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Abstract

Recently, the usage of interactive public displays has increased, including the
number of sensitive applications and, hence, the demand for user authentication
methods. In this context, gaze-based authentication was shown to be effective and
more secure but significantly slower than touch- or gesture-based methods. We
implement a calibration-free and fast authentication method for situated displays
based on saccadic eye movements. In a user study (n = 10), we compare our new
method with CueAuth from Khamis et al. [20], an authentication method based
on smooth pursuit eye movements. The results show a significant improvement
in accuracy of 13.16% to 95.88%. At the same time, we found that the entry speed
can be increased enormously with our method, on average, 18.28s down to 5.12s,
which is comparable to touch-based input.
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Chapter 1

Introduction

An increasing amount of use cases require an authentication of users prior to
interaction with a public display. Typical situations include making purchases,
retrieving sensitive information, or for identification purposes. A common class
of authentication methods are knowledge-based approaches, e.g., PIN, password,
or patterns are entered via touch-input on the public screen or via an external
keyboard. However, these methods are prone to residues- or observation-based
attacks. Smudges [3] or thermal residues [1] can be used to retrieve partial to full
information of an entered PIN or password. Attackers might also observe the
input by shoulder surfing attacks [10] or more sophisticated attacks involving
a camera recording the PIN entry [39]. An alternative to knowledge-based
approaches are biometric authentication methods such as fingerprint and iris
scans. However, in this work we concentrate on knowledge-based and gaze-
based authentication in the context of mobile gaze-based interaction [7].

Prior works propose authentication mechanisms based on different modalities
to be more robust against attackers. For example, [21] use the pressure-signal
of touch-based input to overcome shoulder surfing. Other works introduce
gaze-based methods that track the user’s gaze with RGB cameras or specialized
eye-tracking sensors. These methods were shown to be more secure than, e.g.,
touch-based input [14, 20]. In addition, gaze-based input allows hands-free au-
thentication and interaction, which is more hygienic. This is an important factor,
due to the high contamination of public displays [17]. However, a major draw-
back of many gaze-based authentication methods is the need for prior calibration
[22, 8]. These approaches are not suited for public displays, because calibration
takes time and is perceived as cumbersome [27], while interaction methods for
public displays shall be designed for immediate usability [19]. Calibration-free
methods exist, but tend to be slow [20, 13, 11, 32] or suffer from low success rates
for PIN entry [15, 20].



In this work, we describe and implement a novel gaze-based and calibration-
free authentication method, EyeLogin, that addresses the limitations of prior
approaches. Our system uses the direction of saccadic eye movements in a radial
interaction design, similar to [8], that facilitates accurate and fast PIN entry. We
use a low-cost remote eye-tracking sensor that allows broad integration into
public displays and spontaneous user interaction. Other than the approach
described in [8], our method is calibration-free. In addition, we implemented the
state-of-the-art method CueAuth!, that is described in [20], as a baseline system.
In a user study (n = 10), we compare both authentication methods in terms of
the accuracy in entering the correct PIN, the PIN entry time, the usability, and
the perceived workload.

"n CueAuth [20], three authentication methods are described based on touch, gesture and gaze
input, respectively. We refer to the gaze-based version unless stated otherwise.



Chapter 2
Related Work

2.1 Traditional Pin Input & Security on public displays

Conventional authentication methods on public displays are knowledge-based,
e.g., PIN, password, or patterns are entered via touch-input on the public screen
or via an external keyboard. In the following chapter, we present multiple attacks
against these authentication methods.

2.1.1 Attacks using residues

When interacting with a touchscreen or keypad residues are left of the screen.
There are mutiple ways of retrieving PIN or Pattern Lock on touch devices.

Smudges

In Aviv et al. [3], the authors presented an attack to retrieve the pattern using
"smudges." These "smudges" are oily residues left from touches on the screen.
They found that using these residues allow for partial and, in some cases, full
PIN recovery.

Their experiment setup consisted of an attacker, who as a premise for the experi-
ment had seized the smartphone of the victim. To obtain control of the phone
secured with a Pattern Lock, the attacker has to determine the victim’s pattern
using lighting and fitting camera angles. Because of no prior studies about the
properties of smudges on the screens, the authors had to figure out the best
camera and lighting settings for a successful attack.



Figure 2.1: Smudges left on a Figure 2.2: Original and post processed
touchscreen[3]. image side by side[3].

Furthermore, experiments investigating the negative effects of screen contact with
clothes or normal usage were conducted. Remarkably, full retrieval was possible,
even when the screen came in contact with clothes. However, the directionality
of the pattern was lost. But the pattern possibilities are reduced to two - forward
and reverse direction. Additionally, even after day-to-day usage only slightly
affected the successful pattern retrieval rate.

Authentication on situated displays in public space with a Pattern Lock is even
stronger affected by this attack. No seizing of any device is required as the attack
can be directly executed after the user authenticates on the public display. The
attacker only needs to wait for the user to authenticate and apply the attack, as
mentioned in [3]. Similar investigations by Airowaily and Alrubaian [2] also
confirmed security threat of smudges.

Thermal residues

Other residues based attack uses heat traces left on the screen[29, 1]. Abdel-
rahman et al. [1] introduce a thermal attack using heat traces on touch devices.
After authentication, heat traces left on the screen can be captured and allow
reconstruction of Patterns and PINs. Besides, this type of attack can even retrieve
information about the order of PIN/Pattern Entry.

Thermal traces from the touchscreen fade away slowly. Attacking the user after
authentication is possible and does not require the seizing of the mobile device
as a picture with a thermal camera is enough. The attacker only has to wait for
the possibility to take a photo with a thermal camera. This attack requires the
victim to leave his smartphone unattended for a short period.

The authors conducted a study on how the different authentication methods
are affected by different timing between the attack and password entry. And



additionally, how varying password properties affect the feasibility of thermal
attacks.

