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Abstract

Diabetic Retinopathy (DR) is a complication of diabetes, that leads to blindness if left
untreated. Since DR is detectable on easily accessible imaging techniques, many Ma-
chine Learning models, especially Deep Learning (DL) models, have been developed
in order to classify DR or segment eye scans. Most of them, do not make use of ad-
vanced pre-processing, although literature suggests performance improvements using
pre-processing. Furthermore, pre-processing might improve generalisability, which can
be especially beneficial for human-in-the-loop models. In this work, I evaluated the
impact of the following pre-processing methods on three DL models: Contrast Limited
Adaptive Histogram Equalization (CLAHE), Non-local Means Denoising (NLMeans)
and Real-ESRGAN. Additionally, I evaluated a combination of CLAHE with NLMeans
and Real-ESRGAN, respectively. I evaluated three specific DL models of which two were
classification models and one was a segmentation model. The classification models were
a general architecture, ResNet-50, and an architecture specifically designed for DR classi-
fication, OpticNet-71. The segmentation model was U-Net++. The results of my work
show, that CLAHE improved the performance of all three DL models in comparison to
the training on raw data. It especially improved sensitivity for under represented classes,
which is very important for a medical setting, where data of unhealthy patients will
be rare. For the more general architecture ResNet-50, all other pre-processing methods
improved the performance significantly. However, for U-Net++ and OpticNet-71 those
techniques performed similar to the raw data.

It is left to show how CLAHE helps generalisability of these models, although its perfor-
mance boost already makes it a desirable pre-processing step in the classification and
segmentation of OCT data.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Machine Learning in Medical Diagnosis

There has been a trend, where Machine Learning (ML) experts are building automatic
end-to-end systems for the diagnosis of diseases from medical scans. With the ongoing
Covid-19 pandemic the need for these ML systems has gotten more attention. However,
ML in the medical field often suffers from noisy data, which might be due to poor
equipment or bad data acquisition by medical staff. Moreover, medical staff does not
necessarily need perfect data for their diagnosis, because they can still make sense of
even noisy data. However, ML systems are not inherently capable of that and, therefore,
pre-processing is needed to remove noise as much as possible. Pre-processing is the
preparation, modification or selection of data before training a model or analyzing the
data. In general, pre-processing can enhance the quality or performance of models
that are being trained on the pre-processed data [22, 6, 50]. Specifically in medical
imaging and biological computing, literature suggests that pre-processing can improve
the performance of Machine Learning models [8, 31, 15]. This shows that pre-processing
is very important for automatic diagnosis of diseases using ML systems.

One of the most common diseases nowadays is diabetes. As of 2019, 463 million people
are suffering from diabetes, which makes up almost 9% of the world population [1].
Diabetes affects patients in many ways, one of which is Diabetic Retinopathy (DR). High
blood sugar levels lead to damages of vessels in the retina of patients. These damages
can include fibrosis or neovascularization, which unavoidably lead to blindness if left
untreated.

1.1.2 Diabetic Retinopathy

DR imposes a great risk to the vision of many patients. If it is left untreated, DR will
evolve into an irreversible stage which will lead to blindness. However, DR in its early



stage is treatable and early detection of DR is crucial in order to save a patients vision.
This early stage of DR is called non-proliferative DR (NPDR). It is the first of two stages
and is caused by diabetic microvascular abnormalities leading to focal ischemia (Impaired
blood flow in the retina) [2]. NPDR has several symptoms including Microaneurysms
(MA), Dot blot hemorrhages (DBH), Hard Exudates (HE), Cotton Wool Spots (CWS) and
Venous Beading (VB). Figure 1.1 shows the mentioned symptoms on fundus images
and a description on how they evolve. Although these symptoms can impact vision
negatively, they do not lead to blindness and can be treated.

However, in the second stage of DR, pro-liferative DR (PDR), which evolves from NPDR,
if the ischemia is severe and longstanding enough, patients can lose their vision. This
is due to neovascularization, the growth of new blood vessels. Neovascularization
damages and occludes the retina and, hence, leads to irreversible blindness [2]. Figure
1.2 shows the symptoms of PDR, which include Neovascularization of the disc, iris or
elsewhere, and preretinal and vitreous hemorrhage as well as fibrosis. Additionally,
diabetic macular edema (DME) can occur at any point during DR [2]. DME describes the
build up of intraretinal fluids in the macula, the center of the eye, and leads to impaired
vision [4]. However, just as NPDR symptoms DME can be treated.

As we have seen, DR comes with many symptoms and to assess the severity of DR one
can use the International Clinical Diabetic Retinopathy Severity Scale (ICDRSS). The
ICDRSS is defined as a five stage severity scale, whereas the first stage is "no disease",
the following three stages are phases of NPDR ranging from mild to severe and the last
stage is PDR [13]. One can see these stages and their corresponding symptoms in Table
1.1. This scale is important for the classification of retinal scans and, hence, a desirable
label for datasets in machine learning. Unfortunately, it only applies to fundus images
(a type of retinal scan that will be explained in later sections) and, hence, is not fit for
all datasets. However, a classification into NPDR and PDR is always possible given the
symptoms mentioned before.

In general, DR is not curable [2] but can be treated to avoid PDR and enable normal vision
for patients. According to Tapp et al. [48], at least 90% of new cases of severe DR could be
reduced with early diagnosis and early treatment. Therefore, many automatic diagnosis
systems have been developed to identify and classify DR. However, classification is
often not enough, as ophthalmologists need to know the location of symptoms such as
microvascular abnormalities. Therefore, there is also a need for segmentation models.
Furthermore, segmentation models allow for more interpretable results in classification,
as doctors can see the segmented layers and intraretinal fluids.

1.2 Goal

As mentioned before, pre-processing is expected to have a major impact on DL models
especially in a medical setting. However, DL models in DR classification from OCT
scans often do not use major pre-processing. Therefore, the goal of this work is to
evaluate the impact of some of the most commonly used pre-processing methods that
proved useful in related fields. The models trained in this thesis can then be used for an
human-in-the-loop model.



Microaneurysms (MAs)
These are the first sign of diabetic retinopathy. Weakening of capillary walls results in small vessel
aneurysms with distinct margins (no larger than largest retinal vessel). They may be hard to find

clinically but they really light up on FA.

Dot blot hemorrhages (DBHs)
When MA's rupture, they can create medium sized round hemorrhages that are dot, blot, or flame
shaped. These are larger than MAs with indistinct margins. These are blocking on FA (appear as dark

splotches). A clear sign of moderate DR.

Hard exudates (HEs)
Active or resolved macular edema (intraretinal fluid) can leave behind distinct white/yellow cholesterol
deposits, as absorption of the edema (fluid) occurs faster than absorption of the high molecular weight

substances like cholesterol.

Cotton Wool Spots (CWS)
Also known as soft exudates, these are white and feathery, and are infarcts within the retinal nerve fiber

layer.

Venous beading (VB) - Left circle on image

This is a late stage finding in nonproliferative diabetic retinopathy and represents weakened walls of
major retinal vessels. This is one of the strongest predictors for progression to proliferative diabetic
retinopathy (PDR) Intraretinal microvascular abnormality (IRMA) — Right circle on image
These are small abnormally shaped blood vessels that shunt blood from arterioles to venules. They

characteristically do not leak on FA, unlike neovascularization elsewhere (NVE).

Figure 1.1: Symptoms of NPDR [2].




1. Neovascularization of the disc (NVD): Refers to neovascularization at the optic disc

2. Neovascularization elsewhere (NVE): Refers to neovascularization in other areas of the retina

including the macula or in the periphery

3. Neovascularization of the iris (NVI): Refers to neovascularization occurring in the iris

4. Preretinal hemorrhage: Blood trapped in a potential space between the posterior hyaloid and the

internal limiting membrane, appears as a “boat-shaped hemorrhage™

5. Vitreous hemorrhage: Appears as a red haze of hemorrhage directly into the vitreous. You may
see a faint glow of the white optic nerve. Vitreous hemorrhage ranges from mild inferior vitreous
blood to dense blood with no view. Blood becomes dehemoglobinized over time and will eventually

turn white.

