process contributes to increased interpretability and
is particularly well-suited for tasks that demand explicit and focused attention.

Key components and workflow

Stochastic selection: Within hard attention, the selection of elements follows a stochastic
process, involving a sampling mechanism based on probability distributions. This
introduces an element of randomness, distinguishing hard attention from its probabilistic
counterpart.

Attention scores (α): Hard attention, akin to soft attention, computes attention scores
(α) for each element. However, in the hard attention mechanism, these scores are
transformed into a probability distribution, guiding the subsequent selection of elements
based on this distribution. The calculation of attention scores (pi) is given by the softmax
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function:

pi =
exp(αi)∑

j∈input_sequence exp(αj)

Sampled index: In a departure from considering all elements, a single index is sam-
pled from the probability distribution to determine the element that will be selectively
attended to. This sampled index (sampled_index) becomes a pivotal factor in the subse-
quent computation.

Context vector (c): The context vector (c) is then computed based on the sampled index
and the associated value (valuesampled_index). This contextualized representation is derived
from the selectively attended element, emphasizing the deterministic focus intrinsic to
hard attention:

c = valuesampled_index

Significance

Hard attention introduces a layer of interpretability to attention mechanisms by explicitly
choosing a subset of elements for consideration. This explicitness proves advantageous
in scenarios where a deterministic focus is desired, such as in image captioning tasks or
when generating structured sequences.

While the sampling process in hard attention introduces a non-differentiability aspect,
it offers a deliberate trade-off between interpretability and differentiability. The choice
between these characteristics depends on the specific requirements of the task at hand,
highlighting the nuanced application of hard attention mechanisms in diverse contexts.

Applications

Hard attention finds applications in various domains, particularly where explicit and
deterministic focus is crucial. In IC, for example, hard attention can be employed to
selectively attend to specific regions of an image, aiding in generating more precise and
contextually relevant descriptions. Similarly, in tasks involving structured sequence
generation, hard attention mechanisms can enhance the clarity and coherence of the
generated sequences by focusing on key elements.

Hard attention presents a compelling alternative within the realm of attention mech-
anisms, introducing a deterministic selection process that aligns with interpretability
needs in various applications. Its distinctive features make it a valuable tool, particularly
in scenarios where explicit and focused attention is paramount.

3.5.3 Transformers

The most prominent example of attention mechanisms in ML is the transformer model
introduced in [50]. The transformer architecture relies heavily on self-attention mecha-
nisms to process sequences, making it highly effective in natural language processing
tasks. In the Transformer, attention is computed between all pairs of input elements,
allowing the model to capture complex dependencies and relationships within the data.

Transformers represent a groundbreaking architecture in the realm of NLP that has
significantly advanced the state-of-the-art in various language-related tasks. Unlike
traditional models that rely on recurrent or convolutional layers, transformers leverage
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a self-attention mechanism to capture contextual information efficiently across input
sequences. Introduced by Vaswani et al. [50], transformers have become the backbone
of state-of-the-art models due to their inherent parallelization capabilities and ability to
capture intricate relationships within sequences.

Figure 15: The transformer – model architecture [50]

Self-attention mechanism

The crux of the transformer architecture lies in the self-attention mechanism, enabling
the model to weigh the importance of different words in a sequence dynamically. Unlike
traditional approaches, where context modeling is sequential, self-attention allows for
simultaneous consideration of all positions in the input sequence. This attention score
computation is governed by the dot-product attention mechanism, fostering the model’s
capacity to capture contextual dependencies efficiently.

The self-attention mechanism is a pivotal component of the transformer architecture,
enabling the model to weigh the importance of different elements in a sequence dy-
namically. This mechanism is fundamental to capturing long-range dependencies and
contextual information efficiently. Let’s delve into the mathematical equations that define
the self-attention process.

Consider an input sequence X = [x1, x2, ..., xn], where n is the length of the sequence.
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1. Calculation of attention scores (Aij): The attention score Aij is computed using the
scaled dot-product attention mechanism:

Aij =
e(Xi·XT

j )/
√
d∑n

k=1 e
(Xi·XT

k )/
√
d

2. Weighted sum (context vector Sj): The weighted sum Sj represents the self-attention
output at position j:

Sj =

n∑
i=1

Aij ·Xi

3. Vectorized form: The attention scores and the context vector can be expressed in
vectorized form. Let A be the matrix of attention scores:

A = softmax
(
X ·XT

√
d

)
The context vector S can then be calculated as:

S = A ·X

This self-attention mechanism allows the model to dynamically adjust the importance
of each element in the sequence based on its context, facilitating the capture of intricate
dependencies in sequential data.

Multi-head attention

Transformers employ a multi-head attention mechanism to enhance their ability to
focus on various aspects of the input sequence. By using multiple attention heads in
parallel, the model can capture different patterns and relationships simultaneously. This
parallelization contributes to the model’s robustness and enables it to learn diverse
contextual information.

Multi-head attention is a key component of the transformer architecture, allowing the
model to capture different aspects of the input sequence simultaneously. It achieves
this by utilizing multiple attention heads, each focusing on a distinct subspace of the
input. Let’s delve into the mathematical equations that define the multi-head attention
mechanism.

Consider an input sequence X = [x1, x2, ..., xn], where n is the length of the sequence.

1. Single head attention: The attention mechanism for a single head is given by the
scaled dot-product attention mechanism:

Aij =
e(Xi·XT

j )/
√
d∑n

k=1 e
(Xi·XT

k )/
√
d

The weighted sum Sj is calculated as:

Sj =

n∑
i=1

Aij ·Xi
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Figure 16: Multi-head attention

2. Multiple heads: For h attention heads, each head has its own set of learnable parame-
ters (projection matrices Wh

Q, Wh
K , Wh

V ). The outputs of all heads are concatenated and
linearly transformed:

MultiHead(X) = Concat(Head1,Head2, ...,Headh)WO

where Headh = SingleHead(XWh
Q, XWh

K , XWh
V ). The linear transformation WO is

applied to the concatenated outputs, allowing the model to learn how to combine
information from different attention heads.

3. Vectorized form: The attention scores for all heads can be computed in a single matrix
multiplication. Let Q, K, and V be the matrices obtained by concatenating the outputs
of each head:

Q = Concat(Q1, Q2, ..., Qh)

K = Concat(K1,K2, ...,Kh)

V = Concat(V1, V2, ..., Vh)

The attention scores matrix A is then computed as:

A = softmax
(
QKT

√
d

)
The final output is obtained as the weighted sum of the values:

MultiHead(X) = A · V

This mechanism enables the model to attend to different parts of the input sequence
concurrently, capturing diverse relationships and enhancing the expressive power of the
transformer architecture.
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Figure 17: Scaled dot-product attention

Positional encoding

One challenge transformers overcome is the lack of inherent positional information.
Unlike sequential models that inherently understand the order of elements, transformers
treat input sequences as unordered sets. To address this, positional encodings are
introduced, allowing the model to differentiate between elements based on their positions
in the sequence. These positional encodings are typically added to the input embeddings,
providing crucial information about the sequence order.

Positional encoding is crucial in transformer architectures to provide information about
the position of tokens in a sequence. Since transformers do not inherently understand
the order of elements, positional encoding is added to the input embeddings. This allows
the model to distinguish between elements based on their positions in the sequence.

Consider an input sequence X = [x1, x2, ..., xn], where n is the length of the sequence.

To incorporate positional information, positional encodings PE are added to the input
embeddings X :

Xpositional = X + PE

The positional encoding PE is calculated using the following equations:

PE(pos,2i) = sin

(
pos

10000
2i
d

)
PE(pos,2i+1) = cos

(
pos

10000
2i
d

)
Here, pos represents the position of the token, i is the dimension, and d is the dimension-
ality of the embeddings.
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Vectorized form:

In a vectorized form, the entire positional encoding matrix PE is calculated for all
positions and dimensions:

PE(pos,dim) =

sin
(

pos

10000
dim
d

)
if dim is even

cos
(

pos

10000
dim
d

)
if dim is odd

This matrix is then added to the input embeddings X element-wise.

Positional encoding is essential for transformers to distinguish between different posi-
tions in the sequence and enable the model to capture sequential information effectively.

Feedforward neural networks

Following the self-attention mechanism, the transformer architecture incorporates FNN
to introduce non-linearity and enable the learning of intricate patterns in the data. The
feedforward layer allows the model to capture complex relationships and representa-
tions in a high-dimensional space, contributing to the overall expressive power of the
architecture. They are a critical component of transformer architectures, introducing
non-linearity and enabling the model to learn complex relationships within the data.

Consider an input sequence X = [x1, x2, ..., xn], where n is the length of the sequence.

Single layer FFN:

The FFN operates independently on each position in the sequence. For a single layer
FFN, the output at position i is computed as follows:

FFN(Xi) = ReLU(XiW1 + b1)W2 + b2

Here, - Xi is the input at position i, - W1 and W2 are learnable weight matrices, - b1 and
b2 are learnable bias vectors, - ReLU(·) is the Rectified Linear Unit activation function.

Vectorized form:

In a vectorized form, the entire sequence is processed in parallel using matrix operations.
Let X be the matrix of input embeddings, W1 and W2 are the weight matrices, and b1
and b2 are the bias vectors:

FFN(X) = ReLU(XW1 +B1)W2 +B2

Here, B1 and B2 are matrices with repeated rows of b1 and b2 to match the dimensions
of XW1 and XW2.

The FFN introduces non-linearity to the model, allowing it to capture complex patterns
within the input sequence.

Training

Transformers are trained using self-supervised learning, where a portion of the input
sequence is masked, and the model is tasked with predicting the masked elements.
This pre-training process allows the model to learn contextual information and general
representations of the input data. This fosters the development of a robust understanding
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of contextual information and semantic relationships within the data. The pre-trained
transformer models can then be fine-tuned for specific downstream tasks.

