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Abstract

Diabetic retinopathy (DR) is one of the most common causes of irreversible blindness in
the population, and automated DR detection can support ophthalmologists in creating
personalized treatments by providing DR grading and lesion regions. In this work, we
investigate a joint learning framework to improve the performance of disease grading
and multi-lesion segmentation using the interactive machine learning approach. In
the machine learning aspect, we integrate new transfer learning mechanisms, learning
invariant feature representations by aligning latent feature embedding using tools from
Wasserstein distance and adversarial learning-based entropy minimization. These com-
ponents permit neural networks to train efficiently under sparse training data while
remaining generalized under the influences of domain shift problems. Besides, we pro-
pose innovative attention strategies at both low- and high- level concepts, allowing the
DR grading network to automatically select the most significant lesion information and
provide explainable properties. In terms of human interaction, we enable expert users to
correct the system'’s predictions, which may then be used to update the system as a whole.
Finally, the strategy can reduce perturbations in labels made by users using attention net-
works, thereby saving time and accelerating the data annotation process. The empirical
experiments validate out method: we outperform common baselines of state-of-the-art
systems by a significant margin. Also, our system’s performance improves over time
when more user feedback is fed into the network, even in a weakly-supervised form.
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Chapter 1
Introduction

1.1 Motivation and Problem Statement

Diabetes is a chronic health condition that is estimated to affect about one in every ten
people worldwide [1]. According to Yang et al. [2], 40% to 45% of people with diabetes
may develop Diabetic Retinopathy (DR) during their lifetime. DR is a kind of ocular
disease that damages the retina’s blood vessels, and it is one of the leading causes of
irreversible blindness. Although the symptoms are diagnosed only in the later stage,
people suffering from this disease start to lose vision from an early stage.

To assess the complexity of DR, International Clinical Diabetic Retinopathy Disease Severity
Scale [3] has used five grades (0-4), including no DR, mild, moderate, severe, and proliferative
(figure 1.1). In practice, accurate DR grading is a time-consuming task. While most
countries are in shortage of qualified ophthalmologists, an automated and intelligent
diabetic retinopathy diagnosis system, therefore, can play an important role in supporting
ophthalmologists.

Deep learning algorithms have been leveraged for different disease classification tasks,
including automated diabetic retinopathy grading [3, 4, 5]. Given a large dataset of image-
level grading annotations, these models automatically learn most predictive features
directly from images using back-propagation optimization to predict the desired output.
However, due to nonlinear multi-layer structure, Deep Neural Networks (DNNs) are
black-box models, and often, predictions are non-traceable to humans [6]. Moreover,
these models only use global image features during the learning procedure and ignore
fine-grained lesion information. There are 4-6 types of lesions that are closely associated
with the DR grading. In practice, ophthalmologists grade the severity of this disease for
a patient based on the type of lesions and the regions they appear in the retina image
[7]. For example, the earliest clinically visible symptoms for grade-1 (mild DR) are
microaneurysms (MAs) lesions, which are local capillary dilation and appear as red
dots. Grade-2 (moderate DR) contains both MAs and dot or blot-shaped hemorrhages
(HEs) [8]. Therefore, integrating lesion features (medical priors) (figure 1.1) with the
global image features can boost the prediction accuracy of deep neural classification
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Figure 1.1: Illustration of diabetic retinopathy retinal images. Top row - examples of
different stages of DR disease. Bottom row - a retinal image with lesion information
annotated by domain expert (left most image). The remaining 4 images are lesion mask
predicted by the Dense U-Net Segmentation model [8, 17].

models. Besides, automatic discovery of these lesion regions can assist ophthalmologists
in validating and interpreting the prediction of an intelligent diagnosis system.

Detection of these lesion regions is another fundamental challenge in the medical imaging
domain. It can be regarded as the multi-lesions semantic segmentation task where
labels are assigned in each pixel of a clinical image to different lesion classes [9, 10, 11].
Segmentation models are used as a backbone for many computer vision systems such
as autonomous driving [12] and organ localization in radiology systems [13]. However,
the task formulations for lesion detection in biomedical images are not straightforward
as they present significant technical challenges, including irregularities in shape, noisy
and ill-defined boundaries, intra-class lesion diversities [14, 15, 16]. Though disease
classification and lesion discovery are inherently correlated, they are mostly studied as
independent tasks.

Recently, joint learning methods for classification and segmentation have been studied
for some of the medical tasks such as breast cancer diagnosis [18], skin lesion diagnosis
[19], or retinal blood vessel analysis [20]. Deep learning models are optimized together
to learn disease grading and segmentation tasks simultaneously using the image and
pixel-level supervision. Nevertheless, the scalability of these methods is limited in the
actual deployment due to the lack of training data. The annotation of fundus images
is a costly and labor-intensive task that requires manual labeling by domain experts.
For instance, so far, there are only two publicly available datasets with a few hundred
of annotated images for the DR related lesion discovery task [8, 21]. Self-supervised
learning (SSL) schemes are methods in machine learning where the model trains itself to
learn the pretext for a task and transfer the knowledge to address the final tasks. Some
methods have utilized the SSL transfer learning concepts to address the lack of training
data problems [22]. Moreover, in the scenario of a scarcity of training data, an interactive
human-machine learning strategy can be exploited to teach an intelligent DR diagnosis
system by involving human-in-the-loop of the learning process [23].

The performance of joint learning methods in practice also suffers from the domain-shift



problem when deployed in a cross-domain environment. In the real world, (medical)
images are captured from different devices and vendors. Images captured using the
same device but different parameter settings can have heterogeneous appearances [24].
For example, though retina fundus images captured across-devices share the same
feature space, deep learning models still perform poorly in domain generalization and
performance worsens drastically when a model inferred on data-points that are different
from the source data using which the model is trained. “Domain adaptation is the
ability to apply an algorithm trained in ‘source domains’ to a different but related ‘target
domain’ [25]”. It is an active research topic, and some extensive studies have provided
theoretical insights about constraining feature representation space to achieve a robust
performance across-domain [12, 26, 27, 28]. Another drawback of these methods is
explainability. Although highlighted lesion regions can provide visual instructions for
the ophthalmologists to assist their diagnosis, they do not explicitly describe how these
lesions contribute to the final grading predictions. “Not all lesion information is beneficial
to a particular DR severity level, and even some lesion information is noise signal” [7, 29].
Therefore, the importance of each lesion region should be considered separately.

1.2 Approach and Contribution

In this thesis work, we propose a deep-learning-based explainable prediction engine for
an intelligent medical diagnosis system focusing on diabetic retinopathy (DR) disease.
Inspired by the clinical diagnosis behavior of ophthalmologists, we introduce a novel
joint learning system of semantic lesion segmentation and disease grading classification
for diabetic retinopathy addressing the challenges we discussed before. Our proposed
method simultaneously predicts the disease grading class, associated lesion features,
and explanation for the disease grading prediction in a visual form that correlates lesion
features with the grading network’s class activation map (CAM).

Our proposed architecture includes a novel Domain Invariant Lesion Feature Generator to
identify and distinguish important lesion regions of different semantics and an Attention-
Based Disease Grading Classifier which incorporates the predicted lesion information of the
feature generator in the learning process of the disease classification network. Moreover,
our framework provides interactive explanations for its decision on a given input. It
provides diverse information to the end-users with explainable predictions. In terms of
Human-Machine Interaction, we aim to provide a back-end component of an Intelligent
User Interface (IUI) [30] using which user/expert can explore the explainable prediction
and participate in the training process with minimal data annotation effort to improve
model performance in an active learning manner.

In summary, we propose an interactive joint learning method of multi-lesion segmentation
and classification for diabetic retinopathy grading with the following contributions:

Machine Learning Aspect:

1. We construct a novel lesion attribute segmentation model by formulating a do-
main invariant learning scheme combining a new transfer learning scheme and
domain adaption concepts. We adopt a self-supervised transfer learning method
based on Task agnostic [22] to pre-train the segmentation model with limited num-
bers of available labeled images from the source domain. We further formulated
domain adaption constraints to guide our segmentation model in learning domain-



invariant feature representations in an unsupervised manner to attain source-like
performance in the target domain.

We constrain our lesion attribute segmentation model to minimize the domain
distance in feature representation level by introducing Wasserstein distance [28, 31]
based domain critic loss. Moreover, we bound our learning strategy to produce
high-confident predictions on target domain images using entropy minimization
[12] loss. Our work is the first of a kind that addresses both the challenges of lack of
training data and domain adaptation problems for DR-related lesion segmentation
tasks. Finally, our segmentation model is trained within adversarial learning [32]
to enhance the model’s robustness and accuracy.

2. We construct an attention-based grading network to incorporate the predicted le-
sion features in the learning process of the disease classification task. Our attention
network that identifies and exploits the most significant lesion feature regions is
built on low-level and high-level concepts. We integrate the attention block within
the structural architecture of the grading network, thus merging the latent features
of lesions with the grading network. Our high-level concept for attention is based
on explainable principles. We constrain our model to attend to important lesion re-
gions by introducing an explanation loss that directly compares the class activation
maps (CAMs) [33] with the lesion regions to guide the network in training. This
thesis work demonstrates that our attention methods can be generalized to both
CNN-based and Transformer-based neural architecture.

3. Finally, we compare our methods with recent baselines, and our approach out-
performs state-of-the-art methods for lesion segmentation and disease grading
classification tasks for diabetic retinopathy.

Human Machine Interaction Aspect:

1. Our framework provides diverse information to the end-users with explanations
to support its decision. Our joint learning framework is inherently explainable.
Our system can provide relevant evidence for the diagnosis by simultaneously
predicting medical priors (lesion features) and disease grading. Moreover, our
proposed attention-based grading model is constrained to attend and focus on
lesion features during its learning process. Therefore, a correlation between the
class activation map (CAM), which highlights the class discriminative regions on
image input for its prediction, and predicted lesion features can provide a direct
explanation to the user.

2. During our method development process, we consider the role of the users in the
progressive improvement in model performance. Given various information as
output, the users can provide feedback on them and, if required, re-annotate the
predicted lesion features, which can be used to fine-tune the model further. We
equip our framework with attention methods that make neural networks robust in
the presence of noise in the data. This makes the annotation process more comfort-
able for users as our learning method can leverage noises to a certain threshold,
and pixel-wise correction is not required. We have conducted experiments by
simulating users, and our experiment results support our study.



1.3 Thesis Outline

The structure of this thesis is as follows:

¢ In this first chapter, we introduce the motivation for this thesis work and point
out the challenges and difficulties in constructing an explainable and intelligent
diagnosis system for diabetic retinopathy. We then briefly describe our approach
and major contribution ending with the outline for upcoming chapters.

* Chapter 2 covers some related works for this thesis. We discuss the recent deep-
learning-based state-of-the-art methods related to diabetic retinopathy grading. The
following two sections discuss works related to the explainability of deep learning
models and the Interactive Machine Learning process. Finally, we outline some
works related to domain adaption and transfer learning techniques. We conclude
each section by briefly discussing the drawback of some of these methods.

¢ Chapter 3 describes different deep learning concepts that have been explored in the
thesis work in the formulation of our proposed methods. These technical methods
include Generative Adversarial Networks (GANSs), attention mechanisms, and
transformer architectures. Mathematical formulation and mechanisms of different
deep learning model explanation techniques are also described, which we have
used to investigate the explainability of our framework.

* Chapter 4 formulates our proposed architecture and details our pipeline. The first
section provides a high-level overview of our architecture within the Interactive
Machine Learning (IML) framework. The following sections provide the detailed
formulation for our deep learning architecture for learning domain-invariant lesion
attribute segmentation and the attention mechanism in integrating lesion features
for DR grading classification. The Final section details about the explainability of
our architecture and the formulation of human interaction in the model learning
system.

* Chapter 5 details our experiments and describes implementation setups. We con-
ducted ablation studies for each of the components of our proposed intelligent
decision support system. We benchmark our proposed methods for lesion seg-
mentation and DR grading against state-of-the-art baselines on several publicly
available datasets and demonstrate significantly better performance. We report
some qualitative results of our framework on simulated user-feedback.

¢ Chapter 6 discusses the advantages of our proposed methods and insights into
potential challenges for future investigation.



Chapter 2
Related Works

This section presents the related works for our proposed method. At first, we will discuss
existing deep-learning-based methods for diabetic retinopathy grading. The following
two sections include the studies related to explainable methods for deep neural networks
and user-interactive machine learning methods. Studies related to transfer learning and
domain adaptions are discussed in the final section.

2.1 Deep-Learning-Based Diabetic Retinopathy (DR) Grad-
ing

DR grading aim is to classify fundus images into different DR severity classes. In
recent years, Convolutional Neural Networks (CNNs) architectures have performed
exceedingly well and outperformed human experts in many classification tasks. Most
recent works construct multi-class classifiers for DR grading leveraging some state-of-the-
art models or with their own CNN architectures [3, 34, 35, 36]. These algorithms solved
the DR grading as a black box classification task and did not consider the fine-grained
DR-related lesion information in the learning process. Some researchers attempt to
integrate lesion information to improve the grading performance. For instance, Yang
et al. [37] propose a two-stages deep convolutional neural networks algorithm to address
the DR grading task. In stage one, using pixel-level lesion annotations, a neural network
is trained to learn a weighted lesion map. In stage two, a global classification network is
trained using this weighted lesion map which provides imbalanced attention on different
locations of the fundus image so that more severe lesions will attract more attention in
training. Lin et al. [7] also describe a similar framework to automatically detect missing
lesion features and integrate with global image features using a classification network
for grading prediction. Another difference of this method from the previous one is that
instead of the pixel-level annotations where each pixel of an image is labeled with one or
more lesion types, the deep learning model was trained using patch-based annotations.
In patch-level annotation, an image is split into # number of patches, and each patch is
labeled with a particular lesion type. Antal and Hajdu [4] introduced an ensemble-based
algorithm to detect a particular lesion and predict DR severity based on the presence or
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Figure 2.1: An overview of collaborative learning method of semi-supervised multi-
lesion segmentation and disease severity classification introduced by Zhou et al. [38].

absence of that lesion.

Although the aforementioned methods incorporate the lesion information, they construct
a one-way feature transmission, i.e., the lesion-information extractor modules and DR
grading modules are trained separately, and they cannot be optimized jointly for the
final tasks. Zhou et al. [38] recently proposed a collaborative learning pipeline to jointly
improve the performance of the lesion segmentation and disease grading models by
semi-supervised learning with an attention mechanism (figure 2.1). The intuition about
this joint learning technique is that “accurate lesion detection can make considerable contri-
butions to classifying disease grades. Likewise, class-specific information can also benefit lesion
segmentation performance” [38]. At first, similar to the previously discussed methods, a
multi-lesion map generation segmentation model is trained using a small set of pixel-
level annotation data. Then, based on initially predicted lesion maps for a large scale
of image-level annotated images, a lesion attentive grading model is trained. During
the training process, this lesion attention model also predicts the fine-tuned lesion maps
adopting weak supervision of class-specific information. These predicted fine-tuned
lesion maps are used to train the previous segmentation model further. Similarly, Yang
etal. [2] also introduced an attention-based learning scheme, which collaboratively learns
to predict lesion maps patches and DR grading. In this method, the feature generation
model and classification model are connected through an attention model and the loss
functions for both of the models are optimized together in an end-to-end manner. At-
tention mechanisms are introduced by Vaswani et al. [39] initially to address Natural
Language Processing (NLP) task. Nevertheless, since then, they have been studied for
many vision tasks, including image classification [40], semantic segmentation Yu et al.
[41]. In the context of neural networks (which is considered to be an effort to mimic
human brain action in a simplified manner), attention is a technique that mimics cog-
nitive attention behavior. Attention mechanisms attempt to selectively concentrate on
a few relevant parts of the data during the learning process while ignoring the rest. A
visual attention model learns through training data by gradient descent optimization
to extract and highlight task-specific salient regions and fade out the rest of the parts
of an input image. Sun et al. [29] propose a multi-head attention-based method, which
combines several different attention mechanisms to direct the overall attention of a net-
work to consider lesion region diversity and their importance separately in the final DR



grading prediction. While most of the methods mentioned above can achieve promising
performance, they share the following limitations:

* Domain shift problem, i.e., the change in data distribution between an algorithms’
training dataset and the data it encounters when deployed, was mostly not consid-
ered. Thus, these methods suffer significantly in the cross-domain environment.