6. Fibrosis over the retina happens most commonly over the optic nerve and the vascular arcades.

Figure 1.2: Symptoms of PDR [2].




| Severity Level | Observable Findings

No apparent DR | No abnormalities

Mild NPDR Only Microaneurysms

Moderate NPDR | More than mild but less than severe NPDR
Severe NPDR Any of the following:

- More than 20 intraretinal hemorrhages in 4 quadrants
- Definite venous beading in 2+ quadrants
- Prominent IRMA in 1+ quadrant

And no sign of PDR

PDR One or more of the following;:

- Neovascularization

- Vitreous/preretinal hemorrhage

Table 1.1: Levels of DR severity according to ICDRSS [13]. IRMA = intra-retinal microvas-
cular abnormalities



Chapter 2
Related Work

2.1 Problems in OCT Classification

Optical Coherence Tomography (OCT) is a cross-section image of the retinal layers ac-
quired using the reflection properties of tissues on near-infrared light [10]. These images
are prone to noise which is caused by secondary reflections or other light sources. This
type of noise is called speckle noise and is present in almost all medical ultrasound or
coherence tomography images [45]. Speckle noise often results in coarse edges, which
are disadvantageous for any edge detection or segmentation algorithm. This shows that
there is a need for pre-processing methods that get rid of this type of noise.

Moreover, there is another problem present in the classification, detection and segmenta-
tion of OCT images. In 2018, the Deep Mind Team around author De Fauw published
a paper in nature about a two-step-classification network, in which OCTs will first be
segmented and, second, be classified by two different network [17]. This approach
reportedly outperformed four retina specialists and four optometrists and, hence, shows
how powerful DL can be in this field. The authors claim that by using two separate steps,
they can also leverage generalisability problems by only re-training the segmentation
network on new data. However, in their work they also demonstrate, how vulnerable
DL architectures are towards data inconsistencies by testing their architecture on a new
data set acquired from a new device type. Their original segmentation network had a
46.6% total error rate on the new data set, which is unusable for a real world application,
especially in the field of medical diagnosis. Only by re-training the segmentation network
they could achieve similar performance as before. This problem is called domain shift
problem. The domain shift problem describes the setting, where a network performs well
on one domain, in this case OCTs from one device, but performs poorly on a different
but related domain, e.g. OCTs from a different device. Nguyen et al. have found the
same problem, when classifying DR severity from fundus images [33]. They used a
self-supervised learning approach in order to learn domain adaptation to a new device.
Both of these approaches follow the domain adaptation approach. However, one could
also follow a domain generalization approach. Domain generalization is the setting,
where a model is trained on several, different but related domains and then tested on a



new unseen domain [51]. In this case, we can see this as training on OCTs from multiple
devices and then being able to generalize to a new device. Domain generalization can
be achieved by three different ways: Data manipulation, representation learning and
a proper learning strategy. The latter two focus on the way the networks learn by for
example using ensemble learning to generalize over multiple predictions. In fact, the
self-supervised learning network by Nguyen et al. also follows the learning strategy
approach for domain generalization. However, the data manipulation approach is only
concerned about the data, which is used for training and, hence, is model independent.
Zhou et al. claim that by manipulating the data before training through image transfor-
mations (pre-processing) one can achieve a better generalizing model [55]. However,
this approach is widely unused in DL. At most, data augmentation methods are being
used to artificially increase the amount of training data. Therefore, I propose that using
pre-processing techniques in order to get more representative data with more apparant
image features and less noise will help in developing more performant and more robust
DL models.

2.2 Pre-processing medical images

221 Contrast Limited Adaptive Histogram Equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE) is a pre-processing method,
which enhances the contrast of an image by redistributing the intensities of the image to
cover the whole range of intensity [41]. CLAHE is an advanced version of Histogram
Equalization (HE), which redistributes the intensity of pixels globally . However, CLAHE
looks at local patches of the image and redistributes their intensities locally. Additionally,
CLAHE clips any intensities that surpass a certain threshold and redistributes them to
lower intensities.

CLAHE in combination with median filtering has proven to be effective in boosting the
performance of models using fundus images [16, 42, 38, 28, 37], but to the best of my
knowledge has not been evaluated on OCT images yet. However, there has been a study
proving CLAHE to be one of the best contrast enhancement methods for OCTs [44].

A recent study of the research group around Paniagua et al. from 2021 [35], examined
the influence that CLAHE has on DL models for detecting Covid-19 from Lung X-Rays.
Their Pre-Processing pipeline consists of resizing the images for better computation
times, and then applying CLAHE or leaving the images as they are. They then trained
a DenseNet-121 [21] on both datasets and compared their performances. Additionally,
they trained a new architecture consisting of two separate models on raw input. The first
model being a U-Net [39], which was supposed to identify Regions of Interest (ROIs) for
the classification. The second model was also a DenseNet-121, which classified based
on the ROIs three different classes: Healthy, unhealthy with bacterial pneumonia and
unhealthy with viral pneumonia.

They evaluated their model on many different performance metrics and always em-
phasized on the importance of generalizability and robustness of their models. The
DenseNet trained on CLAHE images converged after 7 epochs, while their own architec-
ture with ROI segmentation trained on raw input converged after 9 epochs, speaking
for a computational performance improvement. A DenseNet trained on raw input only,
without segmentation converged much earlier, hence bringing doubts about the ROI-
Segmentation used. The differences between DenseNet trained on raw versus CLAHE
input are marginal as one can see in Table 2.1. Although the models perform exactly the



Metric Raw Input | CLAHE
Sensitivity 0.83 0.84
Specificity 0.91 0.90
Accuracy 0.88 0.88

F1 Score 0.87 0.87

Table 2.1: Results of evaluating DenseNet trained on raw and CLAHE pre-processed
lung x-rays [35]

Metric | Raw Input | CLAHE
Precision 0.86 0.91
Recall 0.73 0.81
Accuracy 0.73 0.87
F1 Score 0.67 0.84

Table 2.2: Results of evaluating a ResNet ensemble trained on raw and CLAHE pre-
processed CT scans [44]

same for most metrics, the sensitivity in the CLAHE model is better, which is a desirable
result in medical diagnosis, as false negatives are more of a danger towards patients
than false positives. Although the results of this work are not promising, they show one
interesting aspect, which is that using CLAHE might not improve performance but make
the models better for discovering a potential disease.

A different study from Sanagavarapu et al. from 2021 [43] also researched the impact
of CLAHE on DL models. However, they used CT scans instead of XRays and also
used a ResNet-20 ensemble [20] for training. They trained their models for a binary
classification between "healthy" and "unhealthy". Looking at Table 2.2 we can see that
the ResNet ensemble performs significantly better on CLAHE pre-processed data for
every metric. Additionally, they examined traditional machine learning methods such as
Random Forests on the impact of CLAHE and also found that CLAHE improves their
accuracy. Therefore, CLAHE seems to be a promising contrast enhancement method for
medical imaging and might improve DL models in OCT training as well.

2.2.2 Non-local Means Denoising

Non-local Means Denoising (NLMeans) is a method that removes noise from an image
by replacing each pixels color (or intensity) with the average color (or intensity) of the
most similar pixels. NLMeans does not use locality to compute those averages, hence
the name "non-local” [9]. According to Yang et al., NLMeans filtering helps in removing
speckle noise found in OCTs because of its properties of removing noise while preserving
edges [54].

As a noise reduction method NLMeans has already found use in classification of DR
as shown by Alban and Gilligan [7], which used NLMeans as a pre-processing step for
several different DL architectures.

In a recent work from 2019, Firdausy et al. [18] examined the impact different filter
strengths of NLMeans have on a machine learning model. More specifically, they applied
NLMeans with filter strengths 2 to 18 applied in steps of 2 to 45 fundus images and
evaluated their impact on a 2-dimensional Gaussian surface fitting approach for vessel



extraction in terms of the determination coefficient R?. Their results show that a filter
strength of 4 to 16 yield the best results as I reaches values of about 0.98. The best filter
strength was 12 as it yields a R? of 0.9862.