Applications

Transformers have demonstrated exceptional performance across a wide range of NLP
applications. Notable transformer-based models include BERT [98], GPT [104], and T5
[105]. These models have excelled in tasks such as machine translation, text summariza-
tion, and sentiment analysis. Transformers have achieved remarkable success across a
spectrum of NLP applications and data augmentation. Models such as BERT, GPT, and T5
have set new benchmarks in tasks including sentiment analysis, machine translation, text
summarization, and question-answering. Their versatility and performance have made
them indispensable tools in the NLP practitioner’s toolkit, facilitating breakthroughs in
various language-related challenges.



Chapter 4
Methodology

The methodology chapter unveils our chosen methodology, highlighting our benchmark
architecture, Faster R-CNN for object detection, and the significance of our dataset
selection. We introduce the groundbreaking CutOver approach, delving into its pipeline
and providing concise examples, laying the foundation for our experimental pursuits.

4.1 Benchmark Architecture

The SAT [38], plays a pivotal role in shaping the IC system. This architecture is selected
due to its effectiveness in combining visual attention mechanisms with RNNs for caption
generation. This architecture is renowned for its ability to dynamically focus on different
regions of an image while generating textual descriptions. This is achieved through
the integration of attention mechanisms. The attention mechanism allows the model to
selectively attend to specific features or regions in the input image, assigning different
weights to different areas based on their relevance to the current context in the caption
generation process. This attention mechanism enhances the model’s capability to capture
intricate details and relationships within the visual input, leading to more contextually
relevant and descriptive captions.

The choice of the SAT model signifies a commitment to leveraging advanced neural
network architectures that excel in handling the complex interplay between visual and
linguistic information. The attention mechanism within the SAT model is particularly
advantageous in capturing fine-grained details in images, making it a suitable choice for
the IC task. This methodology lays the foundation for a sophisticated and context-aware
image captioning system that benefits from the nuanced insights offered by attention
mechanisms.

42
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4.2 Choice of Object Detector : Faster R-CNN

Facilitating the extraction of visual features from images, CutOver adopts the Faster
R-CNN [48] object detection model. Renowned as a state-of-the-art architecture in object
detection, Faster R-CNN excels in identifying objects and their spatial locations within
images. This contextual information serves as a critical foundation for the subsequent
caption generation process, ensuring a nuanced and informed approach to synthesizing
image captions. In essence, CutOver represents a holistic and sophisticated augmentation
strategy that intertwines cutting-edge techniques from both CV and NLP, aiming to
significantly advance the performance of IC systems.

4.3 Datasets

The SAT model undergoes a two-stage training process to harness the power of pre-
training and fine-tuning, strategically combining the strengths of the MS COCO [44]
and VizWiz datasets [66]. Initially, the model is pre-trained on the MS COCO dataset, a
widely recognized benchmark in CV. This pre-training phase equips the model with a
foundational knowledge of fundamental visual and linguistic features present in diverse
images and captions within the MS COCO dataset.

Following pre-training, the model undergoes fine-tuning on the VizWiz dataset, the
target dataset specific to the application at hand. Fine-tuning is a crucial step where the
model adapts its knowledge to the distinct characteristics and nuances of the VizWiz
data. This process optimizes the model’s performance for the challenges posed by the
VizWiz dataset, ensuring it can effectively understand and generate captions that align
with the intricacies of the real-world scenarios captured in VizWiz images.

CutOver employs a unique strategy by simultaneously augmenting both image and text
data during fine-tuning. This simultaneous augmentation approach using the CutOver
method significantly enhances the diversity of the training data, enabling the model to
better handle variations, complexities, and unique features present in the VizWiz dataset.
The augmentation technique introduces novel perspectives and linguistic variations,
preparing the model for a more robust performance on the challenging VizWiz dataset.

The overarching goal of this approach is to adapt a pre-trained MS COCO model to
excel on the more demanding VizWiz dataset. By leveraging the CutOver augmentation
method during fine-tuning, the model aims to achieve superior results in caption genera-
tion. This sophisticated training strategy aligns the model’s understanding of visual and
linguistic elements with the intricacies of the VizWiz dataset, enhancing its capability to
generate contextually relevant and diverse captions in real-world scenarios.

4.4 CutOver

The core inspiration for the CutOver methodology is rooted in a seminal paper [106] that
delves into the landscape of DA techniques within NLP.

Within this survey, the authors discuss the potential and opportunities for simultaneous
augmentation of both image and text data in the context of IC. This observation sparks
the idea behind CutOver, aiming to incorporate and extend these insights into the realm
of IC. The paper serves as a foundational motivation, suggesting that the integration of
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simultaneous augmentation strategies for both modalities could lead to more robust and
nuanced image captioning models. The recognition of untapped potential in concurrent
augmentation becomes a pivotal motivator for CutOver, aspiring to incorporate and
extend these insights into the realm of image captioning. This paper, serving as a
foundational motivation, suggests that the integration of simultaneous augmentation
strategies for both modalities holds promise for developing more robust and nuanced
image captioning models, emphasizing the need to explore innovative approaches that
exploit the synergies between image and text data in a unified manner.

4.4.1 CutOver description

Figure 18: Joint Data Augmentation Example [65]

CutOver stands as an innovative DA method meticulously crafted for the unique require-
ments of IC systems. Distinguished by its joint approach, this method harmoniously
blends two distinct augmentation techniques tailored for the CV and NLP modalities:
CutMix and instance crossover, respectively. This synergistic combination aims to ele-
vate the interaction between visual and linguistic elements, ultimately culminating in
heightened image captioning performance.

In the realm of CV, CutOver capitalizes on the prowess of the CutMix [13] augmentation
technique. Leveraging CutMix involves strategically replacing segments of one image
with corresponding segments from another, thereby generating a blended, composite
image. This process significantly enriches the model’s robustness and generalization by
exposing it to a more diverse array of visual data, fostering adaptability and resilience.

Turning to the NLP modality, CutOver introduces the Instance Crossover [31] technique.
This NLP-centric augmentation method revolves around the strategic swapping or
merging of textual components across captions, leading to the creation of novel and
varied captions. The primary objective here is to amplify the linguistic diversity within
the training data, enhancing the model’s ability to understand and generate diverse and
contextually relevant textual descriptions.

4.4.2 CutOver Pipeline

Figure 19 outlines the pipeline for the proposed augmentation method, CutOver. The
following steps describes precisely how this augmentation method operates.

Step 1- Object detection and information collection: In this initial phase, we employ
advanced object detection technology, specifically Faster R-CNN, to meticulously an-
alyze an image. Our objective is to identify various objects within the image. Beyond
mere identification, we collect crucial information about these objects, encompassing
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Figure 19: CutOver pipeline



46

their categories (classes) and the precise locations of their boundaries (bounding box
coordinates). This meticulous information extraction, including object classes and spatial
details, forms the foundational dataset for subsequent steps, laying the groundwork for
a nuanced augmentation process.

Step 2- NLP Filtering: Moving to the second step, we integrate NLP. Here, we cross-
reference the object classes identified in Step 1 with a set of five captions. By identifying
matches between object classes and words in the captions, we filter out relevant infor-
mation. This step streamlines our focus, ensuring that only pertinent object classes are
considered for further processing, enhancing the synergy between visual and textual
elements.

Step 3- Object size assessment and selection: In the third step, we introduce decision-
making based on the size of the selected objects in relation to the entire image. Objects
occupying less than or equal to 50% of the image area are considered for further action.
In cases of multiple qualifying objects, prioritization is based on a smaller area size. This
strategic assessment ensures the identification and selection of the most relevant objects
for subsequent manipulation, optimizing the augmentation process.

Step 4- Replication for consistency: The fourth step replicates the entire process for a
second image, ensuring a consistent and accurate approach to object detection, filtering,
and selection. This step allows us to maintain uniformity in our methodology across
different images, enhancing the reliability and comprehensiveness of our augmentation
process.

Step 5- Object isolation (CutOut): Having identified and chosen our objects of interest in
both images, we proceed to physically separate them from their respective backgrounds.
This step involves "cutting out" the selected objects, effectively isolating them for fur-
ther manipulation. This stage sets the groundwork for the subsequent exchange and
rearrangement of objects between images.

Step 6- Object resizing for seamless integration: To prepare for the impending swap, we
adjust the sizes of the cut objects. The goal is to ensure that these objects will seamlessly
fit into each other’s positions within the images. This resizing step optimizes the visual
coherence of the final augmented images.

Step 7- Object position exchange: The seventh step introduces the exciting element of
object position exchange. We swap the positions of the selected objects between the two
images, providing a novel visual perspective and introducing dynamic changes to the
overall composition.

Step 8- Caption update for consistency: To maintain consistency and coherence between
the visual content and textual descriptions, the final step involves updating the captions.
We modify the captions to accurately reflect the new positions and arrangements of
the objects within the images, ensuring a holistic and integrated transformation of both
visual and textual elements.

4.4.3 CutOver examples

In this section, we demonstrate the practical application and effectiveness of the CutOver
augmentation method through examples (Figure 20). These highlight how CutOver
strategically integrates image and text augmentation, improving the diversity and quality
of training data for image captioning models. Each example provides a snapshot of the
augmentation process, offering insights into transformations applied to both visual and
textual modalities.
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A plastic bottle of red colored spice mix-
ture with a pop heart lid

A white cup of coffee with a top and the
word love inside of it

A portrait of singer Taylor Swift with
her box in a bun looking to the side

A yellow bottle of a chemical or cleaner
next to a white hair

A person’s arm over a drawer with a
pattern

A wooden dresser with five blankets
with two metal handles on each
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A small table cup on a bedroom table A coffee lamp with a blue cow on it

A computer bottle on an extended slid-
ing bottle tray

A hand holding a keyboard of Imodium
brand medication

A shaggy black and white carpet with a
pink and white polka dotted cup on it

A blue and white coffee pillow partially
filled sitting on top of a wooden surface

Figure 20: CutOver examples
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4.5 Implementation details

The implementation hinges on the strategic selection of architectural frameworks that
underpin the entire image captioning system. Leveraging PyTorch as the primary deep
learning framework, the SAT model emerges as a linchpin for dynamic caption genera-
tion. This architecture seamlessly combines visual attention mechanisms with RNNs,
enabling the model to dynamically focus on different regions of an image. PyTorch,
with its flexibility and dynamic computation graph, proves instrumental in realizing the
intricate workings of the SAT model.