¢ Another general drawback for the above-mentioned methods is the lack of explain-
ability on how this multi-lesion information contributes to the decision-making
process. Zhou et al. [38] and Yang et al. [2] predict both multi-lesion maps and
diabetic retinopathy grading simultaneously as output, but they do not explain
how each of these lesion maps influenced the final DR grading prediction. Not all
lesion regions should have equal importance for a particular DR grade.

2.2 Explainablity for Deep Learning

The decisions of Deep neural networks can be explained by highlighting the saliency
regions of an input that strongly influence the output. One approach for underlining the
saliency regions is to generate augmented datasets for the predictors and compare them
with the network output for an input [42, 43, 44]. Other approaches include evaluating
gradient signals passed from output to input during network training. For example,
[45] describe the procedure of generating class activation maps (CAM) for convolutional
neural network models using global average pooling (GAP). A class activation map for a
particular category is the discriminatory image regions used by the model to identify
that category. Global Average Pooling operation is performed on the last convolution
layer of a CNN architecture to get a single feature vector containing the information for
all the activation maps, and using this feature vector, weights for each of the activation
map is computed. Finally, the class activation map is computed by combining these
weighted activation maps. In order to produce explainable output with class activation
maps, retraining is required to learn these activation weights. To address this issue, [46]
proposed gradient-based localization (Grad-CAM), which uses gradients with respect to
each of the activation maps as weights, and requires no further training. The method also
combines guided-backpropagation to get a variant of Grad-CAM named Guided Grad-
CAM. Different variants of CAM and Grad-CAM techniques have been used in some
medical image studies for explainable output. Most recently, Nguyen et al. [47] proposed
a CAM-based explainable COVID-19 detection method using CT images. Similarly, Wu
et al. [48] adopt the Grad-CAM technique to perform the joint task of classification and
segmentation for COVID-19 detection.

2.3 Interactive Machine Learning Process

Holzinger [23] defined the term Interactive Machine Learning (IML) as “algorithms that
can interact with agents and can optimize their learning behavior through these interactions,
where the agents can also be human.” Automated Machine Learning (AML) approaches
require large numbers of training samples and suffer in performance when samples are
insufficient. IML approaches can be of help, especially in the health domain, where we
are often confronted with a smaller number of datasets or rare events. This learning
process allows users to examine the impact of their actions and, when required, can adopt



subsequent inputs to obtain the desired behavior [49]. For building a computer-based
interactive support system, the initial challenge was to represent the semantics in a
machine-readable form using medical ontologies [50] so that the information is easily
exchangeable between human experts and machines. RadSpeech’s [51] Mobile Dialogue
System for Radiologist provides a multi-modal interaction system for radiology image
annotations. It is a user-friendly semantic search interface where users can annotate
medical image regions with a specific medical, structured diagnosis using speech and
pointing gestures. Prange et al. [52] present a medical decision support system inside
virtual reality (VR). In this system, a doctor can visualize patients’ records and clinical im-
ages, as well as therapy predictions which are computed in real-time using a pre-trained
deep learning model. The aforementioned studies provide the techniques to capture user
feedback (annotations on inputs) for an intelligent learning system. However, they did
not consider the inclusion process of these feedbacks in an IML loop.

Sonntag et al. [53] describe the functionality and interface of an interactive decision
support system for differential diagnosis of malignant skin lesions. They deploy two
deep neural networks, an encoder-decoder-based segmentation network (U-Net [15]) to
extract the shape, location, and features of a lesion and a CNN based network (VGG16
[54]) to classify the lesion type. They provide a web interface to introduce inter-activeness
in the understanding of the prediction explanation. Based on the explanation, the user
can re-annotate an input that is used to fine-tune the prediction model. Recently, Dai
et al. [55] presented a real-time deep learning based interactive system for diabetic
retinopathy. Their architecture has three sub-networks to perform different tasks one by
one. The assessment sub-network to assess the quality of the real-time input image, the
lesion-aware sub-network to highlight that performs the lesion-segmentation task, and
the DR grading sub-network which predicts the DR grading severity. All of these sub-
networks have some parameters sharing with the same architectural backbone (ResNet
[54]), but each of these tasks was considered as independent, and the coherent relation
between lesion discovery and disease classification was mostly ignored. Thus, it is hard
to conclude that lesion-feature information predicted by the segmentation part has any
influence on the classification result.

2.4 Transfer learning and Domain Adaptation

Transfer learning is a widely used technique in deep learning, especially for solving a
new problem for which data are limited. "It focuses on storing knowledge that is gained
while solving one problem and reusing this learned knowledge during solving a related problem”
[56]. However, the performance of a deep neural model trained in a particular source
domain, when transferred to a different target domain (e.g., different vendor, acquisition
parameters), can drop unexpectedly due to domain shift [57]. Domain adaptation is a
sub-category of transfer learning which is the ability to apply an algorithm trained in one
or more source domain to a related target domains where both source and target domain
have the same feature space [58]. To address the problem of limited numbers training of
data and the domain shift issue, we will explore to incorporate both transfer learning
techniques and domain adaptation constraints in the learning process of our task.

In medical image analysis, transfer learning is a commonly used strategy. Rather than
training a network with limited training data from a target task, the network is first
trained for a task with potentially larger source datasets, creating a more robust model.
This pre-trained network is trained to adjust for the target task. Most of the deep learning
libraries (e.g., Pytorch, Keras) provide a pre-trained model for almost all state-of-the-art
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DNNs models (e.g., VGGs, ResNet, DenseNet). These models are generally trained
using a large-scale ImageNet dataset [59] which contains 1000 classes with thousands
of images for each class. The popular transfer learning strategy is to use these pre-
trained models as initialization to construct additional task-specific components. As
a norm for practitioners, this transfer learning approach has been adopted in many
existing segmentation methods. However, a large-scale analysis about the benefit of
this strategy has been studied recently by Cheplygina [60]; He et al. [61]. Their findings
suggest that this learning strategy is not better than random initialization for most
medical tasks. Medical images are significantly different from the ImageNet dataset;
therefore, features learned using the ImageNet dataset are not helpful for the target
medical domain task. Secondly, medical data are often imbalanced. Nguyen et al. [22]
describe a novel transfer learning strategy named Task Agnostic Transfer Learning (TATL)
motivated by dermatologists’ behavior in the skincare context. In a two-stage learning
step, an attribute-agnostic network is trained at first, which detects all the lesion regions
irrespective of their labels. Then the knowledge from this network is transferred to a set
of attribute-specific classifiers to label each particular region. Their work also provides
theoretical insights and explanations on why this method works well in practice. We aim
to apply this transfer learning scheme for DR grading tasks.

Similarly, domain adaption is an efficient way to address the inadequate training data
problem. The aim here is to reduce the domain discrepancies between source and target
domains. Networks are trained with domain adaptation constraints to be optimized
to address the domain-shift problem in deployment. Tzeng et al. [26] proposed a Deep
Domain Confusion (DDC) method to reduce the divergence between two distributions by
minimizing the maximum mean discrepancy (MMD) loss [62]. MMD is a nonparametric
metric and can be defined by “the idea of representing distances between distributions as
distances between mean embeddings of features” [63]. In their method, a network is trained
with data from multiple distributions using a loss function that consists of both task-
specific loss and MMD loss. Some studies apply adversarial optimization to remove
the domain discrepancy by incorporating generative adversarial networks. Generative
adversarial networks (GANs) have two model models; a generator that generates an
image from a distribution and a discriminator which evaluates the image [32]. The
two networks compete with each other to have accurate predictions. Tzeng et al. [27]
combined standard adversarial loss with the task-specific classification loss to minimize
domain distances. At first, using labeled data from the source domain, a source encoder
CNN is trained. Then, using GANSs adaptation, a target encoder is learned such that a
discriminator that observes encoded source and target examples cannot reliably predict
their domain label. Shen et al. [28] describe Wasserstein distance guided representation
learning (WDGRL) method to reduce the domain discrepancy by minimizing Wasserstein
distance for each feature block of the encoder CNN.



Chapter 3
Technical Background

This chapter describes different deep learning concepts and frameworks that have been
explored in this thesis work. In the first section, we provide the theoretical and technical
insight of Generative Adversarial Networks (GANSs) [32], which we have used in the
formulation of our domain invariant lesion feature generator network described in the
Methodology chapter in section 4.1.2. In next section we introduce the fundamental
concepts of Self-Attention mechanism [39] and Vision Transformer architecture [64]. Our
proposed grading network is built on the attention concept, which we have formulated in
section 4.3. In the final section of this chapter, we discuss formulations for explainability
in deep learning methods. We describe several explanation visualization techniques e.g.
CAM [33], GradCAM [46] we have used in formulation of our proposed explanation loss
described in section 4.3 of the methodology.

3.1 Generative Adversarial Networks (GANSs)

3.1.1 Generative Modeling in Computer Vision

Generative modeling is an unsupervised learning task that takes training samples from a
distribution as input and learns a model representing that distribution. This technique
aims to generate new samples from the learned distribution, which is expected to be
close to that of the original dataset. In this section, we would like to briefly introduce
deep generative (likelihood-based) model as Variational Autoencoder (VAE) [65, 66] and
focus on the Generative Adversarial Networks (GANs) [32].

One of the earlier versions of VAE is the Autoencoder network [67, 68]. This network
consists of two components: an encoder to make network learn a compressed latent rep-
resentation of data (e.g latent vectors) and a decoder to reconstruct original data (figure
3.1). Reconstruction loss (e.g L2 distance) is a performance measure of an autoencoder
that forces the latent representation to capture as much information about the data as
possible.

Variational Autoencoder is a variation of Autoencoder [65, 66] that models the latent

11
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Original Compressed Reconstructed
input representation input

Figure 3.1: An autoencoder achitecture (taken from [67]). The input data is encoded to a
compressed representation and then decoded.
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Figure 3.2: Variational Autoencoder achitecture (taken from [67]). The latent space z is
modeled as a distribution parameterized by 1 and o rather than a deterministic vector as
in AutoEncoder. Image taken from [69].

space as a distribution for generative process instead of producing latent vectors only.
This model also addresses the problem of overfitting by adding a Kullback-Leibler
divergence between prior on the latent variables p(z) and variational distribution ¢,4(z),
where ¢ represents parameters of the distribution (figure 3.2). These parameters are
sampled by reparameterization trick and can be optimized by a neural network (decoder)
during the training process.

The problem of VAE is that there are several assumptions required to make it work
properly such as latent variable structure, specific likelihood forms and variational poste-
rior. It motivates for a question whether there exists a way to model data distributions
better with fewer assumptions? Goodfellow et al. in [32] proposed GANs method to
address this challenge by not to explicitly model the density, instead directly generating
new instances. However, it is hard to directly sample data from a complex distribution.
One idea is to transform data given initial noise using a flexible function: sampling an
initial noise vector from the prior z ~ p(z), then deterministically transform z into the
target data via an function z = fg(z). The process defines a valid density on the output
space py(x) that is intractable due to computing integral and taking partial derivatives
being inefficient in a high-dimensional space. GANs implements this strategy into the
Generator to create imitation of the data from noise. In the next section, we will present
main mechanisms in GANs and the its current advanced versions.
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The discriminator tries to identify real
data from fakes created by the generator:

Xreal

The generator turns noise into an imitation
of the data to try to trick the discriminator.
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Figure 3.3: The architecture of GANSs. Image taken from [69].

3.1.2 Principal Mechanisms in GANs

At the glance, GANSs is a generative modeling class that includes two neural networks
compete with each other. In other words, GAN tries to learn Generator via class probability
estimation where the Generator and Discriminator are neural networks. Figure 3.3 illus-
trates general principles of Generator and Discriminator. Intuitively, the generator tries
to create fake samples to trick the discriminator, and the discriminator tries to identify
real data from imitated ones generated from the generator.

Training GANSs: Loss Function

Denote D, G be the adversarial objectives for discriminator and generator respectively.
The global optimum is reached when G reproduces the true distribution of original data.
The objective of discriminator D is to maximize the probability of identifying fake data.
It is the cross-entropy loss of the true distribution and the distribution generated by the
network:

arg mgxIEz@[log D(G(z)) +1og(1 — D(x)] (3.1)

Fake Real

As generator cannot directly access to the true data distribution, it focuses on minimizing
distribution of D(G(z)), which is equivalent to minimizing the probability of correctly
identifying generated data as “fake”:

arg ménEZ@[log D(G(z)) + log(1 — D(x)] (3.2)

Combining together, the two networks play a minimax game. This is a bilevel optimiza-
tion problem:

arg mci:n mngz,m[log D(G(z)) + log(1 — D(x)] (3.3)

Generating New Data with GANs

After fully training the generator, it is used to generate new data instances that have
never been seen before from the learned distribution. For example, figure 3.4 shows a
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sample drawn from Gaussian noise is fed into the trained generator to create a duck
image that maps to a data point from the learned target data distribution.

Gau55|an noise
Z~ N(O 1)

Trained Learned target
generator data distribution

Figure 3.4: GANSs as distribution transformers. Image taken from [69]

This mapping is learned over the training itself. In addition, one can perform interpola-
tion from the noise space to create many new instances in the target distribution space.
This procedure is illustrated in figure 3.5.

1Gaussian noise
z~N(0,1)

i Trained Learned target

I generator data distribution
Figure 3.5: Interpolation in the noise space to create new image variations. Image taken
from [69]

3.1.3 Recent Advances of GANs

This section covers recent advances of GANs and discusses some GAN-based models
that produced the latest results in data synthesis.

Progressive Growing of GANs

One of the current GANs advances is Progressive Growing [70], which enables GANs
to add a layer to each generator and discriminator as a training function. This helps to
iteratively build up more detailed image generations due to progressive training. This
process is described in figure 3.6. The results were improvement of quality and spatial
resolutions of generated images, speeding up training and making training process more
stable.
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Figure 3.6: Progressive Grow [70].

StyleGAN [71] is another variation that combines progressive growing and style transfer.
Features and effects from one series of images can be transferred to a series of target
images. This resulted in input target was transformed in style of those source images that
features were drawn from. Figure 3.7 compares traditional generator and style-based
generator.

Latent z € Z Latent z € Z . Noise
Synthesis network ¢
Normalize Const 4x4x512

Mapping
Fully-connected network f
.

PixelNorm

A

(a) Traditional (b) Style-based generator

Figure 3.7: Style-based Generator [71].
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GANSs as data synthesis applications

A conditional version of GANSs [70] enables more control on how outputs should look
like by conditioning on to both the generator and discriminator. The model can generate
MNIST digits conditioned on class labels. In addition, model can be used to learn a
multi-model model and provide preliminary instances of an application to image tagging.
Figure 3.8 illustrates a simple Conditional GAN.
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Figure 3.8: Conditional GAN's architecture [70].