Nazaré et al. investigated the effect of different noise types, such as salt and pepper
noise or gaussian noise, applied to images and using NLMeans to restore those images
[32]. Moreover, they trained CNNs on both types of images and their results suggest
that introducing noise at training time improved the generalizability of those networks.
However, contrary to the results of Firdausy et al. restoring the images using NLMeans
lead to a decreased performance of the CNNs. The authors claim that this might be
caused by choosing the wrong parameters for NLMeans and, hence, over-smoothing the
images.

NLMeans seems to be a promising denoising technique for OCTs as it removes speckle
noise. However, the results of Nazaré et al. show that one needs to be careful in choosing
the right parameter for the filter strength in order to not remove important image features.

2.2.3 Generative Adversarial Networks

Recently, there has been a trend of using generative networks to produce synthetic new
data. This trend originated with the introduction of generative adversarial networks
(GANSs) by Goodfellow et al. in 2014 [19]. By using the adversarial play between a
generator model and a discriminator model, Goodfellow et al. were able to produce
realistic new synthetic data. Nowadays, many more types of GANs have been developed
with such realistic results, that a whole new field of cybersecurity has arisen, which deals
with the detection of so called deep fakes [14]. One purpose of GANSs is the restoration
and super-resolution of images. In this field, Real-ESRGAN (Enhanced Super Resolution
GAN) has been developed by Wang et al. [53]. This network removes noise of all types,
restores and refines edges and upsamples images to a higher resolution. Therefore, it
might be useful for the pre-processing of OCT images. However, it is usually not applied
to medical images and, hence, must be evaluated for this specific purpose.



Chapter 3
Implementation

3.1 Tech-Stack

The implementation of the whole project was done in Python, as it is the standard in
Data Science and Machine Learning.

In this work, many libraries or modules have been used but the following three were
able to provide functionality for the majority of the implementation.

¢ PyTorch, Version 1.10.2
¢ TensorFlow, GPU Version 2.8.0
¢ OpenCV, Version 4.5.3.56

PyTorch and TensorFlow are the standard libraries when it comes to DL and have also
been used for such purposes. OpenCV provides a wide range of image manipulation
algorithms and hence has been used for the majority of the pre-processing methods.
The following DL architectures and pre-processing method come from publicly accessible
GitHub repositories:

e Real-ESRGAN
¢ OpticNet-71
e U-Net++

The training was done on a remote machine located at DFKI Saarbriicken with the
specifications shown in Table 3.1.

10
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PC Part Specification
CPU Intel Core 19-10900K 10x3.7GHz
RAM 128GB DDR4-2666
GPU NVIDIA GeForce RTX 3090 24GB
Memory 2TB SSD + 10TB HDD
OS Windows 10 + Linux

Table 3.1: Specifications of the machine used for training.

3.2 Pre-Processing

In order to apply many different pre-processing methods, I decided to create a base class
called "Method". The code for this class looks as the following;:

class Method:
2 """Base class for Pre-Processing methods."""

def __init__(self , name, title):
4 self .name = name
5 self.title = title
6 pass
8 def process(self, img):

10 Applies the class intern pre—processing to an image
11 :param img: array or ndarray. Usually only works with grayscale images.
12 :return: pre—processed image.

14 return img

16 def get_description(self):

17 """ Returns a textual description of the method as a string.
18 Usually contains name and parameters of the method."""

19 return self. title

Listing 3.1: Implementation of Base Pre-Processing class

As one can see in the code above, every instance of "Method" is initialized with a name,
which is a string containing a abbreviation for the method and is used for creating file
paths belonging to this class, and also a title, which contains a short human readable
description of the method. Each class inheriting from Method has to implement "process”,
which represents the main functionality of each class. "process" takes an image array of
shape width times height, meaning it only takes one color channel or grayscale images
as input. The class also implements a method called "get_description”, which is used to
get a textual description of the method including parameter values. For example, one
can see the class for no pre-processing in the following:

1 class Raw(Method) :
2 def init__(self):

super (Raw, self).__init__("raw", "Raw Image")

def process(self, img):
6 return img

8 def get_description(self):
9 return "No preprocessing"

Listing 3.2: Implementation of No Pre-Processing class
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For some training it was necessary to implement additional functionality as the network
for example required resized images of a different size than what the implementations of
"Method" work with. Therefore I decided to introduce a "Helper" class, which inherites
from "Method" but takes an object of type "Method" as initialization argument. The
following code shows the "Helper" class for training OpticNet-71:

class OpticNetHelper (Method) :
def __init__(self , method: Method):
super (OpticNetHelper, self).__init__ (method.name, method. title)
self.method = method

def process(self, img):
new_img = img.astype(np.uint8)
new_img = self.method. process (new_img)
if len(new_img.shape) <= 2:
new_img = np.expand_dims(new_img, 2)
return new_img

Listing 3.3: Implementation of the OpticNet-71 Helper class

In its "process"” function there is some additional functionality which resizes the image
from shape (256, 256) to shape (256, 256, 1), because the implementation of OpticNet-71
expects this shape for its inputs.

3.2.1 Contrast Limited Adaptive Histogram Equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE) is a method which en-
hances contrast in an image. It is a more advanced version of Histogram Equalization
(HE). HE redistributes all pixel intensities such that they cover the whole range of in-
tensities [5]. This improves contrast in an image, when all pixel intensities are clustered
together. To apply HE, we have to define a probability function for a discrete grayscale
image X:

., number of pixels with intensity i

1
Px (@) total number of pixels (3-1)
We can now define the cumulative distribution function:
odfx (i) = > px(4) (3.2)
§=0

We now have to define a transformation of the pixel intensities, such that cdfx grows
linearly. For any cdf such a function exists because of the cdf’s properties and can be
easily computed. More specifically, if L denotes the maximum intensity, then by taking
the inverse of formula 3.3, we can get the desired transformation [5].

cdfy (i) =(i+ 1)K for0<i< L (3.3)

In Figure 3.2 one can see how HE changes an OCT. While the intensities are redistributed
in a way to cover the whole range of intensities, the retinal layers are too bright. This is
because these layers were already bright before HE was applied and afterwards will be
pushed even more to the maximum intensity. However, CLAHE looks at local patches of
the image and applies HE locally only [41]. This avoids that already bright parts of the
image get too bright, hence local contrast will be more prominent. Additionally, CLAHE
clips and redistributes intensity counts that surpass a certain threshold, the clip limit,
as it is illustrated in Figure 3.1 [41]. This avoids amplifying noise and leads to a more
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Figure 3.1: Illustration of the redistribution of pixel intensities that exceed the clip limit
in CLAHE [3].

evenly distributed histogram, as one can observe in Figure 3.2. Hence, CLAHE takes
two parameters, the clip limit and the size of the local patches or also called tile grid
size. Figure 3.3 shows the impact of changing the clip limit parameter. We have seen that
Sanagavarapu et al. used CLAHE for Lung CTs and achieved significant improvements,
hence i will be using the parameters they used, more specifically I will use a clip limit of
5 [43] and the standard tile grid size of 8 x 8.

For the implementation of CLAHE, I used the OpenCV framework. More specifically,
the class for CLAHE is shown in Listing 3.4.

class CLAHE(Method) :

def process(self, img):
clahe_obj = cv.createCLAHE(self.cliplimit, self.tilegridsize)
return clahe_obj.apply (img)

Listing 3.4: Implementation of CLAHE class

3.2.2 Non-local Means Denoising

Non-local Means Denoising (NLMeans) is another denoising method. However, NLMeans
does not look at the neighbourhood of a pixel in order to compute its new value. Instead
NLMeans replaces the target pixel’s intensity with an average of all other pixel weighted
by the similarity between their neighbourhood and the target pixel’s neighbourhood
[12]. More specifically, if ) is the area of an image and we have two points p and ¢ in the
image, then according to Buades [9] formula 3.4 describes the filtered value at point p for

a discrete image.
1

u(p) = W

) > v(@)f(p.q) (3.4)

qeN

In this formula C'(p) is a normalizing factor given by formula 3.5, while v(q) is the original
value and f(p, q) is the new value.