In their study, 18 participants were asked to enter a set of PINs and patterns.
Additionally, they were instructed to leave the smartphone on the table after the
authentication. The attacks were conducted in 15 seconds intervals ranging from
0-60 seconds after the PIN/Pattern entry. The result showed that retrieving PINs
within 30 seconds is very likely (78%), and PINs with duplicate digits are even
more likely to be retrieved.

The authors propose to use authentication schemes untied to the touchscreen
as an effective way to counteract thermal attacks. Smudges and thermal traces
are left when a user authenticates on a public display. The attacker only needs a
thermal picture after the authentication process, which is easily retrievable in a
public space.

Residue-based attacks are highly effective on touch-based authentication on
public displays. To prevent this attack, our approach is gaze-based. Thus, no
residues are left on the screen when using a gaze-based authentication, making
our approach resistant to this attack.

2.1.2 Attacks using observation

Besides using residues, an attacker can use observation during the authentication
process. This "shoulder surfing" is a widely known attack (97%, 168 of 174
participants)[34, 16]. Ye et al. [39] introduced an advanced observational attack.
This attack is video-based and uses computer vision algorithms tracking the
victim'’s fingertip movement. In contrast to attacks using residues, it can be
executed from a further distance ranging up to nine (and possibly more) meters.
Their attack is focused on reconstructing a Pattern Lock on mobile phones. Unlike
other observational attacks, no screen footage is required.

The first step for a successful attack is recording the victim drawing his pat-
tern(See Figure 2.1.2). Depending on the camera quality, higher distance attacks
are possible. While smartphone cameras allow a distance of 2-3 meters, a digital
reflex camera allows for an attack from 9 meters and more. Afterward, the start
and endpoint of the authentication process have to be marked in the footage.
Additionally, the fingertip and a fixpoint on the edge of the smartphone have to
be manually selected. The author’s TLD (Tracking-Learning-Detection) algorithm
tracks the fingertip and the fixpoint. The trajectory generated from the fingertip
could be affected by camera shake. To cancel the camera shake, the fingertip
location is tracked with respect to the fixpoint of the device. This also counters
slight movements of the device.

Furthermore, the filming angle has to be considered, so each frame of the gener-
ated trajectory needs to be transformed by the corresponding filming angle in
the frame. The angle is calculated between a vertical line and the detected longer
edge of the phone. An automatic process maps the results to a few possible



Figure 2.3: Video recording from a Figure 2.4: The device screen as
2.5 meter distance[39]. seen in the captured video[39].

patterns rejecting patterns not meeting the requirements (number of lines, length
of lines, direction). Moreover, these patterns are sorted by heuristics, which takes
multiple factors into account e.g., that a pattern used is most-likely starting from
the left side of the phone, which is proven by multiple studies [26, 37].

To confirm the feasibility of their attack, an experiment was conducted with 10
students reproducing 120 unique pre-collected patterns from a survey with 215
participants. The students were recorded, drawing a pattern with different angles,
shakiness, lighting, and different devices. The results show that over 90% of the
patterns could be retrieved in five or fewer attempts. Moreover, as opposed to
common belief, the more complex a pattern was, the easier it was to retrieve it
successfully.

For situated public displays, observation-based attacks are more effective. In
most cases, these displays are stationary. Additionally, their location is publicly
accessible, which enables the attacker to prepare his attack. Hidden cameras
could be placed, or high-quality cameras could be used to record footage of the
authentication process from a distance. With the previously introduced attacks,
the camera does not need to face the screen, making attacks even harder to detect
due to more possible attack angles.

Our approach is not dependent on the finger movement but eye movement. It is
much harder to track eye movement from a distance or a camera angle, not facing
the eyes of a victim. Consequently making observation-based attacks much
harder to achieve. Additionally, to tracking eye movements, the display has to
be recorded to link the eye movement to the authentication process, making our
approach robust against these attacks.
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Figure 2.5: Gaze-pattern when the user enters "password" as the password[22].

2.2 Eye-tracking based authentication

In this section, we describe related works in the field of gaze-based authen-
tication methods. Prior gaze-based authentication methods can be classified
into "accurate gaze-based" and "gesture-based" methods. Accurate gaze-based
authentication requires prior calibration and uses accurate gaze data. While
gesture-based authentication systems make use of eye movement patterns that
can be recognized automatically. These movements can be a combination of
fixations, saccades, and smooth pursuit eye movements.

2.21 Accurate gaze-based authentication

The Midas-touch problem with eye-tracking is the problem of distinguishing
between gaze gathering visual information and gaze used for selection. Research
suggests using "dwell-time," where the users have to fixate on a element until
a certain time is reached. The system then interprets the fixation as selection. If
the dwell-time is not reached, the system interprets the gaze as just gathering
visual information. In the following, we describe a "dwell-based" authentication
method that uses accurate gaze data.

Dwell-based authentication

Kumar et al. [22] introduced "EyePassword," a dwell-based authentication method
that displays a virtual keyboard or number pad for entering a password or a PIN,
respectively. Instead of using fingers to press a button on a touchscreen, the user



aims his gaze at the characters.

There are some drawbacks when using gaze, which they had to consider when
creating the layout. E.g. The size of the virtual buttons had to be big enough for
the user to be accurate and small enough for the user not to move his head. Head
movements could leak information to a potential attacker.

Furthermore, they had to decide between a dwell-based trigger mechanism [28],
or a multi-modal solution (dedicated button), which potentially could leak timing
information. Finally, to validate the user’s input, audio or visual feedback has to
be provided (e.g., asterisks in a password field, "beep" sound).

EyePassword was developed on Windows and used a Tobii 1750 eye tracker.
They implemented a QWERTY and alphabetic layout. In a study with 18 subjects,
the authors compared traditional keyboard password input with EyePassword
using a hardware-based or dwell-based trigger. First, the subjects performed a
calibration with the eye tracker. After a short practice session for each technique,
the subjects had to enter a set of passwords.