One application of Conditional GANs is image-to-image translation using pix2pix soft-
ware [72]. These networks learn both mapping from input image to output image and
a loss function to train this mapping. This allows effective synthesizing photos from
map-type inputs, object reconstructions from edges, and coloring from edges of a sketch.
Training can also be extended to other instances in the art domain. Figure 3.9 shows

several results using Conditional GANS.
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Figure 3.9: Conditional GANs are general-purpose strategy that works well with various
problems: labels to street scene, aerial to map, labels to facade, day to night, black-white

to color and edges to photo [72].
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Finally, CycleGAN [73] is an advanced version of GANs that is used for unpaired image-
to-image translation application. While traditional GAN feeds noise into the generator
to transform images to the target distribution, CycleGAN learns transformations across
domain with unpaired data. The network consists of two generators G and two discrim-
inators D that operate on their own distributions. The objective is to learn a function
mapping that translates between two data distributions. Figure 3.10 describes several
translation results from this technique.

Monet 7_ Photos

Zebras 7 Horses Summer Z_* Winter

Photograph

Monet Van Gogh Ukiyo-e

Figure 3.10: Given any two unordered image collections X and Y, image can be trans-
formed from one domain into the other and vice versa [73].

Besides, CycleGAN was applied to speech translating between audio waveforms in
Spectrogram image domains. For instance, in [69] authors translated their audios from
Spectrogram image domain to that of Former US President Obama in order to synthesize
his voice with an impressing performance.

3.2 Self-Attention in Transformer Architecture

3.2.1 Fundamental Concepts of Transformer

Sets and tokenization The proposal of transformer [39] started with a simple idea:
exploiting the entire input sequence so that there are no dependencies between hidden
states. To this end, a mechanism of encoding sentences into machine-understandable
identity numbers is required. This pre-processing step is called tokenization, i.e., creating
tokens from the input sentences. Tokenization is an essential process so that model can
understand the sentences. For example, the sentence “hello world!” can be represented
as “token IDs” as shown in figure 3.11. After tokenization, instead of a sequence of words,
we obtain a set of token IDs, where the order of the elements in the set is irrelevant. We
denote the input set as X = {x1,X2,X3,...,Xy} where x € RV*din and x; is a token.
Then, we build word embeddings from the tokenized words, i.e., projecting them into a
distributed geometrical space.
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Original sentence "Hello world!"
Tokens ['hello’, 'world', '!"] D
Token IDs [1364, 6813, 0249]

Figure 3.11: Representing a sentence as tokens.

Word embeddings Innatural languages, we often encounters similar word meanings or
similar grammar structures. Exploiting this property, word embedding represents words
in the form of continuous-valued vectors such that vectors that have small distances in
the vector space are expected to represent words with similar meanings. As words are
not discrete symbols and are strongly correlated with each other, projecting them into a
continuous euclidean space can reveal associations between them. Dependent on the
task, we can manipulate word embeddings to push them further away or keep them
close together. Word embeddings can be projected into 2D or 3D for concise visualization,
as shown in figure 3.12. Next, as order is irrelevant in sets, we need a mechanism to
produce notion of order in the set so that sentences can be precisely represented.
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Figure 3.12: Visualizing word embeddings.
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Positional encodings When we convert sentences into sets of tokens, the information
of words’ order is lost, resulting in broken sentences. To help the neural networks
have a sense of order, we slightly modify the word embeddings using their original
position. Positional encoding is a set of small constants, which is added to the word
embedding vector before the first self-attention layer. When the same word appears in a
different position, its actual representation will be slightly different, depending on where
it appears in the input sentence.

In the transformer paper, the sinusoidal function is employed for the positional encoding.
This function directs the model to pay attention to a specific wavelength A. Given a signal
y(z) = sin(kz), the wavelength is calculated as A = 27. In positional encoding, the value
of A will be dependent on the position in the sentence. The positional encodings for even
and odd positions are defined as follows, given the dimensionality of the embedding

vectors is 512.

. pos
PE(DOS’QZ') =sm (100002i/512) (3-4)
pos
PE(pos,2+i+1) = COS (W> (3.5)

3.2.2 Main Components in Transformer Architecture

The Key, Value, and Query

Key-value-query concepts were originally proposed for information retrieval systems.
For example, when we search for a particular item, the search engine will map the query
(input text) against a set of keys (name, description, etc.) associated with possible stored
items. Finally, the search engine will return the best-matched items (values). This is
the foundation of content/feature-based lookup. The transformer exploits this idea for
constructing its attention mechanism to overcome the bottleneck problem cause by using
fixed-length encoding vectors, as the dimension of the representations would be forced
to be the same as for both long and short sequences. The mechanism is illustrated in
figure 3.13. We can weight the queries by defining a degree of similarity between the
representations. We use the keys to define the attention weights to look at the data and
the values as the information that we will actually get.

Attention:

weighted mean
Query

—> | Similarity | =——> Map weightto |, pejevant info

info (values)

Keys W Values W

N N

Gained Previous Memory Stored
Information

Figure 3.13: The key, value, and query concepts. Image taken from [74].
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Self-attention: The Transformer Encoder

Self-attention is an mechanism that connect different positions in a single sequence to
produce a representation for that sequence. Self-attention is able to explore correla-
tions between different words in the sentences, providing the grammatical and contex-
tual structures of the sentences. Similarly to the previously mentioned database-query
paradigm, this mechanism finds the similarity between the searching query and an entry
in a database. Finally, a softmax function is applied to get the final attention weights as a
probability distribution. Specifically, the Transformer uses 3 different representations:
the Queries, Keys and Values of the embedding matrix. These representation can be
computed by multiplying the input X € RV*9 with 3 different weight matrices W,
W and Wy € RékXdmoder Having the Query, Value and Key matrices, we can now
apply the softmax layer to compute the self-attention as:

Attention(Q, K, V) = softma <QKT) A% (3.6)
5 B = X . .
Vdy,

The process is illustrated in figure 3.14.
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Figure 3.14: The self-attention calculations.

Multi-head Attention

In the original paper, the idea of self-attention is extended to multi-head attention, i.e.,
the attention mechanism is executed several times. In each run, a independent set of
Key, Query, Value matrices is projected into different lower dimensional spaces and
the attention is computed in such spaces, producing the outputs called “head”. The
idea of multi-head attention is that the model has different and independent ways to
understand the input, as it can pay attention to different parts of the sequence in different
runs. Consequently, the model can capture better positional and contextual information,
producing more robust representations.

The projections of Key, Query, Value matrices are calculated by multiplication with cor-

responding weight matrices, denoted as WX W& € Rémodctxdk and WY e Rmoder xdx
To reduce the complexity, the output vector size is divided by the number of heads.
Specifically, in the vanilla transformer, they use d04e1 = 512 and h = 8 heads, producing
vector sizes of 64. The heads are then concatenated and transformed using a weight

matrix WO € RimeodetXdmodel  gince d,poger = hd.

MultiHead (Q, K, V) = Concat(head;, . .., head, )W? (3.7)
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where
head; = Attention (Qw?, KWK vwY ) (3.8)
and
WS WE WY e Ribmoderxdi (3.9)

3.2.3 Vision Transformer Architecture

The Transformer has become the state-of-the-art architecture for natural language pro-
cessing, however, applications of Transformer to machine vision tasks are still limited
even though attention is a crucial information in vision. Seeing the limitation, Dosovit-
skiy et al. [64] proposed Vision Transformer (ViT) to utilize the attention mechanism of
Transformer for computer vision tasks. ViT has achieved remarkable results in various
vision task. ViT has achieved excellent results compared to state-of-the-art convolutional
networks in various image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.)
while requiring significantly fewer computational resources.

An overview of ViT is illustrated in figure 3.15. As the original Transformer takes 1D
sequences of token embeddings as inputs, we partition the 2D image x € RZ*WxC,
where (H, W, C) is the height, width, and number of channels, respectively, of the image,
into N patches with sizes of (P, P), then sequentially concatenating them into a sequence
x, € RVx(P *©) to make compatible inputs for the Transformer architecture. We then
flatten the patches and employ a trainable linear projection to map the flattened patches
to D-dimension space to create a sequence of “patch embeddings”. Similarly to the
original Transformer, we employ learnable 1D position embeddings to preserve positional
information, as 2D position embeddings do not provide remarkable advantages. The
Transformer encoder take the result patch embedding sequences as inputs.

An additional learnable embedding is added to the patch embeddings sequence (z) =
Xclass)- The output of this embedding by the Transformer encoder (z?) acts as the repre-
sentation of the input image. In both pre-training and fine-tuning processes, we attach a
classification head, which is implemented by a multi-layer perceptron in pre-training and
a linear layer in fine-tuning, to z9 . The architecture of the Transformer is described in the
previous subsection. ViT is typically pre-trained on large datasets, and then fine-tuned
for downstream tasks. To this end, the pre-trained prediction head is removed and a
D x K feedforward layer is attached, where K is the number classes in the downstream
tasks.

3.3 Explainable Deep Learning

There are several surveys on explainable Al [75, 76, 77,78, 79, 80, 81, 82, 83, 84, 85] and
explainable deep learning [86, 87, 88]. Even though these surveys provide thorough and
comprehensive studies, they cover an enormous of work that readers might find it hard
to follow. Instead, we focus on a small number of methods which are foundational. A
method is considered as foundational if it is widely used or if it introduce novel concepts
that conventional work relies upon. By studying this set of foundational methods,
readers might have better insight when they study more modern techniques. We present
a simple three-dimensional space encompassing:

* Visualization methods: by employing scientific visualization techniques, visualiza-
tion methods highlights the characteristics of inputs that strongly affect the outputs
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Figure 3.15: The Vision Transformer architecture [64].

of a DNN.

* Model distillation: a separate, “white-box” machine learning algorithm is devel-
oped and trained to imitate the behaviors of the DNN. As the white-box algorithm
is inherently explainable, we can explore the learned rules or features that affect
DNN outputs.

¢ Intrinsic methods: these methods are actually DNNs developed to produce expla-
nations along with the outputs. Consequently, intrinsic methods can be exploited
to simultaneously increase performance and produce high-quality explanation.

In this section, we focus on visualization-based methods, specifically CAM and Grad-
CAM.

3.3.1 Methods for Explaining DNNs

Visualization methods associate the degree of importance toward final decisions of the
networks to input features. This association is also referred as attribution. Widely-used
forms of visualization methods are saliency maps are heatmaps, which are represented by
transparent color maps overlaid on the original input images. These maps indicate input
features that are most important, i.e., the most influential factors to the model’s output.
Visualization methods can be categorized into two types, namely backpropagation and
perturbation-based visualization. We will focus on backpropagation-based methods in
the scope of this manuscript.

Backpropagation-based methods estimate the importance of input features by evaluating
gradient signals during the training process. For example, in a scene recognition problem,
a high saliency score for features representing the object “bed”, when a CNN decides that
the image belongs to the class “bedroom”, may indicate that the decision of the CNN is
highly sensitive to the occurrence of the bed. In [89, 90], the authors visualize the scaled
partial derivative of the model’s output with respect to each input feature to identify
the corresponding sensitivity. In contrast, other gradient-based methods estimate the
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sensitivity with respect to the output by exploiting different feature maps at different
CNN network layers [91, 92, 93, 94]. We will focus on CAM and Grad-CAM in the scope
of this manuscript.

3.3.2 Visulization-Based Methods: CAM and GradCam

3.3.2.1 CAM Method

Zhou et al. [33] proposed a visualization method by creating class activation maps (CAM)
using global average pooling (GAP) in CNNSs. In [45], Lin et al. applied a GAP on the
activation maps of the last convolutional layer before those maps are fed to the fully
connected (FC) output layer, i.e., the final layers of the CNN are implemented as

GAP (Conv) — FC — softmax. (3.10)

The FC layer has C nodes corresponding to C' class. The CAM method computes the
weighted sum of the activations Aj, produced by Conv, which contains K convolutional
filters, using the weights wy, . produced by FC, where the (k, ¢) pair indicates the specific
weighted connection from Conv to FC, to create the saliency map:

K
mape = Zwk’cAk (3.11)
k

The saliency map map,. is then upsampled to match the size of the input images, resulting
in the final class activation map. Each class has a unique map, indicating the most influ-
ential image regions toward the network prediction for that class. However, CAM can
only be employed in CNNs that use the GAP (Conv) — FC — softmax configuration.

3.3.2.2 GradCam Method

To overcome the limitation of CAM, Gradient-weighted Class Activation Map (Grad-
CAM) [46] is proposed. Grad-CAM exploits the gradients of the network output with
respect to the last convolutional layer to compute the class activation map. This strategy
enables Grad-CAM to be applied to a wider range of CNNs. The only requirement is that
the final activation function that produce the network output must be a differentiable
function, e.g., softmax.

For each activation map A, produced by the final convolutional layer of the network, a
gradient of the score y. (the value before softmax) of class ¢ with respect to every node in
A}, is computed and averaged to get a saliency score oy, . for the activation map Ay, i.e.,

1 m
Af.c = E
m-n

i=1 j=1

n

9y
3Ak’i,j

(3.12)

where Ay, ; ; is a neuron at the location (4, j) in the activation map Aj. Then, the saliency
scores of feature maps are combined and passed through a ReLU to produce the saliency
map

K
map. = ReLU (Z oz;mAk) (3.13)

k
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The saliency map map. is then upsampled to match the size of the input images to
produce the final class activation map. Figure 3.16 illustrates the Grad-CAM method and
an example of Grad-CAM saliency map for the prediction “cat”.

The CAM-based methods can be exploited to determine, given an input and a class, the
most influential information in the input that affect the final decision of the network.
From this information, one can interpret the predictions of the network to assess its
stability and consistency. For example, given two network that have the same predic-
tion accuracy, the network with saliency maps which are more consistent with human
experience is considered more robust and trustworthy than the other. The CAM-based
methods can also be utilized to detect class bias.

........... CAT
i&j
s et =
g
o ]
o 5
m =
=]
=]
7
=
L J
T
LB
Qpe = ——
T men 2; OAL; 5
gy =R3LU(LT0,0' a-‘-ﬂl,o' a"‘ T Qg0- ’: —| }
A_u A.l AJ.-

»

Importance

Original image Example grad-CAM
Figure 3.16: Illustration of Grad-CAM method. Top: Illustration of (3.12) for calculating
the saliency scores «; ; for each activation map Aj. Middle: The computation of saliency
map for a specific class. Bottom: Saliency map for the prediction “cat”. Image taken
from [95].



Chapter 4
Methodology

4.1 Methodology Overview

4.1.1 Interactive Machine Learning Flow

This thesis aims to build a deep learning-based prediction engine for an intelligent user-
interactive (IUI) diagnosis system focusing on diabetic retinopathy (DR) disease. Our
method is inspired by the clinical diagnosis behavior of ophthalmologists in diabetic
retinopathy grading. In particular, to determine the severity of the disease, ophthalmol-
ogists, in the first step, usually locate and identify different lesion regions by closely
observing the retinal image [7]. These lesion attributes are essential clinical features
for the disease diagnosis and grading progression on the severity scale. In practice,
recent studies [29, 96] have shown that incorporating this additional information in the
learning process can play as an expert’s feedback to improve the model performance and
robustness for DR grading tasks.