Cp)=>_ fp.q) (3.5)

qeN

For discrete images, formula 3.6, the gaussian weighting function, describes a possible
function for f, where h describes the filter strenght and B(p) is the local mean of pixels
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Figure 3.2: OCT image (top left), HE processed image (middle left) and CLAHE processed
image (bottom left) and their corresponding intensity histograms (right). One can clearly
see how HE leads to extreme brightness in the tissue area of the OCT.
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No preprocessing

cliplimit: 2 mit: 4 i fimit: 8

Figure 3.3: CLAHE with different clip limits applied to OCTs from Kermany2018 (upper
half) and AROI (lower half).
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surrounding p.
|B(a)=B(»)|?

fp,g) =e 2 (3.6)
Therefore NLMeans has two parameters, filter strength / and the size of the neighbour-
hood for B. NLMeans is supposed to remove noise while preserving edges because of
its non-locality [12]. In Figure 3.4 we can see NLMeans applied to an OCT with different
filter strengths.
For the implementation I used OpenCV again. The OpenCV implementation differenti-
ates between the size of the neighbourhood for the target pixel (template window size)
and the size of the neighbourhood that will be compared (search window size), hence
leaving us with three parameters. The class for NLMeans is shown in Listing 3.5. In
Figure 3.4 one can observe the impact the parameter h has on OCTs. The higher the
values for h the stronger the filter and the more blurred the image gets. However, edges
will be preserved in the image and mainly information inside the tissue will be lost.
Figure 3.5 shows different filter strengths applied to a multitude of images from both
datasets.

class NLMEANS(Method) :

def process(self, img):
return cv.fastNIMeansDenoising (img,
self.h,
self .templatewindowsize,
self.searchwindowsize)

Listing 3.5: Implementation of NLMeans class

3.2.3 Real-ESRGAN

Real-ESRGAN is a Generative Adversarial Network (GAN) based on the Enhanced Super
Resolution GAN (ESRGAN) architecture, which is trained with pure synthetic data [53].
This architecture is used to restore images and upscale them to a higher resolution. It
uses a U-Net architecture as a discriminator trained with spectral normalization which
increases discriminator capability and training stability [53]. Real-ESRGAN removes
noise and additionally provides sharper edges while upscaling images. Therefore this
method seems interesting as a Pre-Processing method for DR classification since Fundus
and especially OCT images are often noisy. Figure 3.6 shows that Real-ESRGAN in
fact seems to remove noise quite well. Additionally the image looks clearer as it is
four times higher resolution. However Real-ESRGAN upsamples parts of the image
and then stitches them back together. It can appear that one can see the edges of
upsampled parts. Additionally, I added methods that downsize the image before or
after the upsampling. This was needed as otherwise the segmentation masks would
not fit anymore. Furthermore, OCT and Fundus images often already come in high
resolution and upsampling them leads to ridiculously large images which are not fit for
DL. Hence, downsampling before can increase performance. Downsampling happens via
bilinear interpolation, which was implemented using OpenCV’s resize function. Since
Real-ESRGAN already does noise reduction and image upsampling, it might be fit to be
a complete pre-processing pipeline on its own and will therefore be evaluated as one.
The code for Real- ESRGAN comes from a publicly available repository owned by the
inventors of Real-ESRGAN. The Real-ESRGAN class is shown in Listing 3.6.
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No preprocessing

Figure 3.4: Original OCT image (top) and NLMeans filtered image with h = 8 (middle)
and h = 16 (bottom). One can clearly see how a stronger filter removes more noise.
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Figure 3.5: NLMeans with different filter strength h applied to OCTs from Kermany2018
(upper half) and AROI (lower half).
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class RealESRGAN (Method) :
def __init__(self , downsize_after=False, downsize_before=False, ...):
model = RRDBNet(...)

self .upsampler = RealESRGANer (...)
self .downsize_after = downsize_after
self .downsize_before = downsize_before

def process(self, img):
if self.downsize_after:
shape = (img.shape[1], img.shape[0])
if self.downsize_before:
img = cv.resize(img, (...)))
img, _ = self.upsampler.enhance(img, outscale=4)
return cv.resize (img, shape)
else:
if self.downsize_before:
img = cv.resize(img, (...)))
img, _ = self.upsampler.enhance(img, outscale=4)
return img

Listing 3.6: Implementation of Real-ESRGAN class

3.24 Combining Denoising and Contrast Enhancement

All methods shown so far, can only either enhance contrast or denoise the image. How-
ever, both are desirable. Therefore, a combination of denoising first and contrast en-
hancement second might be interesting to look at as well. This is why, additionally to
the already mentioned methods, I am also going to evaluate a combination of NLMeans
and CLAHE as shown in Figure 3.7, as well as a combination of Real-ESRGAN and
CLAHE as shown in Figure 3.8. However, the figures show that the combination does
not necessarily look better. For the NLMeans + CLAHE combination we can see that
we get a pattern in the background and especially for the already noisy OCTs of the
AROI dataset, we get seemingly noisier images after processing. Real-ESRGAN has a
similar effect. It produces blur spots in the background of the images which remind
of condensation spots on glass surfaces. However, it does not lead to the same noise
amplification in the AROI dataset as NLMeans + CLAHE seems to do. Although these
methods produces some background noise, the important part of the image, the retinal
layers are more clear and more contrastful.

3.3 Deep Learning Models

Many DL networks have been developed for image classification. In this work, I will look
at one general DL model and one DL model specifically developed for DR classification
on OCTs.
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Real-ESRGAN

No preprocessing

No preprocessing Real-ESRGAN

No preprocessing Real-ESRGAN

Figure 3.6: Real-ESRGAN with downsizing afterwards applied to OCTs from Ker-
many2018 (upper half) and AROI (lower half).
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No preprocessing Non-local Means + CLAHE

No preprocessing Non-local Means + CLAHE

No preprocessing

Figure 3.7: Combination of NLMeans and CLAHE applied to OCTs from Kermany2018
(upper half) and AROI (lower half).
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Real-ESRGAN + CLAHE

No preprocessing

No preprocessing Real-ESRGAN + CLAHE

No preprocessing Real-ESRGAN + CLAHE

Figure 3.8: Combination of Real-ESRGAN and CLAHE applied to OCTs from Ker-
many2018 (upper half) and AROI (lower half).
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3.3.1 ResNet-50

The introduction of Residual Networks (ResNets) in 2015 revolutionized the way neural
networks were build. ResNets introduced residual units or skip connections which
allowed the gradients to flow to shallower parts of the network and, hence, allowed
for deeper networks without heavy performance sacrifices [20]. The architecture of this
network is widely known, which is why I am not going to explain it in more detail here.
Figure 3.9 shows an overview of the ResNet-50 architecture and its building blocks. We
can see the residual skip connections in b) and c) of this figure. It is obvious to see how
these connections help to make gradient computations easier by allowing the gradients
to pass by a lot of convolutional layers. The number 50 in the name ResNet-50 refers to
the amount of layers in this architecture.

3.3.2 OpticNet-71

OpticNet-71 has specifically been designed for classifying DR from OCT images and
does so extremely efficient reaching near perfect accuracy of 99.8% for the Kermany2018
dataset [25, 26]. The architecture builds on a Deep Residual Convolutional Neural Net-
work (ResNets) and uses specific building blocks and residual units. Figure 3.10 part a)
shows these residual units and their structure. One can easily see the similarity to the
ResNet, where we have a skip connection from the input to just before the output of the
residual unit.

However, instead of having three convolutional layers, the middle layer has been re-
placed by an atrous and an atrous separable convolutional layer, which run in parallel
and take only half of the channels of the input signal each. Atrous or also called dilated
convolutions space out the pixels each convolution filter is looking at, such that the
looked at pixels are not neighbours of each other [36]. Separable convolutions separate
the convolution kernel into two smaller kernels of one dimension. This allows to learn
spatial features and depth-wise features separately and also decreases the computational
effort [24]. The authors claim that by using atrous and atrous separable convolutions,
the network produces more robust features, because it learns the spatial and depth-wise
feature maps entangled and separated [25].