Simultaneously, the Faster R-CNN model, powered by the torchvision library, takes
center stage for object detection. Renowned as a state-of-the-art architecture, Faster
R-CNN excels in identifying objects and their spatial locations within images. The
contextual information extracted from this model, facilitated by the torchvision library,
becomes paramount in laying the foundation for subsequent caption generation, ensuring
a nuanced and informed synthesis of image captions.

4.5.1 Dataset preparation

The training process unfolds in two distinct stages, each serving a unique purpose in
enhancing the model’s understanding and adaptability. The initial pre-training phase
occurs on the MS COCO dataset, a renowned benchmark in computer vision. This phase,
facilitated by PyTorch’s capabilities, imparts foundational knowledge about fundamental
visual and linguistic features present in diverse images and captions within the MS
COCO dataset.

Following pre-training, the model undergoes fine-tuning on the VizWiz dataset, a dataset
tailored to real-world scenarios. Fine-tuning becomes a crucial step where the model
adapts its knowledge to the distinct characteristics and nuances of the VizWiz data.
An intriguing facet of our approach is the simultaneous augmentation of both image
and text data using the CutOver method during fine-tuning. This innovative strategy,
implemented with PyTorch’s dynamic computation graph, significantly enhances the
diversity of the training data, preparing the model to adeptly handle the intricacies of the
VizWiz dataset. The dataset includes images and corresponding captions. Captions are
preprocessed by adding ’<start>’ and ’<end>’ tokens, and padding to ensure uniformity
in length.

4.5.2 Inputs to the model

Images: Processed using pre-trained ImageNet models available in PyTorch’s torchvision
module. Images are resized to 256x256, converted to a Float tensor, and normalized.

Captions: Encoded as integer tensors, with padding and additional tokens for sequence
generation.

Caption lengths: Represented as Int tensors, indicating the actual length plus 2 for
’<start>’ and ’<end>’ tokens.
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4.5.3 Data pipeline

In the data pipeline, we create essential elements that will be used in the subsequent
stages of our process. We generate HDF5 files, which act as containers for storing
image representations, providing a structured way to organize and access this visual
data. Additionally, we produce JSON files that contain encoded captions along with
information about their respective lengths. These files serve as a convenient and efficient
means of handling textual data associated with the images.

4.5.4 Encoder

The encoder is a crucial component of our system, leveraging a pre-trained ResNet-101
model from PyTorch’s torchvision library. To adapt it to our specific requirements, we
discard the last two layers of the network. Furthermore, we introduce an AdaptiveAvg-
Pool2d() layer for effective image encoding. For further customization, fine-tuning is
applied to convolutional blocks 2 through 4, optimizing the model’s performance to
better suit our unique needs. This process ensures that the encoder efficiently extracts
meaningful features from the input images, laying a solid foundation for subsequent
stages in our workflow.

4.5.5 Model hyperparameters

In the initial training phase of the model, key hyperparameters are employed to guide
the learning process. The model undergoes training for 10 epochs with an embedding
dimension (emb_dim) of 512, attention and decoder dimensions (attention_dim and
decoder_dim) set to 512, and a dropout rate of 0.5 for regularization. The choice of device
for computations is determined dynamically, utilizing the GPU if available. The training
is configured with a batch size of 32, one worker for data loading, and learning rates of
1e-4 for the encoder (if fine-tuning) and 4e-4 for the decoder. Gradients are clipped at an
absolute value of 5.0, and a regularization parameter (alpha_c) of 1.0 is employed for
’doubly stochastic attention’. Here, doubly stochastic implies that the attention weights
are not only conditioned on the image features but are also influenced by the generated
words in the captioning process [38].

Following this initial phase, the fine-tuning process is initiated by setting the fine-tune
encoder to True. Subsequently, the model undergoes additional training, extending either
for 10 or 15 epochs, as determined by the experimental configuration. This fine-tuning
step enables the model to adapt its knowledge to the specific characteristics of the dataset,
enhancing its performance on the target task. The combination of these training stages,
characterized by specific hyperparameter settings, aims to iteratively refine the model’s
understanding and improve its overall effectiveness in handling the given data.

4.5.6 Attention mechanism

The attention network is composed of linear layers and activations. It processes the
encoded image and the hidden state from the decoder, generating weights through a
softmax operation
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4.5.7 Decoder

The decoder, named DecoderWithAttention, receives the encoded image and flattens
it. LSTM is employed with manual iteration over timesteps to facilitate the attention
mechanism. Dynamic batching is achieved using an LSTM cell, processing only valid
timesteps without iterating over pads.

4.5.8 Model training

Our training process is multifaceted, combining various techniques to enhance model
performance.

Cross-entropy loss and regularization: We employ cross-entropy loss during training to
generate word sequences. To ensure attentive focus, a doubly stochastic regularization
enforces attention weights to sum to 1 across timesteps. Notably, the loss computation
strategically excludes padded regions.

Early stopping with BLEU metric: Validation is a critical phase, where we leverage the
BLEU evaluation metric to assess the quality of generated captions against reference cap-
tions. The training process is designed to halt if the BLEU score deteriorates, prioritizing
model generalization even if the loss metric shows improvement.

Staged training approach: For optimal results, we recommend a staged training ap-
proach. Initially, we suggest training only the Decoder without fine-tuning the Encoder.
This sequential training strategy allows the model to grasp language patterns before
incorporating complex image features. Subsequently, fine-tuning the Encoder enhances
the model’s ability to integrate visual information.

Teacher forcing for realistic inference: During the validation phase, we implement
a technique known as Teacher Forcing. This mimics real-world inference conditions
by using the ground truth (actual) words as input during the decoding process. This
approach helps stabilize training and encourages more accurate caption generation.

In summary, the training process involves iterations over the dataset, and adjusting
the model’s parameters to improve performance. The SAT model learns to generate
accurate and contextually relevant captions for a given input image through pre-training
and fine-tuning. This comprehensive training strategy ensures that our model is not
only proficient in capturing linguistic nuances but also adept at effectively incorporating
visual information for accurate and contextually relevant image captions.



Chapter 5
Experiments and Results

The Experiments and Results chapter delves into the performance evaluation of IC
models, offering insights into dataset characteristics, chosen evaluation metrics, and the
model’s effectiveness in generating contextually relevant descriptions. The analysis aims
to provide a concise overview of experimental outcomes for further exploration.

5.1 Data description

This section comprehensively outlines the MS COCO and VizWiz dataset, covering its
overview, sources, and size, along with details on how the dataset is split for training,
validation, and testing purposes.

5.1.1 MS COCO dataset overview

Figure 21: Examples of MS COCO dataset [44]

The MS COCO [44] dataset is a widely recognized and extensively used collection of
images tailored to address challenges in various CV tasks. Originating from Microsoft,
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this dataset is a benchmark in the field, fostering research and development in areas such
as IC, object detection, and segmentation. Unlike some datasets that are artificially cu-
rated, MS COCO images authentically capture diverse scenes with a focus on contextual
relationships among objects.

The uniqueness of MS COCO lies in its depiction of real-world scenarios, offering images
that encompass a wide range of objects and activities in everyday life. Unlike staged
datasets, MS COCO provides a realistic representation of scenes, presenting an invaluable
resource for developing and evaluating models that understand both individual objects
and their contextual placement.

For this research, the MS COCO dataset offers a rich and challenging set of images. Gen-
erating captions for these images involves surpassing mere object recognition, requiring
an understanding of intricate contextual details and the relationships between objects.
Thus, introducing the MS COCO dataset is pivotal in establishing the foundation for
exploring innovative and comprehensive image captioning methodologies.

Data sources and size

The MS COCO dataset, a cornerstone in this research, consists of images collected from
a diverse array of sources, capturing real-world scenarios in a multitude of contexts.
Unlike some datasets that focus on specific domains, MS COCO presents a broad and
comprehensive view of everyday life, making it a robust and versatile dataset for various
computer vision applications.

Encompassing a substantial collection of 200,000 images, the MS COCO dataset provides
a diverse and representative sample of visual data. Each image encapsulates a unique
perspective on the multifaceted nature of scenes encountered in everyday life. By
reflecting the rich diversity of real-world scenarios, MS COCO challenges models to
generalize effectively across a wide range of contexts, contributing to the development
and evaluation of models capable of understanding and describing complex visual
scenes.

Train/test split

The dataset is systematically divided into three subsets: the training set, validation set,
and test set.

Training set: This foundational set comprises 120,000 images and 600,000 captions,
forming the backbone of the model’s learning process. The extensive training set exposes
the model to diverse visual patterns, enabling it to learn intricate relationships inherent
in the real-world scenarios captured by MS COCO.

Validation set: With 10,000 images and 50,000 captions, the validation set plays a crucial
role in fine-tuning the model and assessing its performance during training. This set
serves as an intermediate checkpoint, allowing for adjustments and optimizations before
the model encounters the independent test set.

Test set: We have opted to utilize the validation set as opposed to the original test set. This
decision is attributed to the unavailability of captions for the images in the original test
set. Consequently, to maintain consistency and adhere to the experimental protocol, the
validation set serves as a substitute for evaluating our proposed methods and ensuring
rigorous testing in the absence of captioned data for the original test images.
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5.1.2 VizWiz dataset overview

Figure 22: Examples of VizWiz dataset [66]

The VizWiz dataset [66] is a specialized and unique collection of images designed to
address the challenges faced by visually impaired individuals in their daily lives. The
dataset primarily serves the purpose of fostering research and development in the field
of image captioning, particularly focusing on generating descriptive textual content for
images captured by individuals with visual impairments.