However, as we discussed previously, training a disease grading classification model
with additional lesion information requires solving several challenges. First, the dataset
containing image-level and pixel-level supervision is expensive to annotate. For example,
though more than five retinal image datasets are available containing disease severity
grading annotations, there are only two public datasets for retinal lesion annotation. One
of them comprises less than 100 images. Second, integrating lesion information into a
deep network for classification tasks is still an open problem because each DR grading
task depends on a group of different features with an extended level and properties.
Finally, it is crucial to consider the users’ roles in this framework; thereby, (i) the system’s
predictions could be explainable to the users by providing relevant evidence to medical
priors; (ii) the system allows users to inspect predicted results and be able to enhance
accuracy given new samples annotated by users which usually contain to a certain noise
level.

In this work, we aim to address the above challenges by introducing an interpretable

25
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Figure 4.1: A high-level overview of our proposed method in terms of IML workflow.
Given a retinal image, our deep learning models will simultaneously generate 3-types
of prediction (DR grade, lesion region, visual explanation). By using an Intelligent
User Interface (IUI), ophthalmologists can observe the system’s predictions and provide
feedback to fine-tune the model.

diabetic retinopathy diagnosis system. The method is depicted in figure 4.1 showing the
high level of our framework in terms of the IML workflow. Given a retina image input,
our method will simultaneously predict three outputs: DR grade severity on a scale of 0
to 4 (by Attention-based Classifier), different lesion regions available in the input image (by
Feature generator), and a visual correlation between class activation maps of the model
with lesion regions has influenced the grading prediction.

In terms of expert users, by observing the network’s prediction with their explanations,
an ophthalmologist can validate the output and re-annotate the prediction labels (both
grading labels and segmentation masks) as a form of user feedback if required. This
feedback can be used to fine-tune the model in the future iteration to obtain better
performance. Furthermore, as our proposed network can already highlight the tiny
lesion regions, the data annotation effort can be minimal. Also, by equipping attention
mechanisms, we enable the user to provide lesion annotations in weak supervision, i.e.,
sketch a boundary around lesion regions rather than detail segmentation masks. This
saves time for annotation effort and is convenient to deploy in practice.

4.1.2 Deep Network Architectures for Lesion Attributes Segmentation
and DR Grading Prediction

We now detail two main neural networks in our pipeline: Feature Generator and Attention-
based Classifier, which are illustrated in figure 4.2. In this, the Feature Generator is learned
using Multi-lesion Segmentation (S-Net) and the Attention-based Classifier is formulated
by an Attention Network (Att-Net) and a Grading Network (G-Net). Besides, we propose
other networks such as Patch Discriminator PD-Net, Wasserstein discriminator network
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Figure 4.2: Detailed architectures and pipeline of the proposed method. It consists
of five inter-depended neural networks: S-Net, PD-Net, AD-Net, W-Net, Att-Net, and
G-Net. These networks are learned in two phases. The first stage aims to train the multi-
lesion segmentation networks S-Net. To overcome the lack of training data in a source
domain and domain adaptation issues in a target domain, PD-Net, W-Net, and AD-Net are
jointly integrated. The second stage optimizes the grading network G-Net using lesion
information obtained from S-Net, where the attention network Att-Net automatically
decides the most influential parts.

(W-Net) and Adversarial domain discriminator (AD-Net). These components are em-
ployed for domain adaptation purposes, which permit S-Net to generate predictions in a
new target domain without using labeled data in the training step.

4.1.2.1 Notations and Settings

Before describing training procedures for mentioned neural networks, we introduce the
notions and settings being used throughout this work. In particular, we require two
types of image annotations:

¢ Image-level annotations: An image is labeled with a particular disease grade. There
are five [0-4] different disease grades for diabetic retinopathy. ‘0 is a healthy eye
with no sign of diabetic retinopathy, and 4 is the most severe stage (figure 1.1, top
row). For a set of images X C R"*“*3, we assume to have associated D-class
disease grades y C R”, where D = 5 and h and w are the height and width of the
image.

¢ Pixel-level annotations: Each of the pixels in an image is labeled with a pre-defined
lesion class. In this work, we consider four distinct DR-related lesion attributes:
Microaneurysms, Hemorrhages, Soft Exudates, and Hard Exudates, denoted as
L = {MA,HE, SE,EX} (figure 1.1, bottom row). Formally, each image z € X C
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R"*wx3 we have associated L-class lesion segmentation maps, z; C R"***! where
l € L,i.e., four binary segmentation maps, and h and w are the height and width of
the image.

Our setting distinguishes data points in two domains:

* Source domain/dataset (X,): The dataset has ground-truth labels used in the train-
ing of the model. For this, we assume to have both image-level and pixel-level
annotations.

o Target domain/dataset (X): The dataset which we desire to generate final predictions.
In our setting, we suppose only having image-level annotations for the DR Grading
task and without (or a few samples) pixel-level annotations for lesion segmentation
tasks.

4.1.2.2 Overview Training Procedures

We construct different segmentation models for learning distinct lesion features. This
strategy is followed by prior works [22, 38] to avoid the imbalance of data problems
among classes. For simplification, when describing the whole system in general, we will
use S-Net to refer segmentation models with parameters denoted as 5. For a specific
purpose, we will use S; with parameters §g,, denoting a dedicated model segmenting a
feature ! € L.

All segmentation models S-Net in this work are defined based on the encoder - decoder
U-Net architecture [15] parameterized by 8s = {6.,604}. The encoder blocks use feature
extraction layers of the ResNet50 [97] architecture as the network backbone. We firstly
pre-train S-Net with data from the source domain X using task agnostic transfer learning
techniques [22] (section 4.2.1). This network is then fine-tuned using available pixel-level
annotations in X,. To enhance the segmentation quality of 5-Net for tiny regions, we
further apply adversarial learning techniques on the predicted segmentation masks using
the PD-Net parameterized by 6,4, implying S-Net is constrained by a segmentation and
another discriminate objective loss functions (section 4.2.2).

While the S5-Net is required to generate predictions in the target domain X, which has
a distribution shift compared with the source domain X, and only has unsupervised
training data, we propose a novel unsupervised domain adaptation approach to alleviate
this challenge. This includes the adversarial entropy minimization network (AD-Net)
and the Wasserstein critic discriminator network (W-Nef) parameterized by 6,4 and 6,,
respectively. To lean a domain-invariant feature representations for S-Net, both three
networks S-Net, AD-Net, W-Net are jointly optimized using both pixel-level annotations
in X, and only input images in X; (section 4.2.3).

To learn a diabetic retinopathy disease grading model, we use available image-level
annotations in the target domain X; and train G-Net parameterized by §,. Besides, the
lesion attention model Att-Net parameterized 0, is integrated with G-Net to highlight
the disease-related lesion attributes obtained from S-Net. In this work, we formulate
two variations of Att-Net for two types of architectures: CNN-based methods (section
4.3.1) and Transformer-based methods (section 4.3.2). Furthermore, we present a new
loss function based on overlapping heatmap constraints estimated from class activation
mapping of trained networks (G-Net) and extracted lesion regions from S-Net (section
4.3.1.2). This constraint advances performance overall and generates explainable proper-
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ties to the users by observing the correlation of lesion attributes (medical priors) to the
class activation map of trained networks (section 5.5.2).

Main Contributions In a nutshell, we make the following contributions:

1. First, we construct novel lesion attribute segmentation models S-Net (or Feature Gen-
erator) that use a new transfer learning scheme based on task agnostic to pre-train
models using limited labeled images in the source domain. Domain adaptation con-
cepts are also formulated to guide neural networks in learning domain-invariant
feature representations in the target domain given unsupervised data. Further-
more, the adversarial learning-based constraints are also integrated during training
processes to enhance the model’s robustness and accuracy.

2. Second, relevant lesion regions extracted by Feature Generator are automatically
combined for DR grading tasks using attention mechanisms. For this, we propose
different attention methods for both CNN and Transformer-based methods. More-
over, a new constraint that explicitly models the relation of lesion attributes with
heatmap regions of the DR Grading network is proposed.

3. Third, our framework provides diverse information to the end-users with ex-
plainable predictions. Given this, the user can inspect predicted results and give
feedback to gradually improve systems’ performance with less effort for annotation
tasks.

4. Finally, the empirical experiments in different datasets confirmed the effectiveness
of our framework as it improved the performance of several baseline methods
by a large margin and demonstrated an increased performance when more data
feedback from users was provided.

In the following sections, we describe mathematical formulations for the aforementioned
factors in detail.

4.2 Learning Domain-Invariant Lesion Attributes Segmen-
tation

The aim of this section is to learn the Feature Generator through S-Net. This task relates
to semantic segmentation problems [98], where the optimization goal is to solve the
pixel-level classification with classes pre-defined. In the context of diabetic retinopathy
(DR) images, each pixel can be annotated as one of the four related lesion classes L or
healthy. Conventionally, using pixel-level annotation from the source domain X, a
segmentation model S; for a lesion attribute | € L = {MA, HE, SE, EX} is trained in a
fully supervised manner:

Loeg = min > Lubee(Si(x), 21) 4.1)

51X (z,20)€ X,

where x and z; are the input image and corresponding segmentation map for the attribute
I, Lybee is the weighted binary cross-entropy loss defined as:

Lubee(2,2) = —(B - zlog(2) + (1 — z) log(1 — 2), 4.2)
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with z is the ground-truth binary lesion mask and 2 is the model prediction, /3 is the class
balancing weight. The loss L.sc. in general can be replaced with other segmentation
losses [99].

However, training Eq. (4.1) is (i) hard to converge to a good optimal solution due to a
scarcity of training data in the source domain X,. Besides, (ii) for lesion attributes whose
regions are small, neural networks tend to learn for other dominant classes with more
extensive areas. Lastly, (iii) optimizing with fully supervised data in one source domain
X, is not yet guaranteed a good generalization to a test case in the target domain X; due
to the domain shift problem.

To overcome those obstacles, we address (i) by using the task agnostic transfer learning
framework [22] (section 4.2.1), which enables discovering a shared feature representation
space for similar lesion attributes and has been shown to be effective in the skin attribute
detection case. We hypothesis that our setting for diabetic retinopathy-related lesions
is relevant to the skin attribute detection in the sense that the targeted objects are also
small, disconnected regions and non-uniform distributions (figure 1.1, bottom row). In
addition, the training data among classes are also insufficient and imbalanced. The
second challenge (ii) is handled by equipping the adversarial learning [32], i.e., a two-
player game, to force the segmentation outputs of S-Net to look "real" as ground-truth
data and tiny regions have to be taken into account in training step. We present in section
4.2.2 formulations for this idea. Finally, the domain adaptation problems in (iii) are
handled by jointly learning S-Net with Wasserstein distance W-Net [31] and Adversarial
Domain Discriminator AD-Net [12] using both labeled data in the source domain and
unlabeled data in the target domain. At a glance, these additional networks control
learned feature representations of S-Net to be invariant across data distributions. The
section 4.2.3 describes in detail our approach for this step.

421 Task Agnostic Transfer Learning for Lesion Segmentation in
Source Domain

Class imbalance and lack of training data are common problems in medical domain.
The publicly available IDRID [21], which we have used as the source domain X for the
lesion segmentation task, contains only 53 annotated images with lesion information.
For the lesion class Soft Exudates, the annotated images are even fewer, only 26. To
lessen this issue, a popular transfer learning technique is to use a pre-trained ImageNet
model [11, 100] for the weight initialization. However, recent studies [22, 60, 61] have
argued that this transfer learning method is sub-optimal in several scenarios and is not
consistently better than random initialization for medical image analysis. Nguyen et al.
[22] thus has proposed a novel task agnostic transfer learning (TATL) approach for skin
cancer attribute detection. Motivated by the ophthalmologist’s behavior in DR related
lesion detection, we have adopted the self-supervised TATL technique containing an
attribute-agnostic segmenter and a task-specific classifier for detecting each of the lesion
regions.

Figure 4.3 describes our adopted TATL framework. In the first step, we train the attribute-
agnostic segmenter with encoder-decoder layers as the U-shape network, denoted as
Sy = {S§, S¢} where S§ is the encoder and S¢ is the decoder part of the model. To
train Sy, we define an intermediate dataset of attribute agnostics Dy = { X, My } where
My is the corresponding binary mask to an image whose value is 1 whenever a pixel is
an attribute from L. In our setting, given an image « € Xg and a set of attributes masks
z1, (I € L), My is the union of all the masks (figure 4.3) and can be easily constructed by
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Figure 4.3: Task agnostic transfer learning (TATL) procedure used in the pre-training step
in lesion attribute generation. Pretext Task: an U-shaped model is trained to recognise all
the regions containing any lesion attributes through an attribute agnostic mask. Downstream
Task: Trained parameters from the Pretext Task are transferred to the downstream tasks
of locating and identifying each of the lesion attributes independently. The image is
adopted from [22] and modified as per fundus image lesion feature generation task.

performing bitwise OR operator as:
My () £ 2ma | zug | zsg | zEX- (4.3)

where | denotes the bitwise OR operator.

Using this intermediately constructed dataset Dy and equation (4.1), we train Sy so that
it can detect lesion attribute regions belonging to any of the lesions in L. We define this
part as a Pretext Task (left part in figure 4.3).

Next, we define four separate segmentation networks (S;, ! € L) to segment four
different lesion attributes. The architecture of S; is similar to the Sy network, i.e.,
Sy = {S¢, S}, | € L, and we initialize the encoder and decoder of S; as:

S¢ 86 S« SE o VieL (4.4)

These networks are then fine-tuned independently using pixel-level annotations z; of
each image x in the source domain X to generate multi-lesion information (downstream
task in figure 4.3). The loss function in equation (4.1) seeking parameters g, for each
network S; given these supervised data.

Note that, instead of choosing four different models for each of the lesion attributes,
a single model can also be used to minimize a semantic segmentation task, to predict
multi-class outputs. However, in our case, a pixel could represent more than one lesion
class [101]; therefore, a single semantic model with multi-class settings breaks down this
property. In the experiment (table 5.1, 5.2), we found that using TATL transfer learning
helps improve overall accuracy compared with the conventional approach initialized
from the pre-trained ImageNet. We argue that this gain arises from learning shared
feature representation of TATL in the Pretext-Task step, thereby allowing knowledge
sharing among attribute models.
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4.2.2 Adversarial Learning on Predicted Segmentation Maps in Source
Domain

In order to improve semantic segmentation accuracy, especially with lesion attributes
whose regions are tiny, we follow prior studies in semantic segmentation of natural
images [11, 102] and adapt for each lesion segmentation model S; a corresponding
discriminate network. Precisely, the Generative Adversarial Networks (GANSs) [32]
consist of a generative network and a discriminate network, which play in a competitive
min-max. In our setting, we choose the generative network as the lesion attribute
generator S;, | € L and employ the discriminate network as the conditional GAN [103],
denoted as Patch Discriminator PD-Net. The PD-Net aims to distinguish real samples
from the generated ones. The architecture of PD-Net is similar to [101], which is formed
based on the ideas of PatchGAN [104].

Figure 4.4 describes our workflow for training a specific lesion feature network S; using
the adversarial learning with PD-Net. In particular, an input image is split into 16 x 16
smaller patches, and each of these patches is applied with the cross-entropy loss to
decide whether that patch is fake or real. The input for the PD-Net is the concatenation
of the original image patch with its corresponding lesion map predicted from S; and
actual ground truths. Thus, the discriminator PD-Net learns the joint distribution of both
images and the lesion map, conditioned on the input data. In other words, the PD-Net
will force the output of S; to look ‘real” as the ground-truth data as much as possible
given the input image x € X,. The objective loss function for this formulation can be
defined as:

Z [log(PD(z @ 2)) + log(1 — (PD(x & £,)))] 4.5)
(z,z21)EX s

Latcn = Minmax
P
s, Opa | 8‘

where @ being the concatenation operator and Z; = S;(z). Combining this adversarial
objective with Eq. (4.1), we derive an optimization problem for the segmentation model
S; using the source domain X; as:

Esource = £seg + )\p Epatch. (46)

where )\, is a parameter controls the contribution of Lpatch.