These residual units are used inside a new proposed building block as seen in part b) of
Figure 3.10. The building blocks replace the identity blocks of the original ResNet [25].
One can see, that in those building blocks the input is passed into two branches. The
left branch contains a linear stack of the proposed residual units, while the right branch
contains a so called signal exhaustion followed by a sigmoid activation. The signal
exhaustion downsamples the input through a Max-pooling layer and then upsamples it
again using Bi-linear interpolation. This process is supposed to intrinsically exhaust the
signal and serves as another residual skip unit. We can also observe that both branches
will be multiplied before they are added. This is supposed to balance out the increase in
signal propagation before the addition [25]. The basic architecture shown in Figure 3.10
¢) follows the ResNet architecture.

As already mentioned, this model achieved near perfect accuracies for OCT datasets
without any major pre-processing. However, it is unclear, if the model generalizes well
for new data or if it could be even better with pre-processing. Moreover, testing pre-
processing on this model shows, wether or not it is necessary to actually pre-process
data, or, if having a highly adapted network architecture is sufficient.
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Figure 3.9: Overview of the ResNet-50 architecture. a) Stem block b) Block 1 in each
stage, also called convolution block. This block changes the dimensions of its input. c)
Block 2 in each stage, also called identity block. This block does not change its input’s
dimensions. d) Fully Connected (FC) Layer. Image taken from Wang et al., 2021 [52].
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Figure 3.10: Overview of the OpticNet-71 architecture by Shariff et al. [25]. a) shows
the proposed residual unit with the parallel atrous and atrous separable convolution
layers. b) shows the proposed building block, which replaces the original identity layers
and contains two branches, one for convolution via the residual units and one for signal
exhaustion. Part c) shows the overall architecture of the network, which corresponds to
the ResNet architecture.



26

Down-sampling
Up-sampling
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Convolution

Figure 3.11: High level overview of the UNet++ architecture. UNet++ is an encoder
decoder network which is connected through a series nested skip connections. These skip
connections are dense convolutional blocks (shown in green and blue). Moreover, these
connections only appear in UNet++ but not in UNet. Red indicates Deep Supervision.

3.3.3 UNet++

The UNet architecture has been introduced by Ronneberger et al. in 2015 and ever
since has been a very popular choice for training semantic segmentation and medical
segmentation models. In 2018 Zhou et al. introduced UNet++, which is an advanced
version of UNet. Therefore, it inherits the basic UNet architecture, which is consists
of a contracting, encoding path of convolutions and an expanding, decoding path of
up-convolutions, which are connected via skip connections. This basic architecture gives
it its "U" shape and, hence, its name[40]. Figure 3.11 shows an high level overview of
UNet++. In black is shown the basic UNet architecture. One can see that UNet++ does
not just use skip connections from the contracting path (or "backbone" in the figure) to
the expanding path, but it also introduces subnetworks inbetween both paths. Therefore,
UNet++ is a deeply supervised encoder-decoder network where encoder and decoder
sub-networks are connected via nested, dense skip pathways [56]. These skip pathways
are supposed to close the gap between the semantic feature maps of decoder and encoder.
The authors claim that similar feature maps make the learning process easier for the
optimizer of the network [56]. The network is also capable of using deep supervision.
Deep supervision refers to the model using "companion" losses at each hidden layer.
These losses will later be used to compute the final loss of the model and combat issues
like robustness and the vanishing gradients problem [29]. However, deep supervision
was not used in this thesis. Figure 3.11 gives a high level overview of U-Net++ and also
showcases the differences to the standard U-Net. UNet++ has been evaluated on several
medical image segmentations but to the best of my knowledge not yet on OCT images.
There exists an off-the-shelf implementation of UNet++, which can be adapted to OCT
data [58].
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3.4 Human-In-The-Loop Model

Pre-processing can also help in a different way as well. In our research group, Ophthalmo-
Al at the research department for Interactive Machine Learning at DFKI, we are currently
working on an annotation tool for OCTs. In general, annotation is very time intensive and,
hence, not many datasets will have large amounts of data with fine grained annotations.
In our annotation tool we want to include ML models, which help human experts
annotate data. This creates a loop of ML algorithm and human expert whereas both
profit off of each other. The algorithm profits off of more data, while the human profits
off of a smaller workload as well as a more accurate algorithm. It becomes obvious, that
a well generalising model will be of great value in such an annotation tool as it saves the
human expert time. Therefore, improving generalisability by pre-processing data does
not only improve the performance of the model but also allows for finer annotation in the
annotation tool. Figure 3.12 shows this human-in-the-loop model. We can see that new
unlabeled data coming from hospitals or doctors gets pre-processed before being fed to
the ML model. The ML model then predicts the annotation for this data, which will be
sent to the annotation tool. The annotation can either be a label or a segmentation. In
the annotation tool, the human experts see the new data as well as the given annotation
and, hence, only have to accept or refine the annotation. The annotated data is then
added to the training data of our model and the model can be retrained on the expanded
dataset. This concept basically implements incremental deep learning, where the model
is continuously trained as new data is being made available. Moreover, this approach
can be seen as an Active Learning approach, where the model presents a prediction
and asks for feedback from a user. This feedback is then incorporated into the model
making the model actively learning from the user. Furthermore, this approach might
help in mitigating bias towards automatic diagnosis systems in medicine as medical staff
regularly validate the models performance. This process would help in establishing trust
into these automatic diagnosis systems.

Moreover, pre-processing could help in making DL models easier to train on less data
by removing image artifacts and noise while making meaningful image features more
apparent. In this case, pre-processing can be used to enable One-Shot-Learning models,
which are trained on very few data. This would be desirable, as one could efficiently
train one model per image acquisition apparatus (eg. Optical Coherence Tomograph)
and, hence, eliminate data variations that are due to different acquisition methods.
These models might not generalize well over datasets from lots of different sources.
However, they could be deployed for usage in hospitals and be trained from scratch
there. Therefore, this model will then be better adapted to the conditions and might also
be more trusted as it has been freshly trained by local staff.
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Figure 3.12: Human-in-the-loop model for classifying/ segmenting OCT images.



Label | Counts
NORMAL | 51390
DRUSEN 8866

CNV 37455

DME 11598

Table 4.1: Distribution of labels in the Kermany2018 dataset.

Chapter 4
Evaluation

4.1 Datasets

In order to train the aforementioned models, one needs data. There exists a variety of
image datasets of eye scans from patients with different severity of Diabetic Retinopathy.
Those datasets fall into one of two categories. They either contain Fundus images or Op-
tical Coherence Tomography (OCT) Scans, whereas their name refers to how the images
are acquired. Fundus images are images of the rear of the eye, which is called fundus
hence the name. These images are taken using fundus cameras which are low-power
microscopes [46]. For OCT images however one uses light waves to take cross-section
pictures of the retina. This allows to see the distinct retinal layers and possibly enclosed
fluids or symptoms of NPDR or PDR as mentioned before [34].

There exists a variety of image datasets of OCT scans such as Srinivasan2014 [47], Ker-
many2018 [26], AROI [30] and many more. In contrast to fundus image datasets, most of
these are publicly available.

4.1.1 Kermany2018

This dataset contains 109309 OCT images. The dataset is labelled by normal, drusen, cnv
and dme and their distribution can be seen in Table 4.1. Since the dataset only contains
labels for symptoms of DR, it can only be used for classification. The dataset is also not
balanced.

29
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Layer Label | Counts
Background / 1136
Internal Limiting Membrane ILM 1136
Area between Inner Plexiform and Inner Nuclear Layer | IPL/INL 1136
Retinal Pigment Epithelium RPE 1136
Bruch Membrane BM 1136
Intraretinal Fluid IRF 228
Subretinal Fluid SRF 648
Pigment Epithelial Detachment PED 1014

Table 4.2: Distribution of AROI labels.

/IPLINL

Image prepared
Annotated Annotated for semantic
hboundariecs fluids segmentation

Figure 4.1: Example of an OCT from the AROI dataset [30]. Shown are an OCT with
annotations for retinal layers (left) and retinal fluids (mid) and the resulting mask for
this OCT (right).