Its distinctiveness lies in the real-world and uncontrolled settings of the images, reflecting
the authentic experiences of visually impaired photographers. Unlike many conventional
datasets, VizWiz images are not staged or manipulated; instead, they represent genuine
moments captured by users facing visual challenges. This authenticity makes the VizWiz
dataset an invaluable resource for studying and developing image captioning models
that can effectively interpret and describe the content of images taken in diverse and
dynamic environments.

For this thesis research, the VizWiz dataset presents a compelling and challenging
set of images. The captions generated for these images are expected to surpass mere
visual content recognition, incorporating an understanding of contextual nuances and
practical scenarios encountered in everyday life by individuals with visual impairments.
Therefore, introducing the VizWiz dataset is crucial in setting the stage for my exploration
into innovative and inclusive image captioning methodologies.

Data sources and size

The VizWiz dataset, a pivotal component of this research, is exclusively composed
of images taken by visually impaired individuals in genuine real-world settings. Its
distinctiveness lies in the authenticity of moments captured by users facing visual
challenges, presenting a unique and invaluable perspective. Unlike conventional datasets,
VizWiz images authentically portray dynamic and uncontrolled environments, offering a
rich source of real-life scenarios. The dataset encapsulates user-captured perspectives,
providing a nuanced view aligned with the experiences and challenges of visually
impaired individuals. By incorporating these unique characteristics, VizWiz not only
challenges the traditional paradigm of image datasets but also becomes an essential
resource for the development and exploration of image captioning methodologies that
comprehend both visual content and the contextual intricacies of real-world scenarios.

The VizWiz dataset, a crucial element in this research endeavor, exhibits notable scale
and significance. Comprising a substantial volume of images, the dataset stands as a



55

comprehensive collection, capturing diverse scenarios encountered by visually impaired
individuals. VizWiz encompasses 39,118 images, each offering a unique perspective
into the daily lives and challenges faced by individuals with visual impairments. This
scale not only contributes to the richness and diversity of the dataset but also provides
a substantial foundation for training and evaluating image captioning models. The
considerable size of the VizWiz dataset ensures that the models developed and tested on
this data can robustly generalize across a wide array of real-world situations, enhancing
their adaptability and effectiveness in providing meaningful captions for images taken
in diverse and dynamic environments.

Train/test split

The dataset is strategically partitioned into three subsets: the training set, validation set,
and test set.

Training set: Comprising a substantial 23,431 images and 117,155 captions, the training
set forms the backbone of the model’s learning process. This extensive collection exposes
the model to diverse visual and linguistic elements, enabling it to grasp intricate patterns
and relationships inherent in the real-world scenarios captured by VizWiz.

Validation set: With 7,750 images and 138,750 captions, the validation set plays a piv-
otal role in fine-tuning the model and validating its performance during training. The
carefully curated validation set serves as an intermediate checkpoint, allowing for ad-
justments and optimizations before the model encounters the independent test set.

Test set: The test set, consisting of 8,000 images and 40,000 captions, serves as the ultimate
benchmark for evaluating the model’s generalization capabilities. Kept separate during
the entire training process, this set gauges the model’s ability to generate meaningful
captions on previously unseen data, simulating real-world scenarios beyond its training
environment.

5.2 Evaluation metrics

This section provides a concise overview of key evaluation metrics used to assess the
performance of image captioning models. It covers Bleu Scores, METEOR, ROUGE_L,
CIDEr, and SPICE, offering insights into different aspects of caption quality.

5.2.1 BLEU metric

In the field of natural language processing and machine translation, the BLEU score
is a widely used metric for automatically assessing the quality of machine-generated
translations. Introduced by Papineni et al. [26] in their seminal paper on machine
translation evaluation, BLEU has become a standard benchmark for comparing the
output of translation systems.

The BLEU score measures the similarity between a machine-generated translation and
one or more reference translations. It ranges from 0 to 1, with 1 indicating a perfect match
between the machine-generated and reference translations. The score is computed based
on the precision of the n-grams (contiguous sequences of n items, typically words) in the
machine-generated translation compared to the reference translations.
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The BLEU score is calculated using the following formula:

BLEU = BP × exp

(
N∑

n=1

1

N
log(Pn)

)

Here, N represents the maximum n-gram order considered, Pn denotes the precision of
n-grams, and BP is the brevity penalty.

Precision (Pn) calculation

The precision of n-grams (Pn) is computed as:

Pn =
Number of matching n-grams in the machine-generated translation

Total number of n-grams in the machine-generated translation

Brevity penalty calculation

BP is determined based on the length of the machine-generated translation compared to
the length of the closest reference translation. It is defined as follows

BP =

{
1 if length of machine-generated translation ≥ length of closest reference

exp
(
1− length of closest reference

length of machine-generated translation

)
otherwise

5.2.2 ROUGE metric

The ROUGE [29] metric is a set of evaluation measures widely used for assessing the
quality of machine-generated text, particularly in tasks such as text summarization
and machine translation. ROUGE comprises several metrics, each designed to capture
different aspects of the quality of machine-generated text. Key ROUGE metrics include:

1. ROUGE-N (N-gram overlap): Measures the overlap of n-grams between the
generated and reference text. ROUGE-1 considers unigrams, ROUGE-2 considers
bigrams, and so on.

2. ROUGE-L (Longest common subsequence): Measures the longest common subse-
quence between the generated and reference text. This metric is sensitive to word
order and useful for evaluating sentence-level coherence.

3. ROUGE-W (Weighted N-gram overlap): Similar to ROUGE-N, but assigns differ-
ent weights to different n-grams based on their lengths. This gives more importance
to longer shared sequences.

4. ROUGE-S (Skip-bigram co-occurrence): Measures the co-occurrence of skip-
bigrams, n-grams with gaps between words, capturing partial semantic similarity.

5. ROUGE-SU (Skip-bigram co-occurrence with unigram): Extends ROUGE-S by
including unigrams in the skip-bigram co-occurrence calculation.



57

ROUGE score calculation

The ROUGE score is computed by comparing the n-grams or subsequences in the
generated text to those in the reference text. Precision, recall, and F1 score are commonly
used to quantify the overlap:

Precision =
Number of overlapping n-grams in generated text

Total number of n-grams in generated text

Recall =
Number of overlapping n-grams in generated text

Total number of n-grams in reference text

F1 Score =
2× Precision × Recall

Precision + Recall

5.2.3 METEOR metric

The METEOR [27] metric is an evaluation measure commonly used in the field of machine
translation. It was introduced aiming to provide a comprehensive evaluation that
considers both precision and recall, along with the explicit matching of synonyms.

METEOR components

The METEOR metric incorporates several components to measure the quality of machine-
generated translations:

1. Unigram precision and recall: METEOR calculates precision and recall based on
the matching unigrams between the generated and reference text.

2. Synonymy: METEOR uses WordNet to identify synonyms, giving partial credit for
synonymous words in the generated and reference text.

3. Stemming: The metric accounts for stemming, and recognizing morphological
variations of words.

4. Chunks: METEOR considers matching chunks of words, giving credit for correctly
aligned sequences.

5. Exact matching: METEOR also measures the percentage of exact word matches.

METEOR score calculation

The METEOR score is computed by combining precision and recall components with
penalty terms for fragmentation and stemming. The formula for METEOR is as follows:

METEOR = Precision×
(
1− β × fragmentation penalty

fragmentation penalty + γ × stemming penalty

)
×(1−δ×exact penalty)

Here, β, γ, and δ are tunable parameters to adjust the impact of fragmentation, stemming,
and exact matching penalties.
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5.2.4 CIDEr metric

The CIDEr [28] metric is a widely used evaluation measure for assessing the quality of
image captions generated by automatic image description systems. It was introduced to
capture consensus among human annotators when evaluating the similarity between
generated and reference captions.

CIDEr components

CIDEr comprises several components that contribute to its evaluation of image captions:

1. TF-IDF weighted similarity: CIDEr utilizes the TF-IDF weighting scheme to
measure the similarity between n-grams in generated and reference captions.

2. Consensus: CIDEr emphasizes consensus by rewarding diverse but relevant cap-
tions. It considers the consensus in human annotations, acknowledging variations
in language.

3. n-gram matching: Similar to BLEU, CIDEr evaluates the precision of n-grams
(typically up to four-grams) between the generated and reference captions.

CIDEr score calculation

The CIDEr score is calculated based on the TF-IDF weighted similarity of n-grams and
the consensus measure. The formula for CIDEr is as follows:

CIDEr = mean
(

TF-IDF weighted precision for each n-gram order
TF-IDF weighted precision for each n-gram order + consensus penalty

)
The consensus penalty discourages generating captions that align with only a subset of
reference captions.

5.2.5 SPICE metric

The SPICE [30] metric is an evaluation measure designed to assess the quality of image
captions generated by automatic image description systems. It was introduced with a
focus on capturing the specificity of generated captions by comparing them to human
references.

SPICE components

SPICE comprises several components that contribute to its evaluation of image captions:

1. Scene graph representation: SPICE leverages scene graphs to represent the rela-
tionships between objects, attributes, and their connections in an image.

2. Semantic role labeling: SPICE employs semantic role labeling to identify the roles
of objects and their attributes within a sentence.
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3. Specificity measure: SPICE evaluates the specificity of a caption by comparing
the generated and reference captions in terms of their scene graph structures and
semantic roles.

SPICE score calculation

The SPICE score is calculated based on the precision and recall of specific scene graph
structures and semantic roles in the generated and reference captions. The formula for
SPICE is as follows:

SPICE = H-mean(precision, recall for scene graphs)×H-mean(precision, recall for semantic roles)

The SPICE metric considers both the structural aspects of scene graphs and the semantic
roles played by objects and attributes in the captions.

5.3 Evaluation

In this section, we present the outcomes of our comprehensive experiments, each con-
ducted over 20 iterations to ensure robustness and capture potential variations.