4.2.3 Incorporating Domain Adaptation with Unlabeled Data in Target
Domain

So far, we have trained the segmentation model S; in the source domain X,. However, in
the target domain, we can not use Eq. (4.1) to train S; because the pixel-level annotations
2z for image samples = € X, are not available. Prior approaches [38, 105, 106] proposed
self-training approaches in which the predictions of models trained in the source domain
are used to infer new images in the target domain. Then images with high confidence
scores are utilized to fine-tune the model for an adaptation step.

Unlike prior works, we propose constraining the objective function of the lesion attribute
generation model S so that its embedding feature representations estimated from images
in the source and target domain are close to each other. We realize this idea by minimiz-
ing Wasserstein distance [31, 107] in the encoder layers of S¢ and further applying an
adversarial learning mechanism on entropy segmentation maps [12, 108, 109] computed
by S; for images in different domains (figure 4.5). Compared with prior methods on DR-
Grading or lesion attribute segmentation [2, 7, 8, 29, 37, 38], we are the first to consider
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Figure 4.4: Our workflow for the supervised lesion segmentation using adversarial
learning. Output from the segmentation network S; is concatenated with the input image
and split into patches. Then, the patch discriminator PD-Net computes the adversarial
loss by predicting whether each patch is real or fake.

domain adaptation aspects through aligning feature representations across domains
using tools from Wasserstein distance estimation and adversarial entropy minimization.

4.2.3.1 Wasserstein Distance Minimization on Feature Encoder

For each lesion segmentation network S;, we aim to minimize discrepancies between
different domain’s feature embedding estimated at the encoder layers Sy of \S; (section
4.2.1). To this end, we introduce the domain critic W-Nef parameterized by 6,,, whose goal
is to estimate the Wasserstein distance [31] between the source and target distribution in
the feature representation space (figure 4.5). Given an encoder feature representation
h = Sf(x) for an image x from any domain, we define:

hs = Sf(x5), zs € X, (4.7)
ht = Sf(xt), Tt € Xt. (48)

and the domain critic function W(.): R? — R which maps a feature representation to a
real number. As proposed by [28], if the parameterized family of domain critic function
W (.) are all 1-Lipschitz, for the source and target distributions X, and X;, an empirical
Wasserstein distance can be approximated by maximising domain critic loss L,,q with
respect to 0,,:

Lwd(Xs,Xt):ﬁ > W(hy) — > W(hy). (4.9)

laseXs

To make the training progress to be stable, we further enforce parameters 6., to minimize
the Lipschitz constraint using gradient penalty L4,,q proposed by [110] of the domain
critic as:

Loraalh) = (i@, -1)", (@.10)
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where h = {hs, hy, h} is the feature representations at which to penalize the gradients
and it is defined by the source and target representations h,, h; as well as at the random
points h along the straight line between source and target representation pairs [28, 110].

Combining Eq. (4.9) and Eq. (4.10), the optimization problem for the W-Net and the lesion
attribute segmenter S; (I € L), which minimizes discrepancy between two domains X
and X; in terms of Wasserstein distance, is defined as:

ACwass - r(r911n II'@IaX{Ewd n‘cgrad}a (411)

Sy

where 7 is the regularization coefficient.

4.2.3.2 Adversarial Entropy Minimization on Target Domain

In order to exploit the structural consistency between the source and target domain, we
employ an entropy loss L., to directly minimize an uncertainty prediction [12, 109, 111]
in the target domain of S;. Given an input image in the target domain z; € X;, we

compose the Shannon Entropy map [108] E,, € [0, 1]"**:
E() = Z phwi) jog phwi), (4.12)

log(

at each pixel (h,w). Here, C being the number of output class, i.e., C' = 2 in our setting

with binary segmentation for each lesion attribute I € L, and P{/"*"") is the pixel-wise
predicted class score estimated from S;(z;). We now define an entropy loss L., which is
the sum of all pixel-wise normalized entropy:

Lent(zy) Z E{) (4.13)

By combining Eq.(4.1) and Eq. (4.13), we can jointly optimize the supervised segmenta-
tion loss with the samples in the source domain X, and an unsupervised entropy loss on
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the target domain X; by:

Z Ewbce Sl ent Z Eent th (414)

os, | |Xt
(:r z1)EXs T €Xt

with Aey,e is the weight factor for the entropy part L.

Training the lesion segmentation model S; with the joint loss function in Eq. (4.14) has
shown improvement in experiments. However, merely minimization this does not
entirely capture the structural dependencies between the local semantics. In other
directions, authors in [112] have argued that adaptation to the structural output space is
favorable for unsupervised domain adaptation in semantic segmentation tasks. Similarly,
Shen et al. [28] have also shown that adaptation in the latent space can enhance the
model generalization ability. These premises are based on the fact that the source and
target domain usually share strong similarities in the semantic layout. To exploit such
observations, we incorporate an adversarial training framework to implicitly guide the
target domain’s entropy distributions to be similar to the source ones [12, 109]. Our
motivation is based on the fact that a trained model naturally produces a high confidence
score for one target class and low for the rest on source-like images. Therefore, entropy
for the source-like images will be low, and that of target images will be higher.

Using the equation (4.12), we define a weighted self-information map I, for any input image
x composed of pixel-level vectors at each pixel (h, w) as:

I(hw) — _pha) o log P, (h,w) (4.15)

qC
where o stands for hadamard product, P{""*) = {Pa(;h’w’l)] s the probability score for
C classes at (h,w) estimated by S;(z). N

Given this, we define I, I, as weighted self-information maps for the source and target
domain X, X; respectively computed by:

1) = =P olog Py, (h, w) (4.16)
I = =P olog Py, (h,w) (4.17)

We now formulate the adversarial network AD-Net with parameters §,4 as convoluta-
tional networks. This network takes I, as an input and produces domain classification
as an output with class label 1/0 for the source/target domain respectively (right side in
figure 4.5). Note that, AD-Net architecture and its parameters are different from the dis-
criminator network PD-Net that we have used to optimised S; in Eq. (4.6). Similar to the
learning procedure of the original GAN method [32], the discriminator AD-Net is trained
to discriminate outputs coming from source and target images and simultaneously, the
lesion network \5; is trained to fool the discriminator AD-Net. The optimization objective
of the discriminator is:

L4y = min max

nin ma I;SI > log(AD(I..,)) + |X| > log(1-AD(I,,)))  (4.18)

rs€X, r €Xy

In summary, by jointly optimizing equations (4.6), (4.11), and (4.18), we end up with a
total loss function:

ACtotal = Eseg + )\p Epatch + )\wcwass + )\adv‘cadir (419)

where, Ay, A, and A4, are the weighting factors for the patch-based adversarial learning,
Wassertein term, and entropy-based adversarial term respectively.
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4.3 Integrating Lesion Features into DR Grading Networks

In DR grading task, conventionally, human experts diagnose by observing lesions and
attributing signs of illness in detail to grade a disease’s severity. While deep neural clas-
sification models [29, 113, 114] based on image-level supervision can achieve promising
performance, we follow lesion integration-based strategies [4, 7, 38]. We hypothesize
that such an approach can improve the model’s generalizations and make the leaned
network predictions transparent to the end-users by taking into account medical priors.
To this end, using lesion segmentation models S; from the previous step, we generate L
distinctive lesion maps 2/ ; for each input image x. The attention module Attn-Net then
uses this preliminary information to select the most relevant parts contributing toward
the better performance of the disease classification network G-Net.

This work investigates two different jointly learning frameworks between Att-Net and
G-Net for network architectures based on CNN (section 4.3.1) and Transformer (section
4.3.2). Furthermore, besides integrating lesion information at a feature level through
attention gates, denoted as low-level concepts (section 4.3.1.1), we also formulate a novel
overlapping constraint among heatmap regions of G-Net and segmented multi-lesion
regions obtained from S-Net, denoted as high-level concepts (section 4.3.1.2). Figure 4.6
gives an illustration for these attention concepts. In our setting, we develop these
constraints for both CNN- and Transformer-based architectures and discover that they
contribute in improving accuracy for several baselines by a large margin (tables 5.6, 5.5).
Last but not least, these strategies enable an explainable visualization of DR grading
predictions when ophthalmologists can observe the correlation of high-responding areas
in trained networks with medical priors represented as lesion regions.

4.3.1 Integrating Lesion Features for CNN-based Methods

4.3.1.1 Attention Lesion Regions at Low-level Concepts

Inspired by [38], we consider attention mechanisms at feature maps of the classification
network G-Net given multi-lesion maps predicted by \S;. For this, feature maps at the first
and last layers of G-Net are jointly combined with lesion maps 2/ ; to define attention
maps that return high responses to different lesion regions characterizing the disease. It
is worthy to note that we do not integrate the lesion masks initially predicted by S; as
a direct input for the classification model G-Net because the initially predicted masks
are usually very tiny and sparse. Their contributions rather than being controlled by the
attention network Att-Net. In our setting, we choose the ResNet-50 [97], including five
CNN blocks for the architecture of G-Net, and therefore have to modify formulations in
[38] as follows.

We indicate five CNN blocks of G-Net as G = {g!,g?, g, g*,g°}. The feature maps of an
image « at the first block are computed by:

flist — gl(z) (4.20)
Similarly, the feature maps at the last layer estimated by:

£l = g% (h?) (4.21)
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where

Rt =g "t (A, i€ [2,5] (4.22)
W=z (4.23)

In the first step, we train G-Net with all blocks in a fully supervised manner using the
image-level annotations in the target domain (x,y) € X;. The optimization problem is:

Los = mm— Z Linece(G(2),y), (4.24)

9 | t| (I’y e)(t

where £, is the multi-class cross entropy classification loss defined as:
K
Lonce(§, y) ==Y y™® log ™ (4.25)

with y®) is 0 or 1, indicating whether class label & is the correct classification.

Once the model is pre-trained, the feature maps ffi™s* and f'** are computed using
equations (4.20), (4.21). Then we define an attentive feature for the [-th lesion Z; obtained
from S by:

fﬁrst att ReLU(Wﬁrstconcat(zl’ fﬁrbt) + bﬁrst) (426)

where concat(.) is the channel-wise concatenation; Wit and bf's* are additional learn-
able parameters and bias terms for the [-th lesion.

In a next step, the last feature maps f'** acting as a global feature embedding is correlated
with the first-level attentive features to generate attention weights for the i-th lesion:

ap = Sigmoid(W}aSt [flﬁrstfatt ® flast] + b%ast)’ (427)

where © is the element-wise multiplication; W}** and b}**! are other parameters and
bias terms to learn attention features at the global level. To make ¢ and 02 pe
compatible in channel dimensions, we also use a 1 x 1 convolution over the f* l“t

By applying Eq. (4.27) for each lesion [ € L, we aggregate all attention lesion maps and
use them to separately conduct element-wise multiplication with the first-level features
£firs of G-Net. The output feature vectors then are concatenated and utilized as final
attention features to fine-tune the DR Grading network G-Net. In terms of optimization,

parameters of Att-Net include 6 44 = {(Wrst, Wiast | pfirst, b}aSt)lel}.

Finally we compose an optimization, that jointly learns the grading network G-Net and
the attention-based lesion Att-Net at the low-level concept as:

ﬁgg: in = Z Luec (G(x) - Att (Si(z)f2) , v) - (4.28)

(37 y)EX:

where L. is the multi-class cross entropy defined in Eq. (4.25). We characterize the loss
L% as the low-level concept because it purely combines G-Net and Att-Net at the feature
level through attention weights. While this approach boosts performance, it is still a
black box to end-users. In the next section, we introduce a new constraint between two
types of networks which are able to enhance accuracy and provide explainable properties

for the learned system.
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Figure 4.6: An overview of our attention mechanisms jointly learning with the DR
grading network at both low-level and high-level concepts. In the blue box, internal
architecture of low-level attention mechanism is illustrated in detail.

4.3.1.2 Attention Lesion Regions at High-level Concepts

The attention procedure that we have used in the previous section is on the structural
feature level of the grading network. In this section, we further impose a new constraint
that directly compares the class activation map of the grading network with the lesion
maps. By considering this property, we explicitly guide the network on which parts
of the image they should focus on and make the predictions more transparent to end-
users by observing correlations between trained networks” activation map and medical
priors (figure 5.6). This sets us apart from prior studies in DR grading problems [29, 38].
Below we present the formulation to integrate this constraint seamlessly in our learning
framework for the case of G-Net based on CNN architecture.

Based on the Grad-CAM [115] discussed in the section 3.3.2.2, we can get the class
activation map of the last layer in the grading model G-Net. For a input image z, let
f1,1 be the activation of unit & in [-th layer. For each of the ground-truth class ¢, we
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compute the corresponding gradient score s¢, with respect to activation maps of f; .
These gradient scores then pass through 1 x 1 convolution of global average pooling
layer to obtain the neuron importance weights wy . :

. s’
wl,k = GAP (afl’k> s (429)

where GAP() is the global average pooling. Because wy indicates the important of
activation map f; ; contributing the prediction of class ¢, we thus apply the weight
matrix w,. as a kernel and apply 2D convolution over the feature map f; to aggregate all
activation maps, followed by a ReLU function to get the activation map AM¢ for the c-th
class:

AM*¢ = ReLU(conv( f;, w®)) (4.30)

where [ represents the last convolution layer.

In the next step, we normalize the AM€ so that its class channel values are normalized to
[0,1], denoted as AM ‘ using a thresholding operation 7'(.) [116] as follows:

AM® = T(AM®) (4.31)
o 1
T(AM®) = 1 +exp (—w(AM< — o)) (432)

where o is the threshold matrix whose elements are equal to 0. w is the scale parameter
forcing T'(AM®); j approximately equals to 1 if AM; is greater than o, or to 0 otherwise.

Finally, we propose an overlapping loss function Lyeriqp for images whose lesion areas
are not empty as:

1 =
ﬁoverlap = eglelﬂt% ||AM — LU||2 (433)
where h, w are the height and width of image x, Ly is the union region of all of lesion
types computed by:

Ly = Si(x) (4.34)
leL

Note that we only compute the L,yeri1qp for an image « if its grading label is different 0,
i.e., input image has some stages of DR disease. By optimizing Lyeriap, We jointly learn
parameters for both grading network G-Net and the attentive network Atf-Net.

Combining equations (4.33), (4.28), we end up with a new total object loss function that
incorporates attention mechanisms for DR grading task at both low-level and high-level
constraints:

‘Cgrading = ‘Cgltst + ‘Coverlap (435)

Ata glance, our proposed loss Loyeriap is comparable to existing semi-supervised learning
[116] or Covid-19 detection [48]; however, we extend it for the multi-lesion scenario in
the context of the DR grading task. Furthermore, our system is superior to these works
and current approaches to the DR problem [29, 38] in that we develop lesion information-
based attention mechanisms for classification tasks at both feature-level and high-level
concepts, thereby improving performance and providing explainable properties to the
entire system (table 5.5).
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Figure 4.7: Our proposed DR-grading transformer architecture. We integrate predicted
lesion feature maps using the lesion generation S; for an image with the multi-head
lesion generation G-Net based on MIT-VT [117]. We compute Lyeriap and the grading
model is trained using both £ and Loyeriap-

4.3.2 Integrating Lesion Features for Transformer-based Methods

Transformer models have been widely used for natural language processing (NLP)
and achieved superior performance [118]. These models use inherent self-attention
techniques automatically learn to focus on the task-specific important regions during
the training process. Recently, transformer-based models such as ViT [64] have been
exploited in vision-related tasks, and they have achieved competitive performance
against the CNN. The main difference between CNN and transformer models is that
CNN uses pixel arrays whereas vision transformers split the images into visual tokens.
In Transformer, an input image = € R"***3 is divided into individual patches with size
p x p. Therefore, we can obtain N = hw/p? patches from one single image. The patches
are further flattened into a 1D format and then get embedded together using a linear
layer of D dimensions to make a compatible data format for the transformer networks.