4.1.2 AROI

This dataset contains in total 1136 OCT images of 24 different patients. Each image has
a corresponding mask which assigns each pixel a retinal layer or disease abnormality
such as drusen. The dataset originally also investigates inter and intra observer error
and contains data for that purpose [30]. Figure 4.1 shows an annotated OCT from this
dataset.

The OCTs are segmented into up to 8 classes, of which only the first 5 appear on every
OCT. The labels for these classes are shown in Table 4.2 alongside their number of
appearances in the dataset. The last 3 classes do not appear on every OCT and therefore
lead to an imbalance of labels.
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Model | Loss | Optimizer | Learning rate | Number of epochs | k-CV
ResNet-50 CCE Adam 0.001 15 None
OpticNet-71 | CCE Adam 0.0001 20 None

U-Net++ Lovasz Adam 0.0001 25 5

Table 4.3: Training parameters of all models. k-CV = k-fold Cross-Validation

Method | Expected improvement | Parameters
CLAHE Contrast Cliplimit = 5, Tile Grid Size = 8
NLMeans Noise h=12
Real-ESRGAN Noise None
NLMeans + CLAHE Contrast + Noise h=12
Cliplimit = 5, Tile Gride Size = 8
Real-ESRGAN + CLAHE Contrast + Noise Cliplimit = 5, Tile Grid Size = 8

Table 4.4: Overview of the evaluated pre-processing methods, what they are supposed to
improve and their parameters.

4.2 Training

Figure 4.2 shows the basic pipeline used for training and evaluating different DL archi-
tectures on differently pre-processed datasets. First, the data is split into training and test
data. This split is the same for each pre-processing and model to ensure comparability.
Training data is then fed to one of the pre-processing pipelines. Table 4.4 shows all pre-
processing methods as well as their expected impact on the image and their parameters,
that were used for the experiments. Optionally these pipelines might be wrapped by a
"Helper" class in order to ensure compatibility with the network, that will be used for
training. The data is then pre-processed, which usually happens in real-time right before
training to avoid using too much disk space. But since Real-ESRGAN is not computa-
tionally efficient, pipelines using this method will have their data pre-processed and
saved to disk before training in order to speed up training times. After pre-processing
is done, a network is trained using the parameters shown in Table 4.3. For ResNet-50
and OpticNet-71 no cross validation will be done for time reasons. Therefore, we get one
model per pre-processing for these networks. However, for the UNet++ architecture i
used 5-fold cross validation, which means i used five different data splits to train five
different models. In the end, i computed an average of all five models in order to compare
them. This gives five models per pre-processing pipeline for the UNet++ architecture.
The loss used for OpticNet-71 and ResNet-50 was categorical cross entropy (CCE) and
for U-Net++ it was Lovasz Softmax loss [11]. The optimizer for all three was Adam [27].
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Figure 4.2: Overview of the training and evaluation of the different architectures and

pre-processing pipelines.
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4.3 Evaluation

After training is done, the best models will be evaluated using the test data and task-
specific evaluation metrics. To find the best models, I look at the validation loss and take
the model with the lowest validation loss. This ensures that the model is not overfitting
on the training data. The metrics used for evaluation will be explained in the following.
However, many other metrics might be interesting, such as generalizability, time or disk
space metrics, but could not be evaluated in the scope of this thesis.

4.3.1 Classification Metrics

Accuracy

Classification accuracy is the standard in evaluating classification models. Accuracy is
the amount of true positives (TP) and true negatives (TN) divided by the amount of all
samples, so true and false positives (FP) and true and false negatives (FN). While high
accuracy is always desirable, it does not always represent the best metric in the context
of medical diagnosis. Medical datasets are often imbalanced in a sense that healthy
samples are overrepresented. A model predicting "healthy" in the majority of cases will
therefore always perform well in terms of accuracy. However, it does not perform well in
finding unhealthy patients; hence, making it less useful for medical diagnosis. Formula
4.1 describes how accuracy is computed.

Accuracy = TP+ TN
Y= TP+ TN 1 FP + EN

4.1)

Sensitivity

Sensitivity refers to the probability of a positive prediction under the condition that
the sample is truly positive. In the context of medical diagnosis, a high sensitivity is
desirable as this means that more diseases are being detected among unhealthy patients
and, therefore, can be treated. Formula 4.2 describes how sensitivity is computed.

P

Specificity

Specificity refers to the probability of a negative prediction under the condition that the
sample is truly negative. While sensitivity is key for medical diagnosis, specificity plays a
less important role as disease predictions will still be checked by a professional. However,
one wants both, sensitivity and specificity, to be near 1 for the best performance. Formula
4.3 describes how to compute specificity.

Specificity = % (4.3)

Precision

Precision describes the probability of a true positive prediction under the condition
that the prediction is positive. In the context of medical diagnosis, precision plays an
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important role as it describes how trustworthy a positive prediction is. For example, a
model with high sensitivity and low precision will simply predict positive in the majority
of cases and therefore catch almost all positive cases. However, its precision is low as it
also misses a lot of true negatives. It is desired to be near 1, but it is not as important as
high sensitivity. Formula 4.4 describes how to compute specificity.

TP

— 44
TP + FP (44)

Precision =

F1-Score

The F1-Score gives a direct measure between sensitivity and precision by taking the
harmonic mean of both. It is therefore a direct measure of the performance of a model
and of similar importance as sensitivity. Formula 4.5 describes how to compute the
F1-Score.

2 - Sensitivity - Precision

F1-Score = PP Py
Sensitivity + Precision

(4.5)

4.3.2 Segmentation Metrics
Dice Coefficient

The Dice coefficient independently proposed by Thorvald Serensen and Lee Raymond
Dice was first introduced as a segmentation metric by Zijdenbos et al. in 1994 [57]. The
Formula 4.6 shows the computation of the Dice score:

2 x Area of Overlap
Predicted Area + True Area

Dice = (4.6)
Therefore the Dice coefficient can take up values from 0 to 1, whereas 1 resembles a
perfect prediction and 0 a completely wrong prediction. Figure 4.3 shows a visual
representation of the dice score.

The implementation of the Dice coefficient is shown in Listing 4.1. In order to avoid
a "DivisionByZero" exception, a smoothing factor is added to the denominator and
numerator.

def dice_coefficient(pred, true, smooth=1le-15):
intersection = 2 * (torch.sum((torch.logical_and (true, pred)))).item()
union = torch.sum(true).item () + torch.sum(pred).item ()
dice = (intersection + smooth) / (union + smooth)
return dice

Listing 4.1: Implementation of Dice coefficient

Intersection over Union

The Intersection over Union score (IoU) or also called Jaccard Index was invented by Paul
Jaccard [23]. It works similar to the Dice coefficient and in fact both scores are positively
correlated [49]. Formula 4.7 shows how to compute the Intersection over Union score.
Looking at the formula we can see that again the values for this score reach from 0 to
1 and similar to the Dice coefficient high scores yield a good segmentation while low
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scores yield a bad segmentation. Figure 4.4 shows a visual representation of the IoU

score.
Intersection of Predicted and True Area
IoU = _ . 4.7)
Union of Predicted and True Area

The implementation of the IoU score is shown in Listing 4.2. Again a smoothening factor
was used in order to avoid a "DivisionByZero" exception.

def intersection_over_union(pred, true, smooth=1e-15):
intersection = (torch.sum((torch.logical_and (true, pred)))).item ()
union = (torch.sum((torch.logical_or(true, pred)))).item ()
return (intersection + smooth) / (union + smooth)

Listing 4.2: Implementation of IoU

Image Dice coefficient:
Groundtruth
2 X Overlap
Overlap
Prediction
Groundtruth + Prediction

Figure 4.3: Visual representation of the dice coefficient.
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Image

loU score:

Intersection

Figure 4.4: Visual representation of the IoU score.




Chapter 5
Results

5.1 ResNet-50

As shown in Figure 5.1, the ResNet-50 architecture performs worst on the not prepro-
cessed, raw data with an average accuracy of 84%, while all other models except the one
trained on Real-ESRGAN preprocessed data perform significantly better with an 97%
average accuracy. Additionally, F1-Score increases for these models by at least 20% from
74% in raw data to 94% in the NLMeans and NLMeans + CLAHE pre-processed data
and 95% in the CLAHE and Real-ESRGAN + CLAHE pre-processed data.