The study compares the password entry speed and error rate. Finally, the par-
ticipants were asked to fill out a survey about their subjective opinion of the
techniques. The results showed that the least errors were recorded with dwell-
based gaze input - even traditional keyboard input had a higher error rate. Also,
the QWERTY layout was faster than the alphabetical. This could be explained
with the participant’s familiarity with the QWERTY layout. Although EyePass-
word was significantly slower (about 5-times) to keyboard input, the evaluation
of the survey, showed that over 80% of the users would prefer to use "...a gaze-
based approach over using a keyboard when entering their password in a public
place" [22, p.17].

In their study, they confirm the feasibility of gaze-based authentication. Their
paper gives clues about design decisions when creating a dwell-based authenti-
cation method. The size of the buttons has to be large enough to be accurately
detected and should contain a fixed point in the middle. This point allows the
user a more relaxed focus on the desired character.

Boundary-based authentication

Instead of using a dwell time for selection, Best and Duchowski [8] introduced a
selection relying on the gaze data crossing boundaries of the digit elements on
the screen (Figure 2.6). They implement a weighted voting scheme to determine
which digit was chosen by the user. To minimize the entry time, they designed
the interface in a rotary design, imitating a rotary dial phone. To enter a PIN,
the user starts in the center and looks at the digit he wants to enter. By process-
ing the gaze data, they recognize boundary entering and leaving and thus can
identify a digit entry. They found out that they could minimize the entry time
by deploying a rotary design and showed that an average entry time under five
seconds is possible (M = 4.62). Drawbacks are that their system has low accuracy
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Figure 2.6: Rotarty Interface and visual representation of entering a the PIN:
"9610"[8].

(M=71.16%), and their method is not implemented for real-time authentication.

While the rotary interface layout is similar to our approach, a significant dis-
tinction is that their gaze-based authentication systems require accurate gaze
data. Thus a calibration is necessary before each use. Accurate gaze-based au-
thentication methods are not suited for public displays, because calibration takes
time and is perceived as cumbersome [27], while interaction methods for public
displays should be designed for immediate usability [19]. Our approach does not
need any calibration from the user. We only rely on the relative movement hence
providing faster and more satisfying user experience.

2.2.2 Calibration-free authentication

Calibration-free eye-tracking methods address the problem of time-consuming
and tedious calibration procedures, which is of particular interest for spontaneous
interaction with public displays [19]. One approach to realize calibration-free
gaze-based interaction is using gaze gestures.

Gaze-gesture based authentication

Instead of using the accurate gaze position, it is possible to use relative eye
movements. These movements do not need any calibration nor expensive eye
trackers. Each movement can be described as a gaze-gesture.

De Luca et al. [12] introduced an authentication method using only gaze-gestures.
They designed a gesture alphabet representing digits from 0-9. The outlines of
the respective numeric character represent each character. The user presses a
button to trigger his input. While holding the button, he performs a gaze gesture
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for each number in his PIN.

The prototype uses a commercial eye tracker ERICA, and similar to EyePassword,
asterisks give the feedback for valid input. To confirm the utility, a study with
21 participants is conducted. Their prototype is compared with a numeric im-
plementation of EyePassword, where the first implementation uses a dwell-time
and the second using a button as a trigger.

They found similar results with the previously described authentication method
[22] confirming the usability of eye-tracking for PIN entry, yet had a much higher
error rate for dwell-based and trigger-based input in comparison. Surprisingly
eye gesture input was least prone to false recognition. However, with an average
time of 54 seconds, due to having to look up the "alphabet" for each numeric
character and gaze gestures being something new for the users, it is not appli-
cable for daily-usage. What the authors observed and confirmed was that users
preferred and found it easier to remember a gesture instead of a PIN. So instead
of deploying an "alphabet," as the authors did, it would be better to have a custom
gesture for each user.

Since multiple people use public displays, therefore it makes sense to use calibration-
free methods for authentication. This prototype introduces a calibration-free
method, which lacks usability — input time, and the hassle to learn an alphabet
before use are the most significant factors. The lack of the necessity of holding

a button to indicate input is a different from our approach. Furthermore, we
deliver a much faster entry time. Yet the authors could confirm that usage of gaze
gestures can be robust against errors.

Thus using the conclusions from their previous work De Luca et al. [15] imple-
mented a novel entry method called EyePassShapes. It combines an existing
authentication method, "PassShapes," with Eye-Tracking. PassShapes allows
the user to authenticate by painting combinations of strokes with a pen. Eight
directions, each representing a different character, are used to create a password.
The user selects a password and only has to remember the direction of the strokes.
Using simple directions improves memorability. As this method does not use
Eye-Tracking but drawing of shape, the same attacks as traditional PIN Input are
effective against it.

EyePassShapes combined gaze-based authentication with PassShapes, allowing
each stroke to be selected by the respective gaze-gesture. In their prototype, the
user presses a button and then enters his shape with his eye movement, which is
then analyzed by the system, and if recognized, access is granted.

The interface background design is either dotted(See Figure 2.7) or a grid since
informal evaluations showed that only an advanced user could enter gestures on
a blank screen. To acquire the most useful settings, a user study was conducted
showing a dotted background was preferred by the user and had the best average
input time.

After implementing these findings, the usability and security of their final pro-
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Figure 2.7: EyePassShapes: a user performing the gesture "93U9".[15].

totype of EyePassShapes was evaluated and compared to traditional and the
previously implemented PIN entry methods in two more studies. Traditional
PIN entry with a keyboard was the fastest method, yet EyePassShapes could
slightly outperform PassShapes, but only when the user performed their pattern
in one stroke. The results show that with eye-tracking, the user could "draw" in a
time comparable to drawing on a touchpad with a pencil.