In this section, we investigate the performance of Transformer architecture for the DR
grading task. For this, we choose the MIL-VT method proposed by Yu et al. [117]
(figure 4.7). Compared with ViT, MIL-VT further adds multiple-instance learning heads
to leverage the features extracted from individual patches. However, MIL-VT solely
employs image-level data in the training stage and ignores the responsibilities of lesion
areas. This motivates us to incorporate the MIL-VT attention’s mechanism with our
overlapping heatmap concepts presented in section 4.3.1.2. To establish such a constraint,
we apply the Attention Rollout technique mentioned in recent Transformer papers
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[64, 119] and use it to compute the heatmap regions for MIL-VT.

In particular, Attention rollout is a concept used to track the information propagated
from the input layer to the embeddings in the higher layers. Given a Transformer with
N layers, in each layer n € N, this technique takes the average of all attention weights
across all heads to form an attention matrix A,, where (A4;;); defines how much attention
is going to flow from token j in the layer n — 1 to token ¢ in the layer n. Then the attention
rollout matrix at layer n, denoted as A,,is computed in a recursive way:

where I is the identity matrix.

By computing equation (4.36) at the last layer IV, we can account for the combination of
attention across tokens through all layers. In our method, we choose the attention map
AMF€ as:

AM® = Ay. (4.37)

Then the loss Loveriap in equation (4.33) is defined in analogous way (figure 4.7). In
experiment, we discover that this extended version significantly enhances MIL-VT’s
performance in a variety of situations (table 5.6).

44 Human Interaction with Trained Systems

Our proposed architecture is essentially a joint disease diagnosis system. Given a retina
fundus image, the system can automatically detect the associated lesion attributes and
predict its disease grade. In addition, the detected lesion masks from the segmentation
module, as-they-are, can work as a support for the disease grading prediction by the
grading module. Unlike most of the medical decision support systems [53, 55? | where
the lesion maps and disease grading predictions modules are independent of each other,
our architecture is trained to learn these tasks collaboratively. In the learning phase of
our grading model, we exploit predicted lesion information. Besides, the system also
facilitates the utilization of expert feedback throughout the training process. Generally,
our diagnosis system provides an interactive way with the expert user, as shown in 4.8.
For this, the method can deliver a visual explanation to the user about its predictions.
Also, the method is robust enough to incorporate user feedback in weakly-supervised
annotations and can use them to fine-tune the model. We will discuss in the following
sections detailing the interaction process.

4.4.1 DR Grading Predictions with Explainable Properties

Explainability is an imperative feature required for intelligent decision support systems,
especially in the healthcare domain. When a healthcare model predicts a disease, the
medical practitioner needs to know which factors the model is taking into account. In our
work, we focus on the local interpretability [46, 120] of our prediction model computed
based on the class activation map AM¢. This gives us the discriminative regions used
by the model to predict the disease grade for a certain class. By drawing the AM® over
input image « (figure 4.8 - Visual Explanation), we can observe the highlighted region on
the input z, which the grading network G-Net thought to be the most essential region for
its decision (figure 4.8 - Predicted DR Grade). Moreover, detected lesion maps can be used
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Figure 4.8: Illustration for the interaction between experts and the trained model. The
model can infer explanatory predictions via presenting disease grade, related lesions,
and class activation mapping. Upon inspection, the expert validates the results and, if
necessary, provides input (e.g., drawing bounding box on missing lesion regions). This
input is used to improve model performance in subsequent model retraining.

as visual explanations. In particular, considering the overlapping region between lesion
maps 2%, (figure 4.8 - Predicted Lesion Regions) with activation maps AM¢ of z gives a
visual interpretation of how much these lesions influenced the grading model prediction
(figure 4.8).

4.4.2 Improving System’s Performance through User Feedback

In general, user feedback is the information that a user sends to a learning agent in order
to update the agent’s knowledge. In interactive machine learning, user feedback can
guide the intelligent system to achieve the desired behavior [49]. Our proposed method
is inherently designed to be able to integrate user feedback in its learning procedure.
However, getting user feedback is a costly and time-consuming task, especially in the
medical domain. For instance, lesion regions in diabetic disease can be very tiny to
cover only a small group of pixels in the image. Fortunately, our framework alleviates
this issue when we do not require pixel-level training data in the target domain to train
segmentation models. It instead is handled by the domain adaptive networks as the
Wasserstein network W-Net (Section 4.2.3.1) and the Adversarial Discriminator-based on
Entropy AD-Net (Section 4.2.3.2). Given this, we can generate different lesion regions
while only using pixel-level labels from another source domain.

When the system is deployed in practice, the expert can provide two feedback forms.
Firstly, given new annotations on lesion masks, we can fine-tune our lesion generation
models S-Net. Specifically, for each lesion generator model S;, we update the segmenta-
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tion model using new labeled data in the target domain by training:

.1

Locg =mingrr > Lunce(Si(2), ) (4.38)
o ¢ (z,21)EXy

where L,pcc is the weighted binary cross-entropy loss defined in equation (4.2). Note

that in this case, we can ignore the domain adaptation parts, which are already optimized

during training with data in the source domain X.

Secondly, when users provide both new image grading and lesion segmentation labels,
we can update either:

* Segmentation models S-Net using L., in equation (4.38).

* Attention-based disease grading model Att-Net and G-Net by learning the objective
function L yrq4ing defined in equation (4.35).

It is worth noting that our technique automatically learns to identify critical lesion
locations influencing the DR Grading task by utilizing attention mechanisms; hence, it
can be resilient to a certain degree of noise in segmentation annotations provided by
experts. In other words, rather than a precise segmentation mask, the expert can mark
the region of interest in the form of bounding boxes or circles around the lesion locations
using any pen-based input device. As the attention model inherently learns to filter out
the noise and focus on the area of interest, our experiments confirm that only these soft
annotations are sufficient to boost the performance of the model (table 5.8).



Chapter 5
Experiments and Results

5.1 Data Description

Retina images are generally captured in two forms, which are Optical Coherence Tomog-
raphy (OCT) capturing a cross-sectional images of retinasa and Color Fundus retinal
photography capturing 3D retina images using fundus cameras. We employed datasets
with color fundus retina images for all our experiments in this work. For domain-
invariant lesion attributes segmentation, we used two publicly available datasets. To
the best of our knowledge, these two are the only datasets that provide pixel-level
annotations for diabetic retinopathy. The datasets are:

* [DRID segmentation [21]: This dataset contains 81 high resolution (4288 x 2800
pixels) images with four different types of lesion annotations and is split into 54
training images and 27 testing images. The lesions are: microaneurysms (MA),
haemorrhages (HE), hard exudates (EX) and soft exudates (SE). Each of these
lesions are annotated in the forms of binary masks.

* FGADR segmentation [8]: Similarly as IDRID, this dataset contains 1843 images with
4 kinds of lesion masks (MA, HE, EX, and SE). The training set consists of 1500
images and the remaining 343 images are for test set. This dataset has imbalance
in the lesion classes. The class HE is available in 1471 images which is 78% of the
total images where the class MA is available for only 610 images which consists of
33% of the total images.

For the classification task, we used three publicly available datasets.

* IDRID classification [21]: This dataset consists of 413 training and 103 test images
with 5 severity grading labels. The five labels include: normal, mild, moderate, severe
and proliferative, which are annotated as 0, 1, 2, 3, 4, respectively. These images only
have image-level labels and do not have any pixel-level lesion masks annotations.

44
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Figure 5.1: Class distributions in the three classification datasets used in our work.
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* EyePACS [121]: This dataset consists of 35,126 training images and 53,576 testing
images with similar grading protocol of classes with 5 categories. Images in this
dataset is captured using different types of cameras settings under various light
conditions.

* FGADR classification [8]: this dataset consists of 1500 training images and 343 testing
image for diabetic retinopathy grading. This is the only one that contains both
image-level pixel disease grading and pixel-level lesion annotation maps.

Figure 5.1 shows the class distribution for the three classification datasets we used in
our work. We can observe that there are great numbers of class imbalance in all three

datasets.

5.2 Evaluation Metric

To evaluate the segmentation performance in section 4.2, we used two common metrics.
Area Under the Curve of Receiver Operating Characteristics (AUC-ROC) and Area Under
the Curve of Precision-Recall (AUC-PR). The positive class means the existence of lesion
and negative is the otherwise.

* AUC-ROC measures the class separability at various threshold settings. ROC is

the probability curve and AUC represents the degree of measures of separability.
It compares true positive rate (sensitivity /recall) versus the false positive rate (1 -
specificity). The higher the AUC-ROC, the bigger the distinction between the true
positive and false negative.

AUC-PR: It combines the precision and recall, for various threshold values, it
compares the positively predicted value (precision) vs the true positive rate (recall).
Both precision and recall focus on the positive class (the lesion) and unconcerned
about the true negative (not a lesion, which is the majority class). Thus, for class
imbalance, PR is more suitable than ROC. The higher the AUC-PR, the better the
model performance.

For evaluating multi-class disease grading classification task in section 4.3, we used two
evaluation metrics.
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¢ Accuracy: The normal classification accuracy which simply measures how many
observations are correctly classified.

* Quadratic Weighted Kappa (Kappa): 1t is similar to the Cohen’s kappa metric [122]
by the weights are set to ‘Quadratic’. Cohen’s kappa measures the agreement
between two raters who each classify N number of items into C mutually exclusive
categories. The formulation is:

kappa = Lo Pe (5.1)
1- De
where p, denotes the relative observed agreement between the raters and p. is the
hypothetical probability of chance agreement.

5.3 Implementation Details

We implemented all experiments using PyTorch framework [123] and executed on a
computer 2 NVIDIA TITAN RTX 24GB GPUs. For all experiments, the sizes of the input
images are 512 x 512.

Domain Invariant Lesion Attribute Learning

For the experiments in lesion attribute segmentation discussed in section 4.2, we used
pixel values in the range [0, 1] for retina images and ground-truth binary lesion segmen-
tation masks. In this step, the input image are labeled images from source domain and
unlabeled images for the target domain. We applied following prepossessing steps for
input images as proposed in [101]:

* Contrast limited adaptive histogram equalization (CLAHE): Instead of processing the
entire image, CLAHE processes smaller regions. We applied the CLAHE technique
with to 8 x 8 patches.

* Denoising: Assuming that the images contain Gaussian white noise, we applied
Non-local means denoising algorithm [124] with a filter strength of 10.

Moreover, we applied the built-in data augmentation procedure of PyTorch framework.
Each image and its corresponding lesion masks jointly are randomly crop to 512 x
512 pixel and randomly rotated with a maximum angle of 30°. Finally, we applied
normalization to each channel of the input lesion image with mean = [0.485, 0.456, 0.406]
and std = [0.229,0.224, 0.225].

Our 5-Net model described in section 4.2 is a U-shaped [15] encoder-decoder segmen-
tation network. The encoder architecture is identical to the convolutional block of the
ResNet50 [97] model and the decoder architecture is up-scaled accordingly. The archi-
tecture of the PD-Net described in section 4.2.2 is similar to the InfoGAN [125]. This
discriminator model provides stable performance for our case. It consists of two convo-
lution layers with 64 and 128 kernels, respectively, followed by two fully-connected layer
of 1024 dimensions and then the sigmoid layer.

For training the SD-Net and the PD-net described in 4.2.1 and 4.2.2, we used SGD with
momentum [126] as optimizer with initial learning rate of 10~* and momentum value
of 0.9. We adopted the cyclic learning scheduler [127] with max value 0f 1072, The
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class balancing hyper-parameter weight 3 for the segmentation loss L. described
in equation 4.2 is set to 10 following [101] to address class imbalance for lesion and
non-lesion class. The value of A, for the source domain adversarial joint optimization
in equation (4.6) is set to 1072, For domain adaptation fine-tuning training discussed
in section. 4.2.3, pretrained S-Net from 4.2.2 is trained with Wasserstein critic model
W-Net (section 4.2.3.1) and entropy-based discriminatory network AD-Net. W-Net is a
fully connected neural network which takes 1D encoder block outputs from S-Net as
inputs. W-Net has two fully connected layers with number of neurons of 128 and 64,
respectively, and final output is linear layer which gives a single scalar value, the critic
score. AD-Net architecture is adopted from [12] which have five convolutional layers.
The input for AD-Net is the weighted self-information maps computed on the output
of 5-Net using equation (4.17) and output is the binary class probability score on input
being source or target domain.

For training both W-Net and AD-Net, we used Adam optimizer [128] with a learning
rate 10~*. The optimizer hyper-parameters for S-Net in this step are kept unchanged
and they are similar to the one discuss in the previous step. Following [12], the weight
factor A, in Eq. (4.14) and A4, in Eq. (4.19) are 10~3. We used batch size of 8 for our
experiments.

Lesion Attentive Grading Model

To train the lesion attentive grading models G-Net and Att-Net discussed in section 4.3,
the input images are 512 x 512. We followed the similar pre-possessing steps for the
input images as with the grading model. We also used data augmentation functions
in PyTorch as random-crop, horizontal-flip, vertical-flip, color-distortion, rotation, and
translation.

The backbone of our lesion attentive grading model is a ResNet50 [97] architecture
with the output fully connected layer modified to predict five classes. The attention
module Att-Net described in section 4.3.1.1 consists of multiple convolutional layers. This
network is optimized using Eq. (4.35) using the cross-entropy loss. As we can see from
figure 5.1, there is a significant class imbalance among different types of lesions across all
datasets, we thus compute class-weight for each lesion attribute during the optimization
step. We used the SGD optimizer [129] with initial learning rate 10~2 and applied the
cyclic learning strategy as in lesion segmentation steps. For all the experiments, we
varied the batch size between 16 and 32. For all of our experiments we have used 10% of
training data as validation set and final results are computed on test set.

5.4 Performance of Multi-Lesion Segmentation Task

5.4.1 Influence of Pre-training Steps on Lesion Generator Models

As discussed in section 4.2, our lesion segmentation model S-Net is firstly pre-trained
using the lesion segmentation labels from the source domain data in a fully supervised
manner. To evaluate the effectiveness of task agnostic transfer learning (TATL) ([22])
and the adversarial learning (PD-Net) during the pre-training step, we test with three
settings:

* S-Net: Lesion feature generator segmentation model (S-Net) is trained only using
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the segmentation loss L., in equation 4.1. We do not adapt either TATL strategy
or adversarial trainings.

* S-Net + PD-Net: We incorporate adversarial learning strategy on source do-
main as discussed in section 4.2.2. We jointly the PD-Net with S-Net segmentation
model by optimization the formula in equation 4.6.

®* S-Net + PD-Net + TATL: We apply both task agnostic transfer learning (TATL)
and adversarial learning with PD-Net to learn 5-Net using data from the source
domain.

