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Abstract

As part of the OphthalmoAlI project, this work aims to develop a Clinical Decision
Support System (CDSS) to aid ophthalmologists in treating Age-related Macular De-
generation (AMD) and Diabetic Retinopathy (DR), the leading causes of vision loss in
the elderly. Therapy for AMD and DR involves administering Anti-VEGF medication
according to well-defined clinical guidelines. The core of the CDSS is a treatment recom-
mendation algorithm based on these guidelines, utilizing real-world medical data from
two German eye clinics, including Electronic Health Records (EHR) and Optical Coher-
ence Tomography (OCT) scans. OCT scans are segmented using a Deep Learning (DL)
model to compute semantic segmentation masks. These masks are used to reconstruct
biomarkers in three dimensional space enabling fine-grained quantifications. Addition-
ally, a Bidirectional Long Short-Term Memory (BiLSTM) network was trained to predict
future biomarker developments from sequential patient data. Evaluation of the BiLSTM
model reveals that it can reliably predict a patient’s development even when generalizing
to unseen patients. Shapley Additive Explanations (SHAP) were used to validate the
forecast models clinical relevance. The CDSS integrates EHR data with computed quan-
tifications and forecasts, presented through various enhanced visualization techniques.
Feedback from eleven ophthalmologists indicated that the CDSS enhances efficiency,
informedness, and user experience through its comprehensive data display, which fuses
functionality from multiple old tools. Moreover, many participants stated to feel more
informed through the quantification algorithms, titled the "future of indication" by one
senior ophthalmologist. However, an investigation into trust in DL systems revealed
initial skepticism, especially in the forecast system. The participants agreed that trust
would only improve with prolonged use and control of the system. Feedback options
and human-in-the-loop models could enhance trust according to ophthalmologists.
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Chapter 1
Introduction

1.1 Motivation

The rise of Artificial Intelligence (AI) and Machine Learning (ML) technologies has
initiated a transformative era across various domains. From utilizing Large Language
Models (LLMs) to enhance customer support interactions to employing Stable Diffusion
algorithms for generating artistic creations, and harnessing Deep Learning (DL) models
for autonomous vehicle navigation, the influence of Al and ML is omnipresent.

This paradigm shift is increasingly permeating the medical field, where numerous
ML models, including those for segmentation, classification, and LLM applications,
have demonstrated performance comparable to or surpassing that of human experts
[8, 74, 75, 49, 83]. Particularly within ophthalmology, the discipline dedicated to the
study of the eye, ML models have exhibited remarkable efficacy [24, 43, 44].

For instance, RetInsight!, a company from Vienna, has developed two Clinical Decision
Support Systems (CDSS) tailored for monitoring geographic atrophies and fluid-related
volumes in ophthalmic patients using Al technologies. Although the internal workings
of their algorithm is not publicly available, a three-dimensional reconstruction of fluids
must be computed in order to assess volumetric quantities. These systems currently exist
separately from the standard software systems utilized by medical professionals on a
daily basis. There exists a considerable opportunity for enhancing patient care through
the integration of standard systems, that provide medical patient records and imaging
data, and the computational capabilities of AL

Additionally, time series forecasting ML methodologies like Recurrent Neural Networks
(RNNSs) and Long Short Term Memory (LSTM) networks have been developed but are
not yet widely applied in the medical field. Predicting the course of a disease from
patient data could enable preventive therapies, helping maintain patients” health before
symptoms even appear. While these models are highly effective, their application in
Clinical Decision Support Systems (CDSS) for ophthalmology has not yet been explored.

1https: / /retinsight.com/
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Figure 1.1: Overview of the high-fidelity dashboard prototype.

The performance of these algorithms and the trust of medical experts in their use still
need to be investigated.

In the OphthalmoAlI project [25], discussed in detail in the next section, ophthalmology
experts were consulted about their desired features in a CDSS. The ophthalmologists
expressed the desire for a CDSS that provides an overview of metric trends through line
graphs, projects layer segmentations onto retinal scans, quantifies fluid levels, recom-
mends treatment and offers treatment efficacy prognosis. Figure 1.1 illustrates the CDSS
developed based on these specifications and for which an evaluation was conducted in
the following thesis.