CLAHE and Real-ESRGAN + CLAHE lead to the best performing models considering
the average metrics. However, Real-ESRGAN alone performs only slightly better than no
preprocessing with 87% average accuracy and 77% average F1-Score. Looking at Table
5.1, we can see the class dependent accuracies of the models. The table shows that for all
classes except DRUSEN no preprocessing performs worst, while CLAHE performs best.
However, all pre-processing methods except Real-ESRGAN alone only differ slightly
in accuracy for each class. For class CNV, all models have an accuracy of 97%, while
Real-ESRGAN and no pre-processing only reach 85% and 73%, respectively.

Looking at the individual F1-Scores, shown in Table 5.2, we can see that the same holds
for this metric. No pre-processing performs worst with 64% F1-Score. However, CLAHE,
NLMeans, NLMeans + CLAHE and Real-ESRGAN + CLAHE do not perform completely
similar, because Real-ESRGAN + CLAHE performs 1% better than the rest with 95%
F1-Score. Real-ESRGAN alone achieves an F1-Score of 76%. For class DME, NLMeans +
CLAHE achieves 97% accuracy and, hence, performs 1% better than CLAHE, NLMeans
and Real-ESRGAN + CLAHE regarding this class, while Real-ESRGAN and no pre-
processing only achieve 83% and 90% accuracy. Similarly, NLMeans + CLAHE achieves
1% better F1-Score of 93% than CLAHE, NLMeans and Real-ESRGAN + CLAHE. No
pre-processing and Real-ESRGAN achieve F1-Scores of 50% and 78% respectively. For
class DRUSEN, CLAHE, NLMeans + CLAHE and Real-ESRGAN + CLAHE reached
an accuracy of 98%, while NLMeans performed 1% worse. No pre-processing and
Real-ESRGAN, again, performed worse than the remaining models with 85% and 84%
accuracy respectively. This also shows in the F1-Scores for this class. However, CLAHE
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Average

Mo pre-processing

CLAHE

NLMeans

Real-ESRGAN

-0.80

NLMeans + CLAHE
-0.75

Real-ESRGAN + CLAHE
-0.70

accuracy precision sensitivity specificity

Figure 5.1: Performance metrics for the best ResNet-50 models trained on differently
preprocessed Kermany2018 data.

performs 2% better than NLMeans and 1% better than NLMeans + CLAHE and Real-
ESRGAN + CLAHE with 97% F1-Score. No pre-processing for this class performs better
than Real-ESRGAN with 64% and 52%, respectively. For class NORMAL, however, no
pre-processing only performed slightly worse than the other methods with 95% accuracy.
CLAHE performed best with 98% accuracy, while NLMeans, NLMeans + CLAHE and
Real-ESRGAN + CLAHE achieved 97% accuracy. Again, Real-ESRGAN alone performed
worse with 88% accuracy. Moreover, the F1-Score confirm these findings, whereas no pre-
processing reaches an F1-Score of 91%, while CLAHE, NLMeans, NLMeans + CLAHE
and Real-ESRGAN + CLAHE achieve 96%, 94%, 95% and 95% F1-Score, respectively.
Real-ESRGAN, however, performs worse than the aforementioned model with only 80%
in F1-Score.

5.2 OpticNet-71

As seen in Figure 5.2, one can see that for OpticNet-71 the model trained on CLAHE
performs best, although all models perform similar with only one percent difference
for average accuracy. Moreover, CLAHE has the lead regarding all other metrics as
well, making it the best performing model for all classes. This finding can be confirmed
looking at the class dependent accuracies shown in Table 5.3. All models achieve the
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Class | No pre-processing | C | NLM | RG | NLM+C | RG+C

CNV 73% 97% | 97% | 85% 97% 97%
DME 83% 96% | 96% | 90% 97% 96%
DRUSEN 85% 98% | 97% | 84% 98% 98%
NORMAL 95% 98% | 97% | 88% 97% 97%

Table 5.1: Class dependent accuracy of the best ResNet-50 models trained on differently
preprocessed Kermany2018 data. C = CLAHE, NLM = NLMeans, RG = Real-ESRGAN

Class | No pre-processing | C | NLM | RG | NLM+C | RG+C

CNV 64% 94% | 94% | 76% 94% 95%
DME 50% 92% | 92% | 78% 93% 92%
DRUSEN 64% 97% | 95% | 52% 96% 96%
NORMAL 91% 96% | 94% | 80% 95% 95%

Table 5.2: Class dependent F1-Scores of the best ResNet-50 models trained on differently
preprocessed Kermany2018 data. C = CLAHE, NLM = NLMeans, RG = Real-ESRGAN

same accuracies for each individual class, while CLAHE is always 1% better. The same
observation can be made looking at the individual F1-Scores from Table 5.4, although
here the values vary a bit more between the other models. For class CNV, CLAHE
achieves an accuracy of 97% and an F1-Score of 94%. As already said, all other models
have 1% less in accuracy, but also for this class 2% less F1-Score. For class DME, CLAHE
reached an accuracy of 95% and an F1-Score of 90%. Here again, CLAHE is 1% better
both in accuracy as well as F1-Score in comparison to the other models. For DRUSEN,
however, Real-ESRGAN performs 1% worse while no pre-processing performs 1% better
than NLMeans, NLMeans + CLAHE and Real-ESRGAN + CLAHE with 93% and 95%
in F1-Score. CLAHE achieves an F1-Score of 96% and an accuracy of 98% for this label,
which, again, is 1% better than the accuracy of the other models. The same holds for
class NORMAL, where CLAHE achieves an accuracy of 97%. Regarding the F1-Score,
however, Real-ESRGAN + CLAHE performs worst for this class with 92%, while CLAHE
achieves 94% and the remaining models 93%.

5.3 U-Net++

As shown in Figure 5.3 and 5.4, one can see that U-Net++ trained on the CLAHE pre-
processed dataset performed best in terms of average Dice and average IoU score with
scores of 0.81 and 0.75 respectively. However, it is only slightly better than no pre-
processing with a difference of 2% for both metrics. Second best is Real-ESRGAN +

Class | No pre-processing | C | NLM | RG | NLM+C | RG+C

CNV 96% 97% | 96% | 96% 96% 96%
DME 95% 95% | 95% | 95% 95% 95%
DRUSEN 97% 98% | 97% | 97% 97% 97%
NORMAL 96% 97% | 96% | 96% 96% 96%

Table 5.3: Class dependent accuracy of the best OpticNet-71 models trained on differently
preprocessed Kermany2018 data. C = CLAHE, NLM = NLMeans, RG = Real-ESRGAN
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Average
Mo pre-processing 092 093 092
094 094 094
0.92 0.92 0.92
Real-ESRGAN 092 082 092
NLMeans + CLAHE 092 082 092
Real-ESRGAN + CLAHE 092 082 092
i ' .
accuracy Fl-score precision sensitivity specificity

Figure 5.2: Performance metrics for the best OpticNet-71 models trained on differently
preprocessed Kermany2018 data.

Class | No pre-processing | C | NLM | RG | NLM+C | RG+C

CNV 92% 94% | 92% | 92% 92% 92%
DME 89% 90% | 89% | 89% 89% 89%
DRUSEN 95% 96% | 94% | 93% 94% 94%
NORMAL 93% 94% | 93% | 93% 93% 92%

Table 5.4: Class dependent F1-Scores of the best OpticNet-71 models trained on differently
preprocessed Kermany2018 data. C = CLAHE, NLM = NLMeans, RG = Real-ESRGAN
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Figure 5.3: Average Dice Scores of the best U-Net++ models trained on differently pre-
processed datasets.