Table 5.1 and 5.2 compare the results of different settings for IDRID and FGADR segmen-
tation datasets respectively. The segmentation performance is evaluated by AUC-ROC
and AUC-PR values on four different lesions, including microaneurysms (MA), haemor-
rhages (HE), hard exudates (EX) and soft exudates (SE). For IDRID-segmentation dataset
in table 5.1, we can observe slight improvement in performance for settings S-Net +
PD-Net compared with original S-Net settings. With the combinations of TATL in
settings S-Net + PD-Net + TATL, we observe significant improvements in results
for all of the lesion classes. For instance, comparing with S-Net settings, we gained 2.5%
and 5.5% on AUC-ROC and AUC-PR scores respectively, averaged over all four lesions.
For the lesion class HE, our method achieved highest improvement in AUC-PR scores of
9.4%.

We can observe the similar trend in results on the test set of FGADR-segmentation dataset
in table 5.2. There is an improvement of 8.5% in the AUC-PR scores averaged over
all four lesion classes. To summarize from the results, we conclude that combining
adversarial training using the PD-Net and the TATL strategy provided a better pre-
training performance for S-Net in the source domain supervised learning.

Lesions MA HE EX SE
Methods ROC PR | ROC PR |ROC PR | ROC PR
S-Net 0937 044 | 0.896 0.459 | 0931 0.722 | 0.953 0.583

S-Net + PD-Net 0932 0439 | 0917 0481 | 0946 0.735 | 0.965 0.611
S-Net+PD-Net+TATL | 0.953 0.456 | 0.931 0.553 | 0.961 0.772 | 0.970 0.643

Table 5.1: Contributions of task agnostic transfer learning TATL (section 4.2.1) and
Adversarial training PD-Net (section 4.2.2) in learning lesion segmentation model S-Net
in the source domain. Results are evaluated using the training and testing set of IDRID
segmentation.

Lesions MA HE EX SE
Methods ROC PR |ROC PR |ROC PR |ROC PR
S-Net 0901 0.373 | 0.941 0.611 | 0.947 0.602 | 0.927 0.410

S-Net + PD-Net 0926 0.394 | 0955 0.638 | 0.959 0.667 | 0.941 0.492
S-Net+PD-Net+TATL | 0.937 0.417 | 0.963 0.652 | 0.970 0.714 | 0.954 0.553

Table 5.2: Contributions of task agnostic transfer learning TATL (section 4.2.1) and
Adversarial training PD-Net (section 4.2.2) in learning lesion segmentation model S-Net
in the source domain. Results are evaluated using the training and testing set of FGADR
segmentation.
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5.4.2 Influence of Domain Adaption on Lesion Generator Models

In this section, we present the results of our domain adaption approaches in different
settings and compare with different baselines. As discussed in section 4.2.3, the aim of
domain adaptation is to train a neural network using available labeled data from source
domain and secure a good accuracy on target domain. We evaluated our approach on
IDIRD and FGADR datasets in the forms of source — target:

® IDRID — FGADR: evaluation on FGADR-segmentation test set when domain adap-
tive segmentation model is trained using the labeled data from IDRID-segmentation
dataset and unlabeled images from FGADR-segmentation dataset.

® FGADR — IDRID: evaluation on IDRID-segmentation test set when domain adative
segmentation model is trained using the labeled data from FGADR-segmentation
dataset and unlabled images from IDRID-segmentation dataset.

Lesions MA HE EX SE
Target Domain Methods ROC PR |ROC PR |ROC PR |ROC PR
S-Net 0.752 0.243 | 0.796 0.280 | 0.794 0.311 | 0.728 0.264
0% S-Net + Entropy 0.807 0.313 | 0.843 0.357 | 0.855 0.407 | 0.819 0.341
S-Net + AD-Net 0.841 0.348 | 0.903 0.448 | 0917 0.473 | 0.902 0.443
S-Net+AD-Net+W-Net | 0.894 0.357 | 0.911 0.502 | 0.939 0.538 | 0.915 0.522
o 40% | S-Net+AD-Net+W-Net | 0.938 0.411 | 0.953 0.613 | 0.966 0.682 | 0.965 0.634
60% S-Net+AD-Net+W-Net | 0.946 0.438 | 0.969 0.648 | 0.979 0.728 | 0.971 0.655
80% S-Net+AD-Net+W-Net | 0.954 0458 | 0973 0.671 | 0.981 0.732 | 0.977 0.684
100% S-Net+AD-Net+W-Net | 0.958 0.462 | 0.979 0.676 | 0.990 0.739 | 0.984 0.693
FCN-8s [8] 0.925 0.363 | 0.962 0.606 | 0.981 0.686 | 0.963 0.642
100% U-Net [8] 0.927 0.382 | 0.967 0.643 | 0.982 0.726 | 0.977 0.683
DL-V3+ [8] 0.934 0364 | 0973 0.619 | 0.981 0.708 | 0.967 0.659
Attention U-Net [8] 0.942 0.435 | 0974 0.678 | 0.984 0.731 | 0.980 0.685

Table 5.3: IDRID — FGADR: Semantic segmentation performance on FGADR (target
domain). Models are trained with labeled data on IDRID and increasingly labeled data
in the target domain from 0 — 100%. Red indicates the best results for settings using
0% labeled data from target domain in the training step. stands for settings using
40% — 60% labeled data in target domain but outperform at least one of baselines trained
with 100% data. Bold are the best values in all methods.

We report the results for domain adaptation on tables 5.3 and 5.4. Our domain adap-
tion approach discussed in section 4.2.3 consists of modules for Adversarial Entropy
Minimization and Wasserstein based distance minimization between source and taget
domain. To evaluate the effectiveness of different constraints for our domain adaptive
segmentation model, we considered four experiments settings:

1. S-Net: The baseline approach for our domain adaptation approaches. S-Net is
trained on source domain by adopting the pre-training method including PD-Net
and TATL. This model is trained using only the equation 4.6. Neither domain
adaptation constraints are considered.

2. S-Net + Entropy: We apply direct entropy minimization constraint for target
domain in the learning process of S-Net as discussed in section 4.2.3.2. The entropy
loss Ly in equation (4.13) is used for minimization on the unlabeled data from
target domain and model is optimized with the segmentation loss L., using
equation (4.14).
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3. S-Net + AD-Net: Instead of using direct entropy minimization L.,;, we use the
proposed domain adaptation with minimizing entropy-based adversarial learning
AD-Net. S-Net and AD-Net are optimized together by combining adversarial loss
Ladv in equation (4.18) with L., in equation (4.14).

4. S-Net + AD-Net + W-Net: Additional domain critic W-Net is added along
with S-Net and AD-Net to minimize the domain gap in feature representation using
Wasserstein loss L,qss. This is our proposed setting where all modules are jointly
trained using our optimization problem in equation (4.19).

Lesions MA HE EX SE

Target Domain Methods ROC PR |ROC PR |ROC PR |ROC PR
S-Net 0.813 0.232 | 0.803 0.251 | 0.837 0.363 | 0.783 0.241
0% S-Net + Entropy 0.884 0.331 | 0.874 0.375 | 0.902 0.531 | 0.865 0.404
S-Net + AD-Net 0.925 0.408 | 0.902 0.447 | 0911 0.697 | 0.879 0.447
S-Net+AD-Net+W-Net | 0.947 0.436 | 0.911 0.462 | 0.927 0.772 | 0.890 0.476
40% S-Net+AD-Net+W-Net | 0.971 0483 | 0.957 0.631 | 0.946 0.829 | 0.937 0.634
60% S-Net+AD-Net+W-Net | 0.983 0.502 | 0.968 0.658 | 0.969 0.841 | 0.943 0.669
80% S-Net+AD-Net+W-Net | 0985 0.510 | 0.979 0.682 | 0.977 0.847 | 0.959 0.710
100% S-Net+AD-Net+W-Net | 0.988 0.511 | 0.982 0.700 | 0.978 0.851 | 0.961 0.714
Adv. HEDNet [101] - 0.439 - 0.483 - 0.840 - 0.481
100% AdvSeg [11] 0.961 0.470 | 0.924 0592 | 0.945 0.79 | 0.939 0.675
ASDNet [38] 0.969 0.478 | 0.932 0.628 | 0.950 0.809 | 0.948 0.692
CoLL [38] 0.965 0.473 | 0954 0.657 | 0.967 0.845 | 0.953 0.716

Table 5.4: FGADR — IDRID: Semantic segmentation performance on IDRID (target
domain). Models are trained with labeled data on FGADR and increasingly labeled data
in the target domain from 0 — 100%. Red indicates the best results for settings using
0% labeled data from target domain in the training step. stands for settings using
40% — 60% labeled data in target domain but outperform at least one of baselines trained
with 100% data. Bold are the best values in all methods.

Results on IDRID — FGADR: In table 5.3, we report the results for different settings
on FGADR segmentation test set. These models are trained using the labeled data from
IDRID training dataset and unlabeled data from FGADR dataset. We can observe that the
settings without any domain adaptation S-Net performed poorly during the inference on
FGADR domain. The AUC-PR scores for all of the lesion classes are below 0.3. Direct
entropy minimization method (S-Net + Entropy) has significant improvement in
both the metrics with respect to S-Net. Introducing Adversarial network for entropy
minimization (S-Net + AD-Net) hasimproved the AUC-ROC and AUC-PR scores by
12% and 15.3%, respectively, averaged over all four lesion classes. The best results among
our domain adaptive settings with 0% labeles data in target domain are highlighted in
red colour. In short, we achieved the best results for all of the lesion classes when both
adversarial entropy minimization and Wasserstein domain critic model are considered
together.

Plots in figure 5.2 compare the improvement in AUC-PR scores on the lesion classes of
FGADR segmentation test set for different domain adaptation settings. In summary, we
observe that all of our domain adaptive settings contribute for significantly improving
performance over non-adaptive settings S—-Net. Besides, it can be seen in figure 5.3
that the training and validation loss curves of all lesion classes for the setting S-Net
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+ AD-Net + W-Net using 0% labeled data from the FGADR monotonously decline,
confirming the stability in the learning process.

We also compare our method with several baselines trained directly on the target domain
FGADR using 100% training labels. In table 5.3, the baselines we considered are Fully
convolutional segmentation (FCN-8s) [130], Deep Lap model (DLV3+)[131], U-shaped
models (U-Net) [15], and Attention U-Net [132]). The results for those baselines are taken
from [8]. For a detailed comparison, we trained our domain adaptive model along with
different percentages of labeled data from target domain. Results in green indicate the
settings where we surpassed one or more baselines while using 40% — 60% labeled data.
Results in bold indicate the best scores in all settings. In general, we observe that, for
all of the lesion classes, by using only 40% — 60% of labeled data in the target domain,
we are able to outperform more than one baselines and with 80% — 100% labeled data,
we derive better AUC-ROC and AUC-PR scores compared with other methods in most
cases. For instance, we gained 1.6%, 0.5%, 0.6% and 0.4% AUC-ROC score improvement
on MA, HE, EX, and SE lesion classes respectively. The AUC-PR scores also improved
for MA, EX and SE by 2.7%, 0.8% and 1.2% respectively. Figure 5.4 illustrates qualitative
comparisons of lesion map predictions between S—Net settings and our proposed multi-
lesion segmentation model trained with domain adaption constraints S-Net + AD-Net
+ W-Net.

FGADR-segmentation test set

HE EX SE

Lesions

— Nt
= S-Net+entropy
0.5 == SnNet+AD-Net
== SNet+AD-Net+W-Net

0.0
MA

Figure 5.2: Comparison of our different domain adaption approaches for lesion segmen-
tation on four types of lesions. Results are evaluated on the setting IDRID — FGADR
with 0% in target domain.
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Results on FGADR — IDRID: Table 5.4 shows the results on four lesion classes on
IDRID-segmentation test set where the segmentation model is trained using the labeled
data from FGADR-segmentation set and unlabeled images from IDRID-segmentation train-
ing dataset. For different domain adaptation settings, we discover similar trends as the
IDRID — FGADR case. In particular, we compare our method with various baselines
trained with 100% labeled instances in the target domain (IDRID). These baselines in-
clude adversarial learning based segmentation networks Adv. HEDNet [101], AdvSeg [11]
and semi-supervised collaborative learning networks ASDNet and CoLL [38]. With 0%
of label data, the configuration S-Net + AD-Net + W-Net already has comparable
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performance with the first baseline Adv. HEDNet. When using 40% labeled data, we
are able to outperform most of competitive baselines in both AUC-ROC and AUC-PR
metrics. This shows that, the proposed lesion generator model can be fine-tuned with
minimal annotation data while still attains good performance in the target domain.
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Figure 5.3: Training and validation loss curves for our domain adaptive lesion segmen-
tation models. Results are on the setting IDRID — FGADR with 0% labeled data in the
target domain. It can be seen that all training and validation curves tend to converge to
stable points given more training steps.

5.5 Performance of Diabetic Grading Tasks with Attentive
Lesion Information

5.5.1 Influence of Attention Mechanism on Grading Networks

We evaluated the effectiveness of predicted lesion segmentation maps in disease grading
classification tasks. Our evaluation is on two types of vision related foundation models:
CNN-based architecture and Vision Transformer-based architecture. We conducted
experiments with the following settings.

1. G-Net: In this baseline, we directly train the disease grading classification network
using retina fundus images and their associated disease grading labels using the
classification loss L., in equation (4.24). In this step only G-Net is trained and
no‘attention functionality is used, therefore, we do not use any lesion information
in the training process.
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(a) Microaneurysms (MA) (b) Haemorrhages (HE)

Hard Exudates Without DA With DA Ground-truth Soft Exudates Without DA With DA Ground-truth

.

(c) Hard Exudates (EX) (d) Soft Exudates (SE)

Figure 5.4: Qualitative multi-lesion segmentation results for four different lesion classes.
Comparison of lesion maps predicted by the segmentation models trained without (with)
Domain Adaption (DA) S-Net (S-Net + AD-Net + W-Net).

2. G-Net + Attention (low-level): We integrate an attention model Att-Net
to highlight generated lesion features in the training process of the grading network
G-Net. The attention mechanism we integrated here is on structural feature level
of the grading network described in section 4.3.1. Here, the G-Net and Att-Net are
jointly trained using equation (4.28).

3. G-Net + Attention (high-level): In thissetting, we integrate the attention
mechanism for lesion features following our high-level concept described in section
4.3.1.2. Unlike the previous low-level concept, this attention constrain is more
intuitive where the normalized class activation maps are directly compared with
the lesion feature maps to compute the attention overlapping loss Loyeriap in
equation (4.33). The G-Net and Att-Net then are jointly trained for classification.

4. G-Net + Attention (two-level): We combine both of the proposed low-
level and high-level attention concept in the training process of the disease grading
network G-Net. This is our final proposed method for the lesion attentive DR
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grading model. The G-Net and Att-Net are jointly optimized using the equation

(4.35).
Datasets IDRID EyePACS FGADR
Methods Accuracy Kappa | Accuracy Kappa | Accuracy Kappa
G-Net (ResNet-50) 0.823 0.844 0.836 0.819 0.807 0.751

G-Net + Attention (low-level) 0.897 0.904 0.881 0.867 0.860 0.852
G-Net + Attention (high-level) 0.859 0.873 0.862 0.849 0.839 0.827
G-Net + Attention (two-level) 0.904 0.911 0.895 0.883 0.872 0.861

Table 5.5: Performance of the proposed attention mechanisms on the CNN-based ar-
chitecture (ResNet-50). Results are evaluated on three datasets IDRID, EyePACS, and
FGADR.