Allowing the user to enter his shape with one stroke, yields a much faster pass-
word entry time (5.31s). The main difference to our approach is the usage of
directions instead of a traditional numerical PIN. The authors that gaze-based
authentication can be fast by using simple directions. Our approach also uses
simple directional eye-movement, since they yield a faster PIN entry. The author
did not publish exact accuracy values. Furthermore only critical errors (PIN
entered wrong for more than 3 times) were counted as errors.

Smooth-pursuit based authentication

Whereas in gaze-based authentication, the user actively performs a gesture to
interact with the system, another approach to facilitate calibration-free gaze input
is based on smooth pursuit eye movements. These eye movements are correlated
with trajectories of elements in a dynamic user interface for, e.g., selecting objects.

Liu et al. [25] introduced an android based authentication method using smooth
pursuits. It is based on making the user track the corresponding moving object
to his PIN. Four randomly sorted objects(See Figure 2.8), each assigned with a
unique number between 1-4, are placed in the middle of the screen. For five
rounds, those objects simultaneously move from the middle of the screen to the
edge of the screen in a vertical or horizontal direction. They are then placed back
on their original position. Each round, which represents a single digit of the
user’s PIN, the direction the user moves his eyes, is tracked with the front camera
of the smartphone. If the movement matches the PIN, the authentication passes.
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ﬁ MovingTarget ﬁ MovingTarget

start Measure Camera start Measure  Camera

Figure 2.8: Four randomly sorted objects representing a number between 1-4 and
each moving in random direction per round. [25].

They divided their system into a front-end and a back-end, whereas the front-
end is responsible for presenting the objects and randomizing them for each
authentication process. The back-end records the user’s eye movement in each
round with the front camera and then proceeds to extract the position of the eye
frame-by-frame. Resulting in an eye movement trajectory, which is then matched
to the targets objects movement trajectory in the "Decision Maker." The similarity
of both trajectories is compared, and after five rounds, the final result is presented
to the user. To increase security, not only are the objects randomly placed at the
beginning of the authentication process, but also, no feedback to the user is given
until five rounds are completed.

In an early prototype, the authors observed that a user’s eye is not able to strictly
follow a moving object due to either distraction of other moving objects or hand
and head shakiness. Also, eye-tracking is not perfect. This led them to use a
majority vote principle, where only 4 of the 5 rounds needed to be matching.

In an experimental setup, their android prototype was tested with 21 participants.
The authors observed a 77.1% indoors to 79,3% outdoor accuracy rate but espe-
cially found out that in most cases, only one round was falsely detected. After
using the Majority Vote, the detection rate rose between 91.6% to 97.3%.

This reduces the number of possibilities even more and makes it prone to brute-
force attacks. Nonetheless, smooth-pursuits allow a calibration-free method for
authentication. On situated public displays, the camera and the display are fixed,
which drastically increases the accuracy since no shaking or handheld movement
disturbs the eye-tracking. A possible solution would be to increase the possible
directions and thus also the possible PIN combination, which could allow for a
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relatively fast and accurate authentication method.

More recently, Khamis et al. [20] proposed a more secure authentication method
utilizing smooth pursuit for situated displays. Their concept is to present a
Numpad on display. Each digit on the Numpad is encapsulated and has a
unique trajectory. The selection is made by following the digit’s trajectory. This
movement is then compared and matched. Multiple rounds are matched, and the
corresponding PIN is identified. The trajectories used are either linear, circular,
or zigzag-shaped.

This type of authentication is also classified as cue-based. The fundamental
idea is to flood the screen with randomized cues. The attacker now has to
track the cues but also the user’s interaction with the cues. Making it hard
for the attacker to follow and seize relevant information. Additionally, two
extra cue-based authentification methods, using mid-air gestures and touch, are
implemented. Both methods display a Numpad on the screen. Whereas the
touch-based displays the clues as swipe direction and two different colors, each
for the respective touch input area. Mid-air gesture instead uses the different
colors corresponding to the left and right hand. Hence the swipe gesture has to
be performed with one hand mid-air respective to the color.

They conducted a usability and security study with all three introduced authenti-
cation methods recruiting 20 participants. The participants were asked to perform
the authentication methods depending on the Latin square order. Additionally,
they were told to fill out a NASA TLX questionnaire to determine the workload.

All three authentication methods had a relatively high success rate (>82%). Touch
was less error-prone (93.38 %) in comparison to gaze (82.72%). But a significant
difference was evident in the entry time. While touch took 3.73s on average,
gaze was remarkably slower (26.35s). Accordingly, the NASA TLX Score gaze
was experienced as less performant, more frustrating, and more physically and
temporally demanding. Trough a semi-structured interview, it was evident that
gaze is described as secure and discrete but also as slow and causes straining
eyes. Additionally, the participants proposed using different trajectories and
allowing a refresh phase between each round. Also, on all three authentication
methods, users asked for more visible feedback.

Furthermore, the security study showed that even with a repeated video at-
tack, the success rate for gaze-based PIN was 0.05%, compared to 74% when
using touch and 64% mid-air. This confirms the perceived security of the par-
ticipants. The study proves the security of gaze-based authentication against
an observation-based attack. Their approach for gaze-based authentication uses
smooth Pursuits to achieve a calibration-free authentication method. But a major
problem is their long entry time and perceived stressful input. This evaluation is
one of our core sources during the study section, and their gaze-based scheme
is implemented and then compared with our authentication method. With our
approach, we aim to improve the entry time. Instead of using a predefined
gesture for each digit, simply looking in the direction of the desired character
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is enough. Thus reducing the workload and making the authentication process
quicker and less stressful.

The presented gaze-based authentication methods are shown to be more secure
than traditional PIN entry systems. However, all systems suffer from one or
more major disadvantages including low accuracy in recognizing the entered
PIN, high entry times or they need prior calibration (See Table 2.1).