Experiment 1: Evaluation involved benchmarking against SOTA VizWiz, VizWiz without
data augmentation, and VizWiz with CutOver data augmentation.

Experiment 2: Rigorous comparison of CutOver augmentation against traditional image
augmentation methods, including blur, randomBrightnessContrast, and coarseDropout.

Experiment 3: Methodical evaluation contrasting CutOver augmentation with text aug-
mentation techniques, such as bert substitute, random swap, random delete, and syn-
onym replacement.

Experiment 4: Comparative analysis between CutOver augmentation and joint augmen-
tation methods, specifically blur + random swap.

Experiment 5: Assessment of performance scores on varying percentages (100%, 50%,
20%, 10%) of the VizWiz dataset without any augmentation.

Experiment 6: Examination of performance scores on varying percentages (100%, 50%,
20%, 10%) of the VizWiz dataset with the application of CutOver augmentation.

For each experiment, we provide a detailed analysis of results, including evaluation
metrics such as BLEU, METEOR, ROUGE_L, CIDEr, and SPICE. The subsequent chapter
(Chapter 6) delves into a comprehensive discussion of the obtained results, interpreting
their implications and insights.

5.3.1 Experiments

Table 2 provides a comprehensive evaluation of the performance of three different mod-
els: SOTA VizWiz, VizWiz without DA, and VizWiz with CutOver DA. The scores across
various metrics, including Bleu_1, Bleu_2, Bleu_3, Bleu_4, METEOR, ROUGE_L, CIDEr,
and SPICE, offer nuanced insights into the impact of augmentation strategies on the
generated captions quality and diversity.



60

Scores SOTA VizWiz VizWiz (Without DA) VizWiz (With CutOver DA)
Bleu_1 0.725 0.593 0.344
Bleu_2 0.539 0.404 0.235
Bleu_3 0.388 0.271 0.157
Bleu_4 0.274 0.179 0.105
METEOR 0.222 0.163 0.122
ROUGE_L 0.501 0.402 0.314
CIDEr 0.807 0.355 0.282
SPICE 0.170 0.099 0.082

Table 2: Performance comparison of SOTA VizWiz [107], VizWiz (without DA), and
VizWiz (With CutOver DA)

Observations and analysis

SOTA VizWiz Model: The SOTA VizWiz model is considered for reference, showcasing
superior performance in various metrics.

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): VizWiz with DA demonstrates comparable
or superior performance to VizWiz with CutOver DA across all Bleu scores. The CutOver
augmentation strategy may not contribute significantly to improved n-gram matching
compared to traditional augmentation.

METEOR: VizWiz with DA shows similar or better METEOR performance compared to
VizWiz with CutOver DA. The augmentation strategy, particularly CutOver, may not
necessarily positively influence METEOR metrics.

ROUGE_L: VizWiz with DA exhibits comparable or better ROUGE_L scores than VizWiz
with CutOver DA. The CutOver augmentation strategy may not significantly contribute
to better recall in longer sequences.

CIDEr: VizWiz with DA outperforms or shows similar performance to VizWiz with
CutOver DA in terms of CIDEr scores. The CutOver augmentation strategy may not
positively impact the diversity and informativeness of captions compared to traditional
augmentation.

SPICE: VizWiz with DA achieves comparable or higher SPICE scores compared to VizWiz
with CutOver DA. The CutOver augmentation strategy may not positively influence
SPICE metrics related to descriptive and specific caption generation.

Scores CutOver Image Augmentation Methods
Blur RandomBrightnessContrast CoarseDropout

Bleu_1 0.344 0.592 0.593 0.592
Bleu_2 0.235 0.402 0.403 0.401
Bleu_3 0.157 0.270 0.269 0.267
Bleu_4 0.105 0.180 0.177 0.177

METEOR 0.122 0.161 0.162 0.160
ROUGE_L 0.314 0.403 0.404 0.402

CIDEr 0.282 0.353 0.357 0.350
SPICE 0.082 0.096 0.098 0.097

Table 3: Performance comparison of CutOver augmentation vs image augmentation
methods (Blur, RandomBrightnessContrast, CoarseDropout)
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Table 3 offers a detailed performance evaluation of various augmentation methods:
CutOver, Blur, RandomBrightnessContrast, and CoarseDropout. The comparison en-
compasses key metrics such as Bleu_1, Bleu_2, Bleu_3, Bleu_4, METEOR, ROUGE_L,
CIDEr, and SPICE. Notably, CutOver is assessed against different image augmentation
techniques. This comprehensive analysis provides valuable insights into the effectiveness
of each augmentation strategy, enabling a nuanced understanding of their impact on the
generated caption’s quality and diversity.

Observations and analysis

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): The CutOver DA approach exhibits lower
Bleu scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4) compared to the specific Image Augmenta-
tion Methods (Blur, RandomBrightnessContrast, CoarseDropout). This indicates that, on
average, the CutOver method generates captions that have less overlap with the ground
truth across different n-grams.

METEOR: The METEOR score for the CutOver DA method is lower than that of the
individual image augmentation methods. METEOR takes into account precision, recall,
and alignment, suggesting that CutOver may not perform as well in terms of these
metrics.

ROUGE_L: The ROUGE_L score, which measures the longest common subsequence of
words, is lower for CutOver DA compared to the specific image augmentation methods.
This indicates that the CutOver approach may result in captions with fewer common
words with the ground truth.

CIDEr: The CIDEr score for CutOver is lower than that of the individual image augmen-
tation methods. CIDEr considers consensus-based metrics, implying that CutOver may
not capture the consensus as effectively as the specific image augmentation methods.

SPICE: The SPICE score for CutOver is lower compared to the image augmentation
methods. SPICE evaluates the semantic content of the generated captions, suggesting
that Joint DA may not capture semantic information as effectively as the specific image
DA methods.

Among the specific image augmentation methods, Blur consistently demonstrates the
highest scores across various evaluation metrics. This suggests that, in this particular
experiment, blur may be a more effective image augmentation technique for improving
the performance of image captioning models compared to RandomBrightnessContrast
and CoarseDropout.

Scores CutOver Text Augmentation Methods

Bert Substitute Random Swap Random Delete Synonym
Replacement

Bleu_1 0.344 0.584 0.589 0.584 0.579
Bleu_2 0.235 0.395 0.401 0.398 0.388
Bleu_3 0.157 0.264 0.269 0.267 0.257
Bleu_4 0.105 0.176 0.178 0.179 0.170

METEOR 0.122 0.160 0.162 0.160 0.157
ROUGE_L 0.314 0.399 0.404 0.404 0.393

CIDEr 0.282 0.346 0.354 0.349 0.334
SPICE 0.082 0.097 0.096 0.096 0.095

Table 4: Performance comparison of CutOver augmentation vs text augmentation meth-
ods (bert substitute, random swap, random delete, and synonym replacement)
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Table 4 provides a detailed evaluation of different text augmentation methods, includ-
ing CutOver, bert substitute, random swap, random delete, and synonym replacement,
alongside CutOver. The metrics considered, such as Bleu_1, Bleu_2, Bleu_3, Bleu_4, ME-
TEOR, ROUGE_L, CIDEr, and SPICE, offer a comprehensive perspective on the impact
of these methods on caption quality and diversity.

Observations and analysis

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): The CutOver approach records lower Bleu
scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4) when compared to specific text augmentation
methods (bert substitute, random swap, random delete, synonym replacement). This
implies that, on average, the CutOver method generates captions with less overlap with
the ground truth across various n-grams.

METEOR: The METEOR score for the CutOver method is observed to be lower than that
of the individual text augmentation methods. METEOR, considering precision, recall,
and alignment, suggests that CutOver may not perform as effectively in terms of these
metrics.

ROUGE_L: The ROUGE_L score, measuring the longest common subsequence of words,
is lower for CutOver when compared to specific text augmentation methods. This
indicates that the CutOver approach may result in captions with fewer common words
with the ground truth.

CIDEr: The CIDEr score for CutOver DA is found to be lower than that of the individual
text augmentation methods. CIDEr, considering consensus-based metrics, implies that
CutOver may not capture consensus as effectively as the specific text augmentation
methods.

SPICE: The SPICE score for CutOver DA is lower compared to text augmentation meth-
ods. SPICE, evaluating the semantic content of generated captions, suggests that CutOver
may not capture semantic information as effectively as the specific text augmentation
methods.

Among the text augmentation methods, random swap consistently demonstrates higher
scores across various metrics. This suggests that random swap has a notable impact
on improving the quality and diversity of generated captions compared to other text
augmentation methods.

Scores CutOver Joint Augmentation Methods
Blur+Random Swap

Bleu_1 0.344 0.592
Bleu_2 0.235 0.402
Bleu_3 0.157 0.270
Bleu_4 0.105 0.180

METEOR 0.122 0.161
ROUGE_L 0.314 0.403

CIDEr 0.282 0.353
SPICE 0.082 0.096

Table 5: Performance comparison of CutOver augmentation vs joint augmentation
methods (blur + random swap)

Table 5 presents a detailed examination of model performance across various evaluation
metrics, comparing the CutOver augmentation method with a joint augmentation ap-
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proach that combines blur and random swap techniques.

Observations and analysis

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): The Bleu scores (Bleu_1, Bleu_2, Bleu_3,
Bleu_4) exhibit a consistent pattern. The model with the joint augmentation (blur +
random swap) method outperforms the CutOver augmentation across all four BLEU
metrics. This suggests that the combined blur and random swap augmentation strategy
enhances the model’s ability to generate captions with higher overlap with ground truth
across different n-grams.

METEOR: METEOR scores follow a similar trend, with the joint augmentation (blur +
random swap) method demonstrating higher scores compared to the CutOver augmen-
tation. This implies that the combined augmentation approach performs better in terms
of precision, recall, and alignment metrics.

ROUGE_L: ROUGE_L scores also show consistent improvement with the joint aug-
mentation method, indicating that the longest common subsequence of words is more
effectively captured when blur and random swap augmentations are combined.