1.2 OphthalmoAl

The OphthalmoAl project, funded by the german Federal Ministry of Education and
Research (BMBE, funding label: 165V8638)?, is a collaborative effort involving several
esteemed institutions: the Fraunhofer Institute for Biomedical Technology (IBMT)?, the
Interactive Machine Learning (IML) research department at the German Research Center
for Artificial Intelligence (DFKI)*, the eye clinic at St. Franziskus Hospital in Miinster®
and the eye clinic in Sulzbach®, Heidelberg Engineering GmbH’, LangTec?, and the
University of Saarland® [25]. The project’s primary objective is to develop advanced

thtps://www.bmbf.de/bmbf/de/home/home_node.html

Shttps://www.ibmt . fraunhofer.de/
4https://dfki.de/web/forschung/forschungsbereiche/interaktives-maschinelles-lernen/
Shttps://www.augen-franziskus.de/

®https://www.augenklinik-sulzbach.de/

"https://www.heidelbergengineering.com/de/

8https://www.langtec.de/?lang=en

https://www.uni-saarland.de/start.html
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Figure 1.2: Overview of the OphthalmoAlI architecture in german.

decision support systems to enhance the diagnostics and treatment of ophthalmological
conditions. This involves combining clinical guidelines and medical expertise with
machine learning (ML) and deep learning (DL) techniques. Additionally, the project aims
to create visual, explanatory components that bridge the gap between black-box algo-
rithms and medical professionals, ensuring a reliable and transparent support system for
diagnosis and therapy. The focus is on two prevalent eye diseases: Age-related Macular
Degeneration (AMD) and Diabetic Retinopathy (DR). This thesis is a contribution to the
OphthalmoAlI project.

Figure 1.2 shows an overview of the OphthalmoAlI architecture and the ares of responsi-
bility for each partner. IBMT developed and maintained the data warehouse Xpl0Oit and
engineered major parts of the information extraction, integration and analysis. They were
also responsible for assuring data quality. LangTec delivered tools for the pseudonymiza-
tion and information extraction from medical text data. Semantic segmentation models
were developed by the DFKI and Heidelberg Engineering GmbH. Semantic segmentation
models are ML models, that segment images by classifying each pixel in the image. DFKI
also realised several Artificial Intelligence (AI) components such DL models and intelli-
gent user interfaces including explanation and visualization tools. The eye clinics offered
clinical knowledge and delivered the data. The university of Saarland was responsible
for ethical, law and social aspects and the evaluation of the demonstrator prototypes.

1.3 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive imaging technique widely used
in ophthalmology to obtain high-resolution cross-sectional and en-face images of the
retina. By using light waves to capture detailed images, OCT allows clinicians to visualize
the layers of the retina. This technology works by measuring the echo time delay and
intensity of reflected light, similarly to ultrasound imaging techniques, and is also called



Figure 1.3: Example of an OCT from a patient of the eye clinic in Miinster, recorded as
part of the OphthalmoAl project [25]. A) shows the IRSLO view and B) shows a single
slice from this OCT.

interferometry [37].

In general, an ophthalmologist has two options for assessing the health status of the
eye. They either consult a fundus image or an OCT scan. The first one offers a top view
onto the retina by essentially photographing the retina, which affords the patient to take
dilation drops in preparation [55]. The second one offers both a top view -also known
as Infra Red Scanning Laser Ophthalmoloscopy (IRSLO)- and cross sectional views. It
becomes apparent that the OCT yields more information and, additionally, it does not
need preparation of the subject unlike fundus images [54]. Figure 1.3 shows an example
of an OCT featuring the IRSLO view (A) and one slice (B).

1.4 Structure of the eye

The eye is an intricate organ responsible for capturing light and converting it into neural
signals, which the brain processes to form images. Central to this function is the retina,
a layered structure at the back of the eye. The retina contains several important layers,
which can be seen on figure 1.4. The most important layers are: the Inner Plexiform Layer
(IPL), which facilitates synaptic interactions between bipolar and ganglion cells; the
Outer Plexiform Layer (OPL), where photoreceptors connect with bipolar cells; and the
External Limiting Membrane (ELM), a thin barrier that supports photoreceptor cells. The