In this work, we design and implement a novel calibration-free authentication
system that addresses these flaws: Our goal is to enable gaze-based secure
authentication on public displays with high accuracy and low entry times. We
aim to reduce the input time and task load by introducing a more straightforward
method of selecting the digit for the pin, where the user only has to direct his
gaze to the desired digit for selection.
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Chapter 3
Gaze-based Authentication

Figure 3.1: Interface of CueAuth Figure 3.2: Interface of EyeLogin

In the following, we describe the design and implementation of the gaze-based
CueAuth method [20] and our novel authentication method that is based on
saccadic eye movements. We implement CueAuth as baseline system, because it is
calibration-free, implements the same knowledge-based authentication method
(four-digit PIN entry) and it is one of the most recent and comprehensive works
that explores authentication on public displays.
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Algorithm 1: CueAuth - PinDetection

Function Observelnput
while (PIN.size() < 4) do
‘ OnAnimationStop += CalcDigit(gaze, trajectories);
end
end
Function CalcDigit (List gaze, List[] trajectories)
(corr_a, digit_a) = Correlate(gaze, trajectories,2.0);
(corr_b, digit_b) = Correlate(gaze, trajectories,2.5);
if (corr_a > 0.8 OR corr_b > 0.8) then
if (corr_a > corr_b) then
| PIN.Add(digit_a);
else
| PIN.Add(digit_b);
end
end

3.1 CueAuth

We implement CueAuth as described in [20]. The central concept of CueAuth is
matching smooth pursuit eye movements of a user with the trajectory of moving
digits (0-9) in the interface (see Figure 3.1). The interface renders a virtual number
pad. Each digit is presented in a small circle that moves with a pre-defined
unique trajectory. The trajectories are either linear, circular, or zigzag-shaped, as
proposed in [38].

To authenticate, the user needs to follow the movement of four digits in a row that
form a PIN. For each iteration and match, the interface provides visual feedback
in a separate text view by adding an asterisk symbol. Addressing the known
limitations of CueAuth, we add a one-second break after the trajectory-based
animation ends to allow the user to re-focus and to provide feedback when
the matching process begins and ends. The actual matching begins after the
animations of the digits stop (see Algorithm 1). We compare the trajectories of the
interface controls with the relative eye movements of the same time-frame. We
calculate the Pearson correlation for two axes (x and y) and average the correlation
coefficients in the Correlate function. If the mean correlation ¢ > 0.8, the digit
is stored, and the user receives immediate feedback of the match (asterisk). If
more than one trajectory reaches the detection threshold of 0.8, we choose the
digit with a higher correlation. We call Correlate with two different time-
windows: [2s-4s] and [1.5s-4s] that start 2s or 2.5s before the animation stops.
The time-windows were manually optimized before the study. The digit with the
highest correlation coefficient is appended to the stored PIN.
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3.2 EyeLogin

Figure 3.3: Interface of EyeLogin

We propose a novel algorithm for calibration-free authentication which is based
on saccadic eye movements. EyeLogin shows the digits 0 to 9 in a radial design
(see Figure 3.2), similar to [8]. At the center, we present feedback on the progress
(one asterisk per entered digit appears) and show miniaturized digits as direction
cues for the user to prevent errors. A dashed line connects the inner and outer
digits to guide the user’s gaze. The user starts the authentication process by
fixating at the center area and pressing the space bar. This trigger is required to
overcome the Midas touch problem inherent in gaze-based interaction and could
be replaced by any trigger in the future, e.g., presence detection in combination
with a long fixation or speech-based hotwords known from digital assistants.

When the authentication process is started (trigger), the initial gaze position is
stored as reference point gaze_c and provided as input to EyeLogin (see Algorithm
2). The user can now enter a digit by fixating it and returning the focus to the
center position afterwards, which then shows the recognition progress.

We leverage the quick nature of a saccadic eye movement between two fixations
to determine the relative direction of the eye movement and to detect the digit
of choice: First, we determine the farthest point max_p from the reference point
gaze_c. Then, we calculate the direction vector dir_n with the gaze_c as the
origin and max_p as the destination point. The angle between the y-axis and
the direction vector allows to infer the fixated digit in the CalculateDigit
function: each digit is assigned to a certain angular sector. Upon detection, the
system gives feedback by displaying an additional asterisk in the center area.
Showing the feedback at the center region ensures that the user returns its focus
to this point as expected by our algorithm. This process is repeated four times
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to complete the PIN entry. One limitation is, that users might turn their gaze to
the next digit before returning to the center area. This would cause an erroneous
input. However, this error type occurred rarely in our study.

Algorithm 2: EyeLogin - PinDetection

Function Observelnput (Point gaze.)
while (PIN .size() < 4) do
if (Saccadic_Movement_Recognized()) then
‘ CalcDigit(saccade, gaze.);
end
end
end
Function CalcDigit (List saccade, Point gaze.)
max, = GetFarthestPoint(saccade,gaze.);
dir, = CalculateDirection(gaze., maxp);
angle = CalculateAngle_To_Y_Axis(diry,);
digit = CalculateDigit(angle);
PIN.Add(digit);
end

3.3 Implementation

A
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recording PIN | progress
gaze data |
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Authenticate : - ]
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Figure 3.4: Architecture of EyeLogin
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Both EyeLogin and CueAuth are implemented with C#. The Interface is imple-
mented using WPF (Windows Presentation Foundation)?. To retrieve the gaze
data from the eye tracker, we use the Tobii Stream Engine(v2.2.2.363)>. Image
processing is realised with EmguCV 4.