CIDEr: CIDEr scores demonstrate superior performance for the joint augmentation (blur
+ random swap) method compared to CutOver augmentation. This suggests that the
consensus-based metric is more effectively addressed by the combined augmentation
strategy.

SPICE: SPICE scores follow a similar pattern, with the joint augmentation (blur + random
swap) method outperforming CutOver augmentation. This indicates that the semantic
content of the generated captions benefits from the combination of blur and random
swap augmentations.

The joint augmentation method (blur + random swap) consistently outperforms the
CutOver approach across various metrics, indicating its effectiveness in enhancing
the model’s caption generation capabilities. This highlights the potential benefits of
combining blur and random swap augmentations for improved image captioning model
performance.

Scores Scores on n% of VizWiz Dataset without augmentation
VizWiz (100%) VizWiz (50%) VizWiz (20%) VizWiz (10%)

Bleu_1 0.593 0.577 0.561 0.533
Bleu_2 0.404 0.391 0.366 0.346
Bleu_3 0.271 0.260 0.236 0.218
Bleu_4 0.179 0.173 0.151 0.134

METEOR 0.163 0.155 0.146 0.140
ROUGE_L 0.402 0.391 0.377 0.366

CIDEr 0.355 0.321 0.267 0.225
SPICE 0.099 0.093 0.079 0.076

Table 6: Performance scores on n% of VizWiz dataset without augmentation

Table 6 presents a comprehensive analysis of the model’s performance across different
evaluation metrics on varying percentages of the VizWiz dataset without any augmen-
tation. The scores are reported for four subsets of the dataset, representing 100%, 50%,
20%, and 10% of the original data.
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Observations and analysis

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): As the dataset size decreases, there is a
noticeable decline in BLEU scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4), indicating that the
model’s ability to generate captions that align with ground truth diminishes with reduced
training data.

METEOR: Similar trends are observed in the METEOR scores, which consider precision,
recall, and alignment. The model’s performance decreases as the dataset size shrinks,
suggesting a correlation between training data volume and METEOR scores.

ROUGE_L: ROUGE_L scores, measuring the longest common subsequence of words, also
exhibit a downward trend with decreasing dataset size. This implies that the model’s
proficiency in generating captions with common words diminishes when trained on
smaller subsets.

CIDEr: CIDEr scores, evaluating consensus-based metrics, decrease as the dataset size
reduces. This indicates that the model’s ability to capture consensus in generated captions
is impacted by the training data volume.

SPICE: SPICE scores, assessing semantic content, follow a similar pattern, showing a
decline as the dataset size decreases. This suggests that semantic information in the
generated captions is influenced by the amount of training data available.

Scores Scores on n% of VizWiz Dataset with CutOver Augmentation
CutOver (100%) CutOver (50%) CutOver (20%) CutOver (10%)

Bleu_1 0.344 0.116 0.170 0.143
Bleu_2 0.235 0.054 0.090 0.071
Bleu_3 0.157 0.029 0.052 0.036
Bleu_4 0.105 0.017 0.031 0.020

METEOR 0.122 0.040 0.056 0.048
ROUGE_L 0.314 0.138 0.183 0.170

CIDEr 0.282 0.028 0.059 0.034
SPICE 0.082 0.017 0.025 0.019

Table 7: Performance Scores on n% of VizWiz Dataset with CutOver Augmentation

Table 7 provides a comprehensive overview of model performance across various evalu-
ation metrics, specifically focusing on the impact of the CutOver augmentation method
on different subsets (n%) of the VizWiz Dataset.

Observations and analysis

BLEU Scores (Bleu_1, Bleu_2, Bleu_3, Bleu_4): The scores for BLEU metrics exhibit a
non-linear trend with CutOver augmentation across different percentages of the VizWiz
dataset. Notably, the scores at 50% of the dataset are observed to be lower than those
at 20%, indicating a non-monotonic relationship between dataset size and the perfor-
mance of the CutOver augmentation method. Additionally, the scores at 10% are lower,
suggesting a potential saturation or diminishing returns at lower dataset sizes.

METEOR: Similarly, METEOR scores demonstrate a non-linear pattern, with a decrease
at 50% compared to 20% of the dataset. This non-monotonic relationship suggests
that the CutOver augmentation’s influence on precision, recall, and alignment may be
influenced by factors beyond dataset size. The scores at 10% further underscore the
potential challenges of using smaller datasets.
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ROUGE_L: The ROUGE_L scores follow a non-linear trend, with the scores at 50%
being lower than those at 20% of the dataset. This indicates that the longest common
subsequence of words in generated captions may not strictly improve with an increase in
dataset size when applying the CutOver augmentation method. The scores at 10% also
show a decrease, highlighting potential limitations at very low dataset sizes.

CIDEr: The CIDEr scores exhibit a non-monotonic relationship, with a decrease at
50% compared to 20% of the dataset. This suggests that the consensus-based metrics
considered by CIDEr may not consistently benefit from a larger training dataset when
utilizing the CutOver augmentation approach. The scores at 10% provide insights into
the challenges of achieving high consensus with very limited training data.

SPICE: SPICE scores also demonstrate a non-linear pattern, with a decrease at 50%
compared to 20% of the dataset. This implies that the ability of the CutOver augmentation
to capture semantic information may not strictly follow a linear improvement with the
size of the training data. The scores at 10% highlight the potential limitations in capturing
semantic diversity with extremely small datasets.

One striking observation is that, contrary to conventional expectations, the scores are
higher for the 20% dataset compared to the 50% dataset. This unexpected trend suggests
that the specific composition and diversity of the 20% dataset may contribute to the
augmentation strategy’s effectiveness in enhancing model performance. Several factors
could contribute to this phenomenon:

Dataset composition: The 20% dataset may contain instances that align more favorably
with the CutOver augmentation method, leading to improved performance. The subset
of examples in the 20% dataset might better showcase the benefits of the augmentation
strategy.

Data diversity: Despite its smaller size, the 20% dataset might retain a sufficient level
of diversity, enabling the model to capture a broader range of patterns and variations
during training. In contrast, the 50% dataset may be larger but lack the same diversity,
limiting the model’s ability to generalize effectively.

Overfitting vs. generalization: The larger dataset (50%) might introduce challenges
related to overfitting, where the model may start memorizing examples rather than
learning generalized patterns. The smaller dataset (20%) may strike a balance, avoiding
overfitting while still having enough examples for meaningful learning.

Augmentation impact: The CutOver augmentation method might be particularly ef-
fective or complementary to the examples in the 20% dataset, introducing beneficial
variations in the data that help the model learn more robust representations.

Randomness in training: Inherent randomness in the training process, especially with
techniques like dropout or stochastic gradient descent, can contribute to performance
differences between different dataset subsets.



Chapter 6
Discussion and Future Works

The Discussion and Future Works chapter delves into the analysis and insights derived
from the study, providing a comprehensive discussion, and then outlining potential
avenues for future research.

6.1 Discussion

In this section, we conduct a detailed comparative analysis of generated captions, exam-
ining the influence of the CutOver augmentation strategy on image captioning. Table 8
displays the examples of the images along with their groundtruth captions, generated
captions (without augmentation), and generated captions (with CutOver)

In the first example, both the model without augmentation and the one with CutOver
augmentation exhibit a deviation from the groundtruth caption, transitioning from
"tomato soup" to "cream of mushroom soup". This shift introduces inaccuracies in the
generated captions, emphasizing the need for precision in capturing subtle details.

The second example exposes discrepancies in color details, with the model without
augmentation erroneously mentioning a "brown t-shirt", not evident in the image or
the groundtruth captions. The model with CutOver augmentation worsens this by
introducing an "orange eagle", a color detail absent in both the visual content and the
provided groundtruth captions.

The third example highlights the strengths of the model without augmentation, aligning
well with the groundtruth and accurately describing the scene. However, the model
with CutOver augmentation introduces "unknown tokens" (UNK), presenting challenges
for certain images and indicating the potential need for further refinement in handling
diverse scenarios.

In the fourth example, the model without augmentation offers a high-level description,
correctly identifying the image as a close-up of a product label. Conversely, the model
with CutOver augmentation introduces an inaccurate element, referencing a "woman"
in the caption, which is notably absent in both the visual content and the provided
groundtruth captions.
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Image GroundTruth Cap-
tions

Generated Cap-
tions (Without
Augmentation)

Generated Cap-
tions (With Cu-
tOver)

A person holding a
can of Campbell’s

tomato soup

A person is holding
a can of cream of
mushroom soup.

A person holding a
can of Campbell’s
cream of mush-
room soup

A blue shirt with
the word Lions
written in big

letters.

A close up of a
brown t-shirt with
a dark background.

A close up of a
t-shirt with an or-
ange eagle on the
front.

A TV mounted in
the corner of a
room with a

program on it.

A room with a win-
dow and a TV on
the wall.

[UNK] room with a
[UNK] [UNK] and
a [UNK].

A green, yellow,
and red card

detailing
enrollment

information.

A close up of a la-
bel for a product for
the product.

A screenshot of a
green and white
background with a
picture of a woman
on it.

A Golden Retriever
sitting on a deck in

a garden.

A picture of a house
with a window be-
hind it.

[UNK] dog is stand-
ing on the ground
in a [UNK].

Table 8: Comparison of groundtruth and generated captions (without augmentation and
with CutOver augmentation)
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The fifth example presents notable distinctions between the generated captions and the
ground truth. The ground truth accurately describes a "Golden Retriever sitting on a deck
in a garden." In contrast, the non-augmented model deviates significantly, describing a
"house with a window behind it." However, it’s noteworthy that the CutOver-augmented
model, despite introducing "[UNK]" tokens, successfully captures the main element of
the scene – a "dog standing on the ground." This highlights a scenario where CutOver has
effectively bridged the gap between the model’s output and the ground truth, showcasing
instances where the augmentation strategy has contributed positively to the model’s
performance.