CLAHE with 0.8 Dice score. On the third place is no pre-processing with 0.79 Dice
Score. All other pre-processed datasets achieved an average Dice score of 0.77. However,
looking at the score for the individual layers we can see that the CLAHE pre-processed
dataset lead to the best performances for layers Background, under BM and IRF, the
first two being background layers. For other layers other methods perform better. For
ILM-IPL/INL all models performed the same. For IPL/INL-RPE the NLMeans pre-
processed dataset performed best with 0.01 difference to the other models as well as
for RPE-BM layer. For PED NLMeans, NLMeans + CLAHE and no pre-processing had
the best performance of 0.77. Furthermore, for fluid SRF NLMeans and Real-ESRGAN
+ CLAHE performed best with 0.5 Dice score. Even tho NLMeans does perform best
for some layers, its worse average Dice score comes from its inability to segment IRF
correctly, where it only achieves a 0.28 Dice score. This also transfers to NLMeans +
CLAHE which achieves a slightly better score of 0.31. The same observations can be
made looking at the IoU Scores.

5.4 Applying U-Net++ to the Kermany2018 dataset

Additionally to the previous work, I also applied the trained UNet++ models to the Ker-
many2018 dataset. In general, no pre-processing, NLMeans and Real-ESRGAN produce
better masks on this new dataset than CLAHE. However, since there are no segmenta-
tion masks for this dataset, this evaluation is subjective to my personal experience and
opinion. Figure 5.5 shows one example image of the mask produced by these networks.
We can clearly see that CLAHE does produce a very unrealistic mask. NLMeans and
Real-ESRGAN seem to improve the models capability of generalizing to a completely
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Figure 5.4: Average Intersection-over-Union Scores of the best U-Net++ models trained
on differently pre-processed datasets.

new data set, as there are less impossible predictions such as the pink segmentation
above all retinal layers as seen in the predicted mask of the model trained on raw data.
The Real-ESRGAN trained network produces the most probable mask in this specific
example, as there are very few of these predictions that are obviously wrong. However,
all segmentation masks seem to be flawed to some extent.
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Raw Image Predicted mask

CLAHE Predicted mask

Non-local Means Predicted mask

Real-ESRGAN Predicted mask

Figure 5.5: Pre-processed images (left) and predicted masks of their correspondent
UNet++ model (right). The original image was taken at random from the Kermany2018
dataset.



Chapter 6
Discussion

For the ResNet-50 architecture, pre-processing majorly improved the models performance
in all cases leading to an accuracy increase of 13% for all methods except Real-ESRGAN.
Real-ESRGAN also improved the accuracy, but only by a smaller margin of 3%. How-
ever, it also improved the average sensitivity and F1-Score of the model making it more
useful in a medical diagnosis system. Its lesser impact on the model might be caused
by the downscaling, that is done in order to keep the input dimensions the same, as
Real-ESRGAN will upsample the images by a four times factor. This downscaling might
introduce artifacts, which could explain, why Real-ESRGAN is not performing as well
as other methods. However, it still outperforms the not pre-processed model and in
combination with CLAHE can lead to very good results. CLAHE itself seems to be the
best pre-processing technique for ResNet-50. It lead to the best performance for almost
all classes except DME. Especially its accuracy of 98% on the under represented class
DRUSEN is remarkable.

For the OpticNet-71 architecture CLAHE merely increased accuracy by 1% in comparison
to no pre-processing. However, it also increased sensitivity as well as F1-Score by 2%,
which is a desirable result regarding medical diagnosis systems especially for the under
represented class DRUSEN. Moreover, all other methods performed exactly the same as
no pre-processing making the effort of pre-processing unnecessary for this architecture.
However, for the less specialised ResNet-50 architecture all pre-processing methods
actually improved their respective models. Therefore, these pre-processing methods
might be more useful on general architectures that have not been developed for the
specific purpose of classifying OCT scans.

Looking at the segmentation results, we can make similar observations. CLAHE did
improve the model compared to no pre-processing regarding Intersection-over-Union
and Dice coefficient, although it did not perform best for all layers. More specifically, it
segments almost perfectly the background layers, "Background" and "under BM", with
0.99 and 0.98 Dice score respectively. However, it performed the same or even worse
for the remaining layers in comparison to the other models. Additionally, it does not
segment enclosed fluids such as PED and SRF as good as NLMeans does. This shows
that the pre-processing methods applied have an influence on, which layers will be more
easily recognised by the network. However, CLAHE segments IRF the best, which is the
least represented class in the dataset showing the value these pre-processing methods
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can have for medical diagnosis.

The results show that CLAHE improved all models by a fair margin. The other pre-
processing methods, in general, could not compete with the performance boost CLAHE
offered. However, they lead to better results for specific classes and layers. Over all, pre-
processing had a positive impact on the models. Only for the UNet++ architecture, some
pre-processing methods lead to slightly worse results than no pre-processing. However,
CLAHE seemed to decrease generalizability of the UNet++ architecture. Looking at
the results of applying these models to a different dataset, we can clearly observe that
CLAHE produces highly unlikely masks. This is probably due to the noise amplification
introduced by this method. The two denoising methods, NLMeans and Real-ESRGAN,
however, produced much more likely masks, which shows that denoising is still advan-
tageous, when it comes to generalizability of models. Although these models performed
better, they are still flawed to an extent, where they are probably useless for a real-world
application. This is due to the fact that the AROI dataset is very homogeneous, because
all images have the same dimensions and come from the same device. However, the
Kermany2018 dataset is very heterogeneous coming from multiple different devices and
having different image dimensions.



Chapter 7
Conclusion

7.1 Overview

In this work I have evaluated a selection of pre-processing methods in the context of
medical diagnosis regarding the classification and segmentation of OCT scans. The
results of my work show that CLAHE is an appropriate pre-processing technique for this
purpose, because it improved the results of all models tested regarding certain metrics.
Additionally, CLAHE improved the models” performances regarding under represented
classes for both datasets, which is especially good for the context of medical diagnosis
as disease labels will most likely be less present than healthy labels in any medical
dataset. However, CLAHE did not seem to have a positive effect on generalizability,
which is probably due to its noise amplification. Moreover, other pre-processing methods
for denoising have shown an improving impact on base architectures like ResNet-50,
which make them desirable when applying these architectures to a novel medical dataset.
Furthermore, a generative model (Real-ESRGAN) was used to improve the images and
it performed better than or at least on par with the original images depending on the
model that it was used for. Combining denoising and contrast enhancement methods
did not outperform the individual pre-processing methods themselves. However, it did
perform similar to its individual methods, which goes somewhat against the intuition
one got from seeing the pre-processed images. The findings of this work suggest, that
denoising methods might improve generalizability.

7.2 Outlook

To confirm the findings of my work, further models need to be trained on different data
splits. Additionally, models need further hyperparameter tuning to exclude that the
different performances of the models are not caused by better fitted hyperparameters.
Another interesting point to look into is the generalisability of the models. Pre-processing
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could improve the models in this point. Therefore, one needs an independent dataset with
the same labels to evaluate the generalisability, which was not possible in the scope of this
thesis. However, the Kermany2018 dataset already has a lot of variance with different
OCT scans taken by different devices and, hence, the classification models trained on this
dataset should generalise well. The AROI dataset was very homogeneous and the models
should not generalize very well. However, one could evaluated generalizability with
another segmentation dataset. The findings of this work suggest, that denoising methods
might help in this case. Moreover, the models and pre-processing techniques need to
be evaluated for the human-in-the-loop model mentioned before. However, a proper
pipeline needs to be developed first. For this, we need to implement an annotation tool
with our DL models, which suggest labelling or segmentations to human experts. These
experts can now adjust these predictions and the models can be retrained on the new
labelled data. This process makes it easier for medical staff to produce highly detailed
labels and segmentations for a large number of OCTs without the need to manually
label every pixel of the image. This will in turn produce better models, which should in
combination with the shown pre-processing generalize well on new, unseen data from
all kinds of devices.

Moreover, it would be interesting to further develope the idea of a generative model
as a pre-processing step. The results of this work show that this process can improve a
network trained this way. Therefore, it would be interesting to fine-tune a generative
network to specifically improve OCT images. Furthermore, one could follow the idea
of combining multiple image enhancement methods such as NLMeans + CLAHE. The
results of this thesis show that these combinations in general perform at least as good as
their individual counterparts and, hence, it might even perform better, if one finetunes
these methods.
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