3.4 Visual Debugger

The system stores the gaze data for EyeLogin into two log files. The first log file
records all gaze-data during PIN entry with the timestamp provided by the Tobii
Stream Engine. The second log file only contains the relevant gaze-data.

gaze_x | gaze_y | digit number | time
0.01 0.02 0 8575
0.03 0.005 |3 9800

Table 3.1: EyeLogin .csv log file

The second log file only contains the four saccadic movements, each represented
by digit_number (See Table 3.1). The offset gaze_c is taken into account before
exporting to the log file. The gaze coordinates are normalized, and then the coordi-
nate system is shifted. The C'enter coordinate is (0,0) (T'op :(0,0.5) Bottom :(0,-0.5)
Left :(-0.5,0) Right :(0.5,0)).

gaze_x | gaze_y | time | digit_0_x | digit 0_y digit 9_x | digit 9_y
978 706 8575 | 185 719 180 100
1538 1539 19800 | 185 719 180 100

Table 3.2: CueAuth .csv log file. The gaze data is multiplied with the resolution.

CueAuth, on the other hand, saves the gaze data and additionally exports the
movement of every moving digit (See Table 3.2). The gaze data and digit are
represented with pixel coordinates.

*https:/ /docs.microsoft.com/dotnet/ framework /wpf/
*https:/ /www.nuget.org/packages/ Tobii.StreamEngine /
*https:/ /www.nuget.org/packages/EmguCV/
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Figure 3.5: Interface of the Visual debugger for EyeLogin

By storing all the data into .csv files, we can "replay" every authentication attempt.
Thus we wrote a Visual debugger, which visualizes the authentication attempt
(See Figure 3.5).

The visualizer represents the gaze data for each digit with uniquely colored
dots(green, orange, yellow, pink). The dot size relates to the order of gaze
samples (increasing radius corresponds to increasing timestamps), and the red
dot marks the point max_p from our algorithm.

On the left side of the screen, the average entry rate and time are calculated for
each user. Additionally, on the top left side, the average entry time and rate for
all users is calculated. To navigate between entries of the user, the button "n" for

noon

next and b for "back" are used. To change the user, "+" and "-" are used.



Chapter 4
User Study

We conduct a user study to compare our novel authentication method EyeLogin to
the existing eye-tracking based authentication method CueAuth. We investigate
the effectiveness, efficiency, usability, and perceived workload of both methods
in a public display setting. We mostly revisit the experimental design and setting
from [20] to ensure comparability with their results.

4.1 Participants

We recruited 10 students (two females and eight males) with normal or corrected
to normal vision aged between 25 and 31. One participant with weak vision
refrained from wearing eye correction but did not report any problems. Two of
the participants had prior experience with eye-tracking.

4.2 Conditions & Tasks

We investigate the performance and usability of the previously introduced authen-
tication methods EyeLogin and CueAuth. For each method, we ask participants to
enter 11 PINs in a training phase and 17 PINs in the main phase, totaling 28 PINs
per method and user. The instructor vocalizes the randomly selected four-digit
PIN before the participant starts the authentication procedure by pressing the
space-key. They receive automatic feedback about the progress as described
above, but not whether a digit or the complete PIN was recognized correctly.
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Group | Sequence of performing the conditions
A EyeLogin CueAuth
B CueAuth EyeLogin

Table 4.1: Counterbalanced Order
4.3 Design

The study is designed as a repeated measures experiment and is conducted
with the independent variable authentication method as the within-subject factor
that includes CueAuth and EyeLogin. Since participants” performance can be
influenced by conditions following other conditions, for example, to mental or
physical demand from the first condition, it is crucial to counterbalance the order.
Therefore we divide the participants into two groups (A and B). A will first
perform the condition EyeLogin and then will perform the condition CueAuth.
B will perform the condition in reverse - start with CueAuth and then perform
EyeLogin (See Table 4.1).

4.4 Procedure

First, the participants are welcomed to the study and asked to sign a consent
form. The instructor introduces and explains the study. The instructor presents
one of the authentication methods (counterbalanced order) by demonstrating
the interface, explaining how a digit is selected, and when a password entry is
finished.

In the training phase (11 PINs), the participant can familiarise himself with the
authentication method by entering three simple PINSs, followed by eight random
PINs. Each PIN will be randomly preselected. The user starts the authentication
by pressing the “Space” button. He only receives feedback about each successful
digit entry, but no feedback is given about the correctness of the entered PIN. If
the instructor detects significant problems, the instructor corrects the user. The
three first PINs are discarded for the analysis. In the main phase, the participant
is asked to enter 17 PINs.

After finishing the tasks for one method, the participant fills in a NASA TLX [18]
form on a computer to asses the perceived workload. This procedure is repeated
with the remaining authentication method. After all tasks are completed, the
participant fills in a questionnaire, including demographic questions and items
of the System Usability Scale (SUS) [9] as well as open-ended questions for each
authentication method.



24

Figure 4.1: The setup of the study that is same for both methods

4.5 Apparatus

A 24-inch widescreen monitor with a resolution of 1920x1080 pixels is used to
display the interfaces of the authentication methods. A webcam is placed at the
top of the screen to record a video feed during PIN entry. Furthermore, We use
the Tobii 4C remote eye tracker [35] with a 60Hz sampling rate, which is attached
below the screen (see Figure 4.4). The eye tracker is calibrated once by the study
instructor. We used the same calibration for all participants. For the study,
participants are seated in front of the display with an approximate distance of
60cm. A keyboard is provided to start the authentication trials. After completing
all 28 PINs, the participant fills in a NASA TLX form on the same screen. For
analysis, we store the participant ID, the timestamped eye movements, and
synchronized movements of all smooth pursuits stimuli in the interface for every
PIN entry attempt. Furthermore, the results of the automatic PIN recognition
and the correct PIN are stored.