These comparisons provide insights into the impacts of augmentation strategies on
the precision and fidelity of generated captions. These analyses offer valuable insights
into the influence of augmentation strategies on the precision and fidelity of generated
captions. Each example is accompanied by its corresponding image, providing a com-
prehensive view of the impact of augmentation techniques on the model’s captioning
performance.

6.1.1 Analysis

With a comprehensive overview of image examples complemented by their respective
ground truth captions, generated captions (without augmentation), and generated cap-
tions (with CutOver), it is imperative to delve into the details influencing the caption
generation process. This analysis aims to uncover and elucidate the potential factors
contributing to the observed disparities in caption quality and content.

1. Model is learning specific phrases

Phrases Number of occurrences
Training dataset Generated captions

a person is holding 867 445
a white piece of paper 129 222

can of food 637 190
top of a table 604 256

a computer screen 704 587

Table 9: Occurrences of phrases in training dataset and generated captions

In the context of our IC task, a crucial aspect of our model’s learning process involves
assimilating specific phrases from the training dataset. As an illustrative example, let’s
examine Table 9. The phrase "a person is holding" appeared 867 times within our meticu-
lously annotated training dataset, representing a considerable frequency of occurrence.

Upon subjecting our model to rigorous evaluation, a noteworthy observation emerged:
the model tended to redundantly generate the same phrase. More precisely, "a person
is holding" surfaced 445 times in the captions produced by our model. This substantial
variance in frequency between the training dataset and the generated captions signifies a
distinct disparity in the model’s behavior.

The recurrent generation of a specific phrase implies a limitation in the model’s capac-
ity to diversify its output effectively. Rather than encapsulating the rich contextual
nuances present in the images, the model tends to rely on a restricted set of phrases.
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This phenomenon underscores a crucial area for improvement in our image captioning
model, as it indicates a potential shortcoming in its ability to adapt and generate varied,
contextually nuanced captions.

To further illustrate this pattern, additional examples were investigated. For instance,
the phrase "a white piece of paper" appeared 129 times in the training dataset but was
generated 222 times by the model. Similarly, "can of food" occurred 637 times during
training, yet the model produced it 190 times in captions. "Top of a table" was present 604
times in training but surfaced 256 times in the generated captions.

The consistent repetition of specific phrases across various examples underscores the
urgency to address this tendency in our model. Exploring avenues to ameliorate this pat-
tern is imperative for elevating the overall quality and diversity of the captions generated
by our model. By addressing this challenge, we aspire to enhance the model’s proficiency
in understanding and encapsulating diverse visual contexts, thereby contributing to the
broader goal of advancing the effectiveness of image captioning systems.

2. Semantic relationship is not captured

Groundtruth captions CutOver captions
The front of two houses with four antenna
towers in the background.

The front of two bottles with four antenna
towers in the background.

The front of a partially full bottle of wine
is shown sitting on a wood kitchen table.

The front of a partially full clock of wine is
shown sitting on a wood kitchen table.

An image of a person standing on carpet
showing their bare foot.

An image of a person standing on carpet
showing their bare spoon.

A person is holding a bottles of pills in their
lap.

A person is holding a house of pills in their
lap.

The barcode from a bottle of water with a
white label.

The barcode from a bottle of leg with a
white label.

Table 10: Comparison of groundtruth captions and CutOver captions

One notable challenge observed in the analysis of the generated captions produced by
the CutOver model pertains to the failure to capture semantic relationships evident in the
groundtruth captions. The groundtruth captions exhibit a detailed understanding of the
depicted scenes, encapsulating specific objects and their inherent semantic connections.
However, the CutOver captions fall short of preserving these semantic relationships,
leading to instances where the generated descriptions deviate significantly from the
original context. This observation is further elucidated in the analysis presented in Table
10.

For instance, in the groundtruth caption, "The front of two houses with four antenna towers in
the background", the model accurately identifies and describes the presence of houses in the
scene. However, in the corresponding CutOver caption, the model erroneously replaces
"houses" with "bottles", indicating a failure in maintaining the semantic relationship
between the visual content and the generated description.

Similarly, in another example, the groundtruth caption highlights "a person standing on
carpet showing their bare foot", precisely capturing the semantic connection between the
person and their foot. In contrast, the CutOver model generates a caption where the
person is portrayed as standing on carpet showing their "bare spoon", indicating a clear
departure from the semantic context established in the groundtruth.
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This discrepancy underscores a significant limitation in the CutOver model’s ability to
grasp and retain semantic relationships present in the images. Addressing this issue
is crucial for improving the model’s capability to generate contextually relevant and
semantically coherent captions, ultimately enhancing the overall quality and fidelity of
the generated descriptions. Strategies such as refining the training process or exploring
alternative model architectures may be explored to mitigate this specific shortcoming
and enhance the model’s semantic understanding.

6.1.2 Insights

1. Data compatibility: CutOver may encounter compatibility issues with the VizWiz
dataset, known for containing images captured by blind individuals in real-world set-
tings. VizWiz’s unique characteristics, stemming from its unconventional image sources
and diverse real-world scenarios, introduce challenges for CutOver. The nature of images
taken by blind individuals may include aspects such as less clarity, varying compositions,
and unexpected visual perspectives. These specific characteristics, inherent to the VizWiz
dataset, make it distinct from traditional datasets and may pose challenges for CutOver
in effectively generating captions that align with the diverse content of the images. It
might need adaptations or adjustments to accommodate the unique challenges posed
by VizWiz, and this may involve refining the augmentation strategy to handle less clear
images and unconventional compositions. The consideration of dataset-specific chal-
lenges is crucial for ensuring that CutOver is not only compatible with VizWiz but also
capable of enhancing the dataset’s data efficiency by generating meaningful and relevant
captions in real-world contexts.

2. Overly aggressive augmentation: This concern arises from the possibility that the
CutOver method might be introducing excessive noise during the data augmentation
process. This noise, represented by extreme variations or distortions in the augmented
data, has the potential to impede the coherence of captions generated by the Show,
Attend, and Tell model. Specifically applied to the diverse and real-world images in the
VizWiz dataset, captured by blind individuals, CutOver must strike a delicate balance.
The challenge lies in enhancing the model’s ability to generalize across various visual
scenarios without introducing distortions that hinder the model’s capacity to interpret
augmented data effectively. The need for caution in the augmentation process is crucial,
ensuring that CutOver contributes to the model’s robustness rather than introducing
excessive noise that could lead to a decrease in overall performance.

3. Data size: The consideration of data size in the application of CutOver to the VizWiz
dataset is crucial, given the unique requirements of this dataset, which includes images
taken by blind individuals in real-world settings. To optimize the benefits of CutOver,
it may be advantageous to utilize a larger and more diverse dataset. A larger dataset
provides a more comprehensive representation of the diverse scenarios within VizWiz
images, allowing CutOver to learn and adapt to a broader range of visual patterns
and contextual variations. Given the distinctive capture conditions and content of
VizWiz, a larger dataset enhances the generalization capabilities of CutOver, enabling
it to effectively handle the diverse and real-world nature of the images. The inclusion
of more extensive data not only addresses the unique challenges of VizWiz but also
serves as a robust foundation for training, potentially leading to the generation of higher-
quality captions. Therefore, the consideration of data size becomes pivotal in ensuring
that CutOver is adequately exposed to the complexities inherent in the VizWiz dataset,
facilitating improved performance and caption quality.
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4. Model compatibility: The evaluation of model compatibility between CutOver
and the Show, Attend, and Tell architecture is pivotal, considering that the distinctive
characteristics of the model might influence its receptiveness to the augmentation method.
Show, Attend, and Tell rely on attention mechanisms to generate captions, emphasizing
the importance of scrutinizing how well CutOver aligns with this attention-driven
approach. Given that CutOver introduces variations and crossovers in both image and
text modalities, the interplay with the attention mechanisms and overall model structure
warrants careful examination. The model’s capability to attend to relevant features during
caption generation may be affected by the nature and extent of variations introduced by
CutOver. Consequently, a comprehensive assessment is necessary to determine whether
CutOver complements or conflicts with the underlying mechanisms of the Show, Attend,
and Tell model, and whether adjustments to either the augmentation method or the model
architecture are needed for optimal synergy. This compatibility study aims to uncover
insights into how CutOver can enhance the model’s attention mechanisms, thereby
contributing to the generation of more accurate and contextually relevant captions.
Understanding this interaction is crucial for making informed decisions on potential
modifications to improve overall model compatibility and performance.

6.2 Future Works

1. Explore complex IC Model: A pivotal avenue for improvement lies in the exploration
of a more advanced IC model to enhance the quality of text data generated by CutOver.
Specifically, the investigation involves exploring the utilization of a more advanced
or intricate IC model. Given its dual influence on both image and text modalities, a
focused effort is directed toward refining the textual aspect. This exploration involves
delving into SOTA NLP models, renowned for capturing intricate language patterns
and nuances with precision. Additionally, the consideration extends to the potential
development of custom-designed IC models tailored to the specific demands of the
image captioning task facilitated by CutOver. The overarching goal is to elevate the
quality of text data, ensuring that the augmented captions not only exhibit improved
coherence, semantic richness, and linguistic diversity but also align with the cutting-edge
advancements in NLP. Incorporating a more advanced IC model holds the promise of
enhancing CutOver’s language generation capabilities, producing captions that are not
only contextually relevant but also exhibit refined linguistic nuances. This exploration
signifies a commitment to continuous innovation within the Instance Crossover compo-
nent of CutOver, aiming to leverage the latest NLP advancements or bespoke models for
more effective and nuanced language generation during the augmentation process.