Datasets IDRID EyePACS FGADR
Methods Accuracy Kappa | Accuracy Kappa | Accuracy Kappa
G-Net (MIL-VIT) 0.780 0.824 0.755 0.791 0.751 0.781
G-Net + Attention (high-level) 0.822 0.841 0.819 0.849 0.797 0.826

Table 5.6: Performance of the proposed attention mechanisms on the Vision Transformer
architecture (MIL-VIT). Results are evaluated on three datasets IDRID, EyePACS, and
FGADR . Because MIL-VIT already integrated attentions at the feature-level, we only
extend it with the high-level case.

Datasets IDRID EyePACS FGADR
Methods Accuracy Kappa | Accuracy Kappa | Accuracy Kappa
JCS [48] - - 0.886 0.877 0.856 0.842
AFN-Net [8] - - 0.861 0.856 0.836 0.784
CoLL [38] 0.913 0.904 0.891 0.872 0.86 0.848
G-Net (MIL-ViT) + Attention 0.822 0.841 0.819 0.849 0.797 0.826
G-Net (ResNet-50) + Attention 0.904 0.911 0.895 0.883 0.872 0.861

Table 5.7: Comparison of our lesion attentive disease grading models with other state-of-
the-art baselines. These baseline methods are also used lesion information in solving the
DR grading task.

For the CNN-based architecture, we evaluated all four of our proposed settings using
ResNet-50 for the G-Net model. For transformer-based architecture, we considered multi-
head vision transformer (MIL-Vit) [117] as G-Net. Transformer models are inherently built
on attention modules at the structural level (low-level); therefore, we only test G-Net
and G-Net + Attention (high-level) methods for the transformer architecture.

We tested our approach on three publicly available datasets including IDRID, EyePACS
and FGADR DR grading datasets. Table 5.5 and 5.6 present the evaluation results
for different settings on these datasets for CNN-based and Transformer-based models
respectively. For CNN-based models in table 5.5, we observe that both low-level and
high-level attention mechanisms improved the performance for the original classification
network G-Net. Integrating low-level attention with grading network in settings G-Net
+ Attention (low-level), we could increase in Kappa scores by 6%, 5% and 10%
for IDRID, EyePACS and FGADR datasets respectively. For the G-Net + Attention
(high-level), the kappa scores are improved by 3%, 3% and 7% respectively. We
also gained best performance (in bold) for each of the datasets when combining both
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Figure 5.5: Illustration training and validation classification accuracy and kappa measure-
ment for our proposed lesion attentive grading network G-Net + Attention (two
levels). Plots in the top row (a) and (b) are the accuracy and kappa score curve in
FGADR dataset. Plots in the bottom row (c) and (d) are results in EyePACS dataset.
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low-level and high-level attention mechanisms for the setting G-Net + Attention
(two-level). Figure 5.5 describes the comparison between training and validation
accuracy in terms of kappa scores for the FGADR and EyePACS data. We can see that the
networks tend to achieve higher performance given more epochs.

Table 5.6 presents the results for transformer-based model. We can see that, integrating
high level attention mechanism with G-Net has improved both classification accuracy
and kappa scores for all three grading datasets. In table 5.7, we compared our best
lesion attentive disease grading models (one each for CNN-based and Transformer-
based methods) with some competitive baselines. Those methods includes, JCS ([48]),
Denoising Attention Fusion Network (AFN-Net) [8]) and Collaborative DR grading
(CoLL) [38]. Results of our CNN-based attention model G-Net (CNN) + Attention
on IDRID is comparable with the other baselines. For EyePACS and FGADR dataset, we
outperform other methods by around 2% in accuracy and kappa scores.

5.5.2 DR Grading Prediction with Explainable Property

Our aim is to construct an explainable intelligent decision support system for diabetic
retinopathy diagnosis. In the inference step, along with the predicted class output, we
compute the class activation map (CAM) for the input image. CAM highlights the
discriminative regions for the predicted class based on which the deep neural model
has taken its decision. For DR grading tasks, different lesion regions observed in retinal
fundus image are the key clinical factors to diagnose the patient disease progression
to a particular grading class. The explanation decision of a model for it predictions
is required to be consistent with the human expert reasoning. In terms of diabetic
retinopathy diagnosis, class activation map (CAM) for the predicted grading class should
be able to highlight relevant lesion regions. Figure 5.6 illustrates an example of the
explainable prediction in our system. For a given fundus image, our domain invariant
lesion generator model S-Net predicts lesion maps for four different lesion classes (figure
5.6(j) to 5.6(1)). Then the attention-based grading model G-Net provides the disease
grade and its decision explanation in the form of class activation map (figure 5.6 (b)).
By comparing the CAM region with the predicted lesion positions, we can compare the
quality of the model explanation. Intuitively, the overlapping rate of CAM on lesion
maps and input images can provide explanation properties to the experts about the
network’s decisions (figure 5.6 (c) and 5.6 (d)).

In figure 5.7 we qualitatively compare the explanation results between the grading model
that is trained only using classification loss in G-Net settings and our proposed attention
based grading model that incorporate both low-level and high-level attention concepts in
settings G-Net (CNN) + Attention (two-level). For some typical images and
their lesion maps, we discover that our attention-based grading (figure 5.7 (d)) was able
to capture almost all the important lesion regions whereas G-Net (figure 5.7 (c)) failed
to capture these lesion regions and considered some irrelevant positions as the class
discriminating mapping. In opposite, even some tiny lesion regions are also considered
in the prediction decision of our grading model.

5.6 Performance of Trained System using User Feedback

To assess the consistency and robustness of our proposed architecture, we considered
evaluating the performance of our models given user feedback. In real world deploy-
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(a) original image (b) CAM - grade-3 (c) CAM + lesion (union) (d) CAM + lesion + image
(e) CAM + MA (f) CAM + HE (g) CAM + EX (h) CAM + SE
(i) Microaneurysms (j) Haemorrhages (k) Hard Exudates (1) Soft Exudates

Figure 5.6: Input and outputs of our proposed intelligent diagnosis system for diabetic
retinopathy (DR) disease. For an input retina fundus image (a), our domain invariant
lesion generator generates the lesion maps for four lesion classes (the bottom row). In
the top row, our network provides a (b) class activation map (CAM) for the predicted
class (grade-3) (c) the overlap of CAM with the union of the predicted lesion maps, and
(d) overlapping of CAM and union of predicted lesion maps on the original input image.
In the second row, the CAM overlap with each of the lesion maps.
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(a) original image (b) lesion masks union  (c) GradCAM overlap (d) GradCAM overlap
without lesion attention ~ with lesion attention

Figure 5.7: Comparison on explainability of the disease classification model trained with
and without lesion attention. (a) original inputs, (b) union of ground-truth lesion maps,
(c) overlapping of class activation map (CAM) of the predicted grading class with the
(a) and (b) for G-Net trained without lesion attention model Att-Net, (d) overlapping of
class activation map (CAM) of the predicted grading class with the (a) and (b) for G-Net
trained with lesion attention model Att-Net. We can observe that CAMs in column (d)
overlaps with most of the lesion regions.
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Standard Training Data (70%) Valid (10%) Testing (20%)
Scheme
Our IML Stage 0: 50% data ‘ Valid (10%) Testing (20%)
Simulation
User Feedback
Stage 1: 50% data ‘ 10% Valid (10%) Testing (20%)
Stage 2: 50% data ‘ 20% ‘ Valid (10%) Testing (20%)
Stage 1: 50% data ‘ 30% ‘ Valid (10%) Testing (20%)
Stage : 50% data ‘ 40% Valid (10%) Testing (20%)
Stage : 50% data ‘ 50% ‘ Valid (10%) Testing (20%)

Figure 5.8: Illustration of user-feedback simulation on slices of data. In a standard
scheme, traditional data split strategy is followed. In our interactive simulation case, we
initially split the training data into two equal parts, and used one part of the split (50% of
training data) to train our proposed attention-based grading model. For the remaining
part of 50% training data, it is further split into five equal slices, serving for increasingly
data feedback. After each time getting data feedback, the model is fine-tuned using both
initial data and new ones. The performance of a new model then is evaluated on the
hold-out testing set.

ment, inference for given input by the intelligent system can be validated and verified
by domain experts. Within an interactive framework, given an input image, ophthal-
mologists can validate predicted lesion feature maps and grading class outputs. Using
interactive input devices, they can provide feedback on these predictions. For example, if
the predicted lesion maps have false positive or false negative regions, they can highlight
the region and upon verification, these lesion maps can be used to further fine-tune
our intelligent diagnosis system. As discussed in section 4.4.2, we can use these expert
annotations directly to improve the performance of our lesion attentive grading model.
In order to evaluate the effect expert’s validation and feedback process on our learning
system, we conducted experiments by simulating user-feedback action. For this, we used
FGADR dataset to simulate user feedback because this dataset has both annotations for
lesion maps and grading tasks.

In figure 5.8, we illustrate our data split approach for user-feedback simulation. The
original training data is divided into two equal splits. The disease grading model G-Net
in beginning is trained using a half of training data and their lesion masks predicted
by S-Net. The rest of training data is divided into five parts serving as increasingly
data collected from users. After each update, a new model will be tested again on the
fixed hold-out test set to justify performance. In our setting, instead of directly utilizing
ground-truth samples as user feedback, we assumed that these data contain a certain
noise level. This assumption makes sense in practice as we cannot guarantee accurate
annotations from the user in all cases. Therefore, we simulated this scenario by applying
some morphological operations on the ground-truth data and used them in the fine-
tuning step. Specifically we randomly applied erosion and ditaion operations for the
lesion maps with a kernel size 15. Figure 5.9 demonstrates the effect of these operations
on a ground-truth lesion mask.
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(a) original (b) dilation (c) erosion

Figure 5.9: Illustration of noisy user-feedback on lesion features maps. We simulate
the user behaviour to evaluate the robustness of our method by randomly performing
dilation and erosion on original lesion masks and training models using these perturbed
data. The examples are (a) original segmentation map, (b) lesion map after performing
dilation, and (c) lesion map after erosion morphological operations using kernel size 15.

Table 5.8 presents our obtained results on FGADR data for the DR classifier network
with rising user feedback data. The visualizations for these results are also illustrated
in figure 5.10. At each stage, 10% of additional simulated user-feedback data is used
to fine-tune a current stage of the grading network. We report both classification and
explanation scores in our experiments, where the explanation score is computed based
on the overlapping between the network’s heatmap regions and detected lesion positions
using the Jaccard similarly [133]. Table 5.8 demonstrates to us a trend of improvement
in both classification and explanation scores given enlarged user-feedback data. For
example, with 30% or more response data, we achieved comparable scores against the
other competitive baselines discussed previously. In summary, these tests validate the
effectiveness of our approach in terms of Interactive Machine Learning (IML) and exhibit
further improvement is possible if more data from users are provided with minimal
annotations.

Method % direct user feedback | Accuracy Kappa | Explanation
0% 0.773 0.781 0.272
10% 0.786 0.801 0.295
. 20% 0.822 0.838 0.331
G-Net + Attention 30% 0.841  0.853 0.363
40% 0.850 0.863 0.366
50% 0.855 0.866 0.387

Table 5.8: Performance of our framework utilizing increasingly user-feedback. We itera-
tively fine-tune the model using simulated user-feedback. Experiments are conducted
on FGADR dataset.
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Figure 5.10: Visualizing performance of our framework utilizing increasingly user-
feedback computed by (a) accuracy and kappa metrics and (b) explanation scores. Exper-
iments are conducted on FGADR dataset.



Chapter 6
Discussion and Future Works

6.1 Discussion

This thesis provides a unified system for diabetic retinopathy (DR) grading task, which
simultaneously learns to predict the disease grading and important lesion features. Moti-
vated by ophthalmologists’ clinical behavior in identifying DR disease, we incorporate
lesion characteristics into the learning process of our disease grade prediction neural
model. Experiments revealed that this framework significantly improves baseline perfor-
mance and outperforms other competitive benchmarks. Generally, our method has the
following strengths:

e First, given each retina fundus image as an input, the feature generator network
automatically detects different types of lesions across domains while using only
annotations in the source domain and unlabeled data in the target domain. We
highlight that this feature is precious in practice since it allows for the rapid de-
ployment of applications in new datasets without the need for extensive pixel-level
annotation, which is often expensive and time-consuming to prepare. Technically,
we built the feature generator network using innovative transfer learning algo-
rithms and then restricted the feature representations to be domain-invariant using
strategies from adversarial learning and the Wasserstein distance.

* Second, our attention network, which identifies and exploits the most significant
lesion locations during grading network learning, performs at both low-level and
high-level concepts. While the low-level concept considers merging latent embed-
ding features of lesion and grading tasks and is trained to improve performance,
the high-level idea in the other direction is based on explainable principles. The
beyond hypothesis is that by observing the association between class activation
mapping of grading network with detected lesion positions, the expert can inspect
and uncover insight reasons to validate the network’s predictions. In the experi-
ment, we discovered that both attention components lead to improved accuracy
and provide end-users with explainable attributes. Furthermore, we demonstrated
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that these attention methods could be generalized to both CNN and Transformer
neural architectures.

¢ Finally, the user role is taken into account during the method development process.
We equip attention methods that make annotation progress more comfortable for
users and make neural networks more robust in the presence of noise in new data.
The empirical experiments validate this property; thereby, trained systems progres-
sively improve their prediction given weakly supervised annotations created by
users. Furthermore, the model also offers a variety of outputs to the user, such as
DR Grading prediction, lesion positions, heatmap activation of the network, and
especially showing the overlapping between these regions, serving as interpretative
property in our system.

6.2 Future Works

In future works, we consider the following problems for further investigations:

¢ Even though our approach has integrated lesion information for the DR Grad-
ing task, there is still another medical criterion that can be utilized to improve
performance. For instance, extensive characteristics of the lesion regions such as
geometry, area, radius, or the degree of occurrence of different types of lesions,
are other essential factors that need to formulate during the learning strategies.
However, expressing such constraints is not straightforward since most of them
are not differentiable, making end-to-end learning unfeasible. Fortunately, recent
advances in machine learning subjects like discrete optimization [134], geometric
deep learning [135, 136], and physic-informed machine learning [137] may offer us
viable methods for incorporating these restrictions. For that reason, we believe that
expanding our suggested method in those directions is worth investigating.

¢ The lack of training data is a primary obstacle that hinders the robustness and
generalizability of a trained deep network. While we proposed techniques based
on transfer learning and domain adaptation to alleviate these challenges, having
a powerful pre-trained model is still in high demand. Currently, self-supervised
learning methods trained on large-scale unlabeled data, namely the foundation
model, have succeeded in various downstream tasks in natural language processing
with well-known models such as BERT [64], DALL-E [138], and GPT-3 [139]. This
raises the question of whether foundation models trained on large-scale medical
datasets can bring similar performance for downstream medical tasks. In our
setting, given such a foundation model, we expect to advance accuracy for neural
networks in both lesion generator and DR Grading tasks, yielding increasing the
performance of the whole system and reducing user efforts in preparing data
annotations.

* This study organized experiments to confirm that the proposed method grows
accuracy over time when provided user feedback in weakly-supervised forms.
However, because these results are simulated in the computer system, they may not
cover all real scenarios in practice. This encourages us to build a real intelligent user
interface and deploy it for real-world applications. Such a system when operating
in practice requires overcoming various barriers. For example, developing a user-
friendly and intuitive Ul/UX system so that experts easily engage with and provide
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feedback to systems. When experts are in the annotation step, equipping computer-
aided detection (CAD) [140] to discover and recommend similar marked locations
to users is also necessary to save time and accelerate the progress. Finally, when
there is a large amount of data feedback accessible, it poses concerns about learning
for new instances while not forgetting past samples. Such questions are active topic
research in continual learning and active learning, which is also a future direction

for investigation.
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