4.6 Dependent and Independent Variables

The dependant variables are:

e PIN entry time: we measure the time from the moment the user presses
the space bar until the system recognizes the fourth digit. We calculate this
measure from the stored timestamps.

e PIN accuracy: We count a false entry if one or more digits are incorrect. We
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calculate accuracy as the average number of correctly recognized PINs per
participant.

e Usability score: System Usability Scale (SUS).
e Perceived workload: NASA TLX score.

The independent variable is the authentication method (CueAuth and EyeLogin).
Both have a training phase and a main phase, which are analyzed separately.

4.7 Hypotheses

e H1 Authentication with EyeLogin is more accurate than authenticatingg
with CueAuth

e H2 Authentication is faster with EyeLogin than authenticating with CueAuth

e H3 The gains in effectiveness (accuracy) and efficiency (time) have no
negative impact on the usability and the perceived workload

4.8 Limitation

As we replicate the setting of the study in [20], we face the same limitations.
Repeated consecutive PIN entry is not a realistic use case and might have a
negative impact on the usability and the perceived workload. However, a com-
parison between both methods is possible, because we test them under the same
circumstances.

4.9 Results

For both methods, we observe the accuracy, the entry time, the NASA TLX and
the SUS score for entering PINs. All metrics are measured for the training phase
(8 PINs) and the main phase (17 PINs) per method. If not stated otherwise, we
report the results of the main phase.

To test for statistical significance, we use the paired samples t-test’. The Shapiro-
Wilk test is used to check whether the differences of the paired samples are from a
normal distribution and, hence, no assumption of the dependent t-test is violated.
We also checked whether the order of methods has an effect on our dependent
variables, but found no significant differences using an independent t-test and
the order as a between groups factor (p > .05).

>We use the 2-tailed paired samples t-test in SPSS with an alpha-level of 5%
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49.1 Accuracy
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Figure 4.2: Box-plot for the PIN entry accuracy for the main phase of our study

Using our implementation of CueAuth, the users achieve a mean accuracy of
82.94% (SD = 11.58). This is close to the results from Khamis et al. [20] which
reported 82.72% (SD = 38.53). On average, the accuracy is lower during the
training phase (M = 71.25%, SD = 21.28), but the difference is not significant
(t(9) = —1.491,p = .17).

For our proposed method EyeLogin, we observe an accuracy of 95.88% (SD =
6.23), which is 12.94% better than the CueAuth-baseline (see Figure 4.9.1). This
difference is statistically significant with ¢(9) = 3.18, p = .012. In addition, our
gaze-based method performs better than the best method of Khamis et al. [20]
that is based on touch interaction (M = 93.38%, SD = 26.05).

Similar to CueAuth, the accuracy of EyeLogin during the training phase is 5.78%
lower (M = 90.00%, SD = 18.45). We did not test for statistical significance,
because a Shapiro-Wilk test showed a significant departure from normality,
W(10) = .672,p < .00012.
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4.9.2 Entry Time

ENTRY TIME
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Figure 4.3: Box-plot for the PIN entry time (in seconds) for the main phase of our
study

On average, we measure entry times of 23.41s (SD = 2.28) for CueAuth, which is
similar to the result of 26.35s reported in the literature [20]. However, the reported
standard deviation of 22.09 is much higher compared to our implementation.
Using EyeLogin, we observe average pin entry times of 5.12s (SD = 1.09). The
time saving of 18.28s compared to the baseline (see Figure 4.9.2) is statistically
significant (£(9) = 24.063, p < .001). The touch-based method in [20] is reported
to be the fastest and is, with an average of 3.73s (SD = 1.07s) only slightly
faster than our proposed gaze-based approach. The entry times from the training
phase and main phase do not differ significantly for both methods, CueAuth
(t(9) = —.045,p = .956) and EyeLogin (t(9) = —.301, p = .766).
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NASA TLX SCORE
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CueAuth 39.7 28.8 17.3 23.4 48.3 37.4

Figure 4.4: Bar chart diagram visualizing the NASA TLX results: mean + SD

4.9.3 Perceived Workload

We use the NASA TLX questionnaire to evaluate the perceived workload, as
suggested in [20]. The mean scores for all dimensions of the test are reported in
Figure 4.9.3. None of the differences are significant as determined by a paired
samples t-test per dimension (df = 9;p > .05).

494 SUS

We ask the participants to fill in a SUS questionnaire, which gives us a sub-
jective usability score, for both methods. We receive an average score of 66.5
(SD = 18.72) for CueAuth and 75.75 (SD = 15.28) for EyeLogin (higher is better).
However, the difference of 9.25 points is not significant (¢(9) = —1.075, p = .31).
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SUS - SYSTEM USABILITY SCALE
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Figure 4.5: System Usability Scale

4.9.5 Qualitative Feedback

We collect qualitative feedback via open-ended questions. We ask participants to
note the pros and cons of each method and to provide suggestions for improve-
ments. Analyzing the answers, we find that EyeLogin is perceived as fast (7/10)
and easy to use (7/10). Three participants criticize that blinks are likely to cause
errors during pin entry.

For CueAuth, participants state as advantages that the layout is familiar (4/10)
and easy to use (2/10). The participants perceive CueAuth as slow (7/10) and
tiring (4/10). Two participants criticize that the system was not sensitive enough
to recognize their input.
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410 Discussion

The results of our evaluation show that our authentication method EyeLogin is
significantly more accurate than the baseline system CueAuth. Users succeed in
entering a PIN in 95.88% of all trials which is 12.94% better than the baseline and
confirms H1. In addition, our gaze-based method achieved a similar accuracy
than the touch-based version of CueAuth as reported in [20].

The PIN entry times for EyeLogin are tremendously lower than for CueAuth
(significant). On average, users need 5.12s to enter a four-digit PIN which is
18.28s faster than measured for the baseline CueAuth (confirms H2). In addition,
we measured lower PIN entry times for our implementation of CueAuth than
Khamis et al. [20] for their implementation and our result is close to the PIN entry
times of the touch-based version of [20] (3.73s). Additionally, we have a much
lower deviation due to integrating a short stop after each animation, which gives
the user enough time to re-focus and receive the feedback.