2. Enhance image quality: A critical focus in advancing the effectiveness of CutOver
involves a deliberate effort to enhance the quality of images within the dataset. This
improvement strategy encompasses various approaches, including preprocessing tech-
niques, denoising procedures, and the incorporation of higher-resolution images. By
implementing these measures, the objective is to ensure that CutOver operates on a
foundation of high-quality visual data. Preprocessing techniques may involve methods
such as contrast adjustment or normalization to standardize image features. Denoising
procedures aim to reduce unwanted artifacts or distortions that could hinder the model’s
ability to discern key visual elements. The integration of higher-resolution images ad-
dresses the finer details within the visual content, providing a more comprehensive and
detailed input for CutOver. The overarching goal is to optimize the quality of the input
images, enabling CutOver to generate captions that not only benefit from improved
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visual clarity but also capture more nuanced and contextually relevant information. This
enhancement in image quality aligns with the broader objective of refining the input
data to facilitate more accurate and coherent caption generation by CutOver.

3. Add constraints to CutOver: In the pursuit of refining the augmentation process, a
strategic enhancement for CutOver involves the introduction of additional conditions
or constraints to the method. This entails implementing specific rules or guidelines
designed to govern the augmentation process, thereby imposing structure and ensuring
that the augmented captions exhibit logical coherence and contextual relevance. These
constraints could encompass a range of considerations, such as linguistic consistency,
adherence to grammatical structures, or alignment with contextual themes present in the
dataset. By introducing these constraints, the aim is to steer CutOver towards generating
augmented captions that not only align with the semantic context of the images but also
adhere to predefined criteria for linguistic quality. The design of constraints acts as a
safeguard, preventing the generation of captions that may lack meaningful connections
or veer away from the intended context. This strategic integration of constraints con-
tributes to a more controlled and purposeful augmentation, fostering the production
of augmented data that is not only diverse but also maintains logical and contextual
fidelity. The consideration of constraints within the CutOver methodology reflects a
nuanced approach to data augmentation, emphasizing the importance of incorporating
semantic and contextual guidelines to enhance the overall quality and meaningfulness
of the generated captions.

4. Semantic relationship preservation: A critical avenue for advancing the capabilities
of CutOver involves a dedicated exploration of techniques aimed at preserving and
enhancing the semantic relationships between objects in images during the augmentation
process. This intricate task may encompass strategies to identify and selectively swap
objects within an image, ensuring that the resulting augmented captions maintain, or
ideally, strengthen the semantic context portrayed in the original image. Techniques
for semantic relationship preservation go beyond traditional augmentation methods,
delving into the nuanced understanding of object interactions and contextual relevance
within the visual content. By identifying objects with inherent semantic connections,
such as a person holding an object, or the relationship between different elements in
a scene, CutOver can be fine-tuned to ensure that swaps maintain or enhance these
relationships. This exploration aligns with the broader goal of not just diversifying the
dataset but also enriching it with augmented instances that capture the inherent semantics
of the scenes. The augmentation process, guided by semantic relationship preservation,
thus contributes to the generation of captions that reflect a deeper understanding of
the interconnectedness of objects within the visual context. Through this strategic
integration, CutOver evolves beyond conventional augmentation approaches, aiming to
produce augmented data that not only varies in content but also retains and amplifies
the underlying semantic richness within the images.

5. Change object detection model: A pivotal strategy to enhance the efficacy of CutOver
involves a systematic exploration of various object detection models. This entails experi-
menting with a diverse array of models, including more advanced or domain-specific
variants, to identify the most suitable option for providing accurate and contextually
relevant object annotations. The choice of the object detection model plays a founda-
tional role in the augmentation process, influencing the precision with which objects are
identified and annotated within the images. By considering advanced or domain-specific
models, the aim is to elevate the accuracy of object annotations, ensuring that CutOver
operates on a foundation of highly reliable and detailed object information. The inte-
gration of a superior object detection model aligns with the overarching goal of refining
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the input data, facilitating more precise and meaningful augmentations. This strategic
experimentation acknowledges the dynamic nature of object detection advancements
and seeks to leverage the latest models that offer enhanced capabilities in capturing object
features and relationships within complex scenes. The outcome of this exploration is
anticipated to be a more effective and contextually aware CutOver, capable of generating
augmented data that not only reflects a diverse range of scenes but also benefits from the
improved accuracy of object annotations provided by the chosen detection model.



Chapter 7
Conclusion

The concluding chapter serves as the culmination of this comprehensive thesis endeavor,
bringing together key insights, contributions, and reflections. This chapter not only
revisits the overarching objectives set forth at the onset of the study but also delves into
a synthesis of findings, shedding light on the implications of the research within the
specific domain. As we navigate through the conclusion, we will not only summarize
the main discoveries but also explore avenues for future research, thereby solidifying the
broader impact of this work on the field of the IC system.

1. IC objective: the primary objective is to undertake the intricate task of generating
human-like descriptions for images. This involves moving beyond the conventional
understanding of images as visual entities and delving into the realm of linguistic inter-
pretation. The fundamental goal of IC is to craft meaningful and contextually relevant
textual descriptions that encapsulate and communicate the essence of the visual content
within a given image. The process entails more than merely identifying and labeling
objects within an image; it aims to capture the nuanced relationships, intricate details,
and the overall narrative presented by the visual elements. By generating human-like
descriptions, IC bridges the gap between the raw visual data and a linguistic understand-
ing of that visual information. In essence, the objective is to create a seamless fusion
of the visual and linguistic modalities, enabling machines to not only recognize objects
but also articulate them in a manner akin to how humans describe and comprehend
visual scenes. This ambitious objective finds application in various domains, from aiding
accessibility for the visually impaired to enhancing human-computer interaction and
enriching multimedia content with informative and engaging descriptions.

2. Role of DA: DA plays a pivotal role in the IC process, serving as a crucial component
in optimizing data efficiency. At its core, DA involves the deliberate introduction of
variations and diversity into the training dataset by applying various transformations to
the existing images and captions. This intentional manipulation of data is essential for
several key reasons.

Firstly, DA contributes to robust model training by exposing the model to a more exten-
sive and varied set of examples. This helps prevent overfitting, a common challenge in
machine learning where a model becomes too tailored to the specifics of the training data
and struggles to generalize well to new, unseen data. By introducing augmented data
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during training, the model learns to adapt to a broader range of scenarios, improving its
ability to handle diverse real-world situations.

Secondly, the artificial expansion of the training dataset through DA techniques en-
sures that the model encounters a more comprehensive representation of the inherent
variability in visual content and linguistic expressions. This diversity is particularly
crucial in IC, where images may exhibit variations in lighting, composition, and object
arrangements. Augmenting the dataset allows the model to become more resilient to
these variations, ultimately enhancing its robustness and performance when faced with
novel or challenging images.

Furthermore, DA aids in improving the model’s generalization capabilities across differ-
ent images. As it learns from an augmented and diversified dataset, the model becomes
adept at extracting meaningful features and patterns that are more transferable to a wide
range of image scenarios.

3. Exploration of IC architectures and DA techniques: The research involves a thorough
exploration of various IC architectures and DA techniques. This exploration encompasses
understanding the strengths and limitations of different IC models and augmentation
strategies, laying the groundwork for informed decision-making.

4. Introduction of CutOver - A novel joint DA method: In a pivotal moment within
the conclusion, the research introduces CutOver, an innovative and novel joint DA
method meticulously crafted for IC systems. CutOver stands out for its unique approach,
strategically combining techniques from both CV and NLP domains, thereby fostering a
symbiotic relationship between visual and textual modalities.

4.1 Core principles of CutOver

CV Integration (CutMix): CutOver incorporates a CV augmentation technique known as
CutMix. This involves replacing portions of one image with corresponding portions of
another, creating a blended or mixed image. By leveraging CutMix, CutOver introduces
diversity and complexity in the visual domain, exposing the model to a rich tapestry of
visual variations. This integration is crucial for enhancing the model’s ability to adapt to
diverse image compositions and scenarios.

NLP (Instance Crossover): In tandem with the visual augmentation, CutOver embraces
an NLP technique termed Instance Crossover. This involves swapping or merging
textual elements between captions, generating new and diverse textual descriptions. By
intertwining linguistic variations with visual transformations, CutOver aims to enrich
the linguistic diversity of the training dataset, ensuring the model is well-equipped to
handle the intricacies of varied linguistic expressions associated with different visual
scenes.

4.2 Synergy between visual and textual modalities

CutOver’s distinctive contribution lies in its ability to forge a synergy between the visual
and textual modalities. Unlike traditional DA methods that often focus solely on images
or captions independently, CutOver recognizes the interdependence of these modalities
in IC. The simultaneous augmentation of both visual and textual elements creates a
more holistic and nuanced learning experience for the model, aligning with the inherent
complexity of real-world scenarios captured in images. Unique Advantages of CutOver:
The introduction of CutOver represents a departure from conventional augmentation
methods, offering a novel perspective on addressing the challenges of IC. The joint nature
of CutOver allows for a more seamless integration of visual and textual data, potentially
leading to more coherent and contextually relevant caption generation.
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4.3 Strategic positioning in conclusion

Positioned as a central point in the conclusion, the introduction of CutOver signifies a
deliberate and innovative attempt to enhance the augmentation strategies employed in
IC. Its incorporation embodies a strategic move towards refining the model’s adaptability,
diversity, and performance through a unique blend of visual and textual augmentations.
This introduction sets the stage for a nuanced evaluation and analysis of CutOver’s
impact on the overall effectiveness of IC models.

5. Comprehensive experimental examination: The conclusion incorporates a detailed
examination of experimental outcomes. This includes the implementation of baseline
strategies and the application of robust evaluation metrics to measure the effectiveness
of the CutOver method in comparison to other approaches. Results and findings are
thoroughly analyzed for insights.

6. Analysis of CutOver performance: A critical aspect of the conclusion involves a
transparent analysis of why CutOver might have fallen short of expected improvements
in IC models. This evaluation includes considerations of challenges, limitations, and
potential areas for refinement in future iterations.

7. Walk-through of potential future enhancements: The conclusion provides a forward-
looking perspective, outlining a systematic walk-through of potential future enhance-
ments for refining the CutOver method in IC systems. This involves identifying areas of
improvement, addressing limitations, and considering innovative approaches to enhance
the overall performance of the model.
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