We used the SUS and the NASA TLX questionnaires for measuring the usability
and the perceived workload of both authentication methods. The results do not
reveal any significant differences between the two considered methods, which
suggests that we can confirm our hypothesis H3. Further, we observe a higher
average SUS for EyeLogin (75.75) than for CueAuth (66.5). This might indicate
that our authentication method has better usability than the baseline system. For
comparison, other works using the SUS questionnaire achieve, on average, a
score of 69.5 (n = 273) [4].

With the qualitative feedback, we can confirm that the majority of the users
perceive EyeLogin as fast and easy to use. In comparison, only (2/10) described
CueAuth as easy to use. Furthermore, the majority describe CueAuth as slow
and tiring - most likely due to the high PIN entry time. The users’ feedback
strengthens the indication that our authentication method has better usability in
comparison to CueAuth.

Other promising use cases could involve head-worn augmentation devices with
integrated eye-tracking. Sensitive information displayed in Augumented Reality,
like video recordings, for example of episodic memory support [36], or annotation
[5] of confidential objects (e.g. "Keys for Safe") need to be encrypted. Our system
can provide a fast and accurate authentication method.

Additionally, head-worn eye-tracking devices [24] can be used to extend our
authentication method to be applied on public displays without having to connect
an eye tracker. Furthermore, a seamless authentication on different devices could
be possible [23] (e.g., smartphone to public display).
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411 Limitations & Future Work

EyeLogin enables fast and reliable input for authentication on public displays
on the same level of performance than more common touch-based methods.
However, a few limitations remain, including a required start trigger to overcome
the Midas touch problem, some error types that cause avoidable authentication
fails, and potential vulnerabilities to camera-based attacks. We address each of
these limitations and provide suggestions on how they could be solved.

4.11.1 Midas Touch Problem

Eyelogin

® o

~ authentication"

-
[oertins |~

Speech Recognition —/

Multimodal Input

Figure 4.6: Multi-modal solution with speech-based trigger[33]

Our implementation requires the user to press the space bar to capture the
reference gaze position gaze. and start the authentication process. Including an
additional modality for disambiguating the gaze-based input [31, 30] is common
practice.

However, on public displays, this trigger needs to be replaced by more suitable
alternatives like touching a "start authentication" button on the screen. One
solution can be a combination of eye-tracking with speech-based input [6]: an
instruction can be shown at the central area of the user interface, asking the user
to start the authentication by vocalizing a trigger word, also known as hotword
(see, e.g., https://snowboy.kitt.ai/) (See Figure 4.6).

A pure gaze-based method can be realized as well: the instruction at the center
can ask the user to fixate its area for a certain dwell-time to start the authentication.
The presence of a user can be detected by the presence or absence of gaze data


https://snowboy.kitt.ai/
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from the eye-tracking sensor.

4.11.2 Input Correction

Currently, EyeLogin does not provide the functionality of correcting one’s input.
So the user has to finish entering the PIN, although he is aware that he already
entered a wrong digit. To overcome this problem, our interface can be extended
with two more elements in the radial design. One element contains a revert
and one a cancel functionality, allowing the user to modify and correct his input
actively or even cancel the whole PIN entry.

Other modalities overcoming the Midas touch problem can also be used to pro-
vide an input correction functionality - e.g., using "delete" or "cancel” hotwords
via a speech-based input.

4.11.3 Common Error Types

Figure 4.7: Visualization of falsly recognized PIN entry 1629

For EyeLogin the pariticipant had 7 errors out of 170 PIN entries. Out of thos 7
errors we observe two common error types that cause a wrong PIN entry. Figure
4.7) shows the raw gaze signal of a user that moved its gaze to the wrong digit (9),
subsequently corrects the gaze position (8) and returns to the center. However,
EyeLogin detects 9 as input resulting in a wrong digit sequence.



33

Figure 4.8: Visualization of correctly recognized PIN entry 2487

Figure 4.8 shows a similar case, but the correction (for 4 and 8) is done earlier
and EyeLogin finally detects the correct sequence.

Figure 4.9: Visualization of blinking behaviour
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Figure 4.9 shows a trial that failed due to a blink before fixating the last digit:
7. The blink resulted in a noisy gaze signal with distant samples, causing the
algorithm to choose the wrong digit (5). A blink detection and a filtering could
be applied to overcome the false recognizion. Other error sources include misun-
derstandings with the instructor and users forgetting the PIN (3 out of 170).

4.11.4 Camera-based Attacks

EyeLogin is robust against traditional shoulder-surfing attacks, because an attacker
would have to observe the display and the eyes of a user during PIN entry.
However, more sophisticated attackers might attach a camera to the public
display and infer the password from a video stream that captures the user’s
face and eye movements. One opportunity to overcome this vulnerability is to
randomize the arrangement of the digits. This is perceived as more secure by
all our participants. However, better security through randomly arranged digits
probably needs to be traded off against usability. The video feed of the webcam
can be used to do a security analysis in future work.

4.11.5 Interface design

To further reduce the PIN entry time with EyeLogin, the distance between the
middle circle and the outer circle can be reduced. Previous work [8] indicates
faster entry time with shorter saccadic eye movements. Thus future work could
investigate if faster entry time is possible without loss of accuracy and usability.



Chapter 5

Conclusion

In this thesis, we presented a calibration-free and gaze-based authentication
method for public displays. In a user study, we could show that our method
EyeLogin, that leverages saccadic eye movements, performs significantly faster
and significantly more accurate than CueAuth, a state-of-the-art gaze-based au-
thentication system from the literature [20]. With this work, we presented the first
calibration-free authentication method using gaze that is as effective and efficient
than less secure input modalities such as touch- and gesture-based input.
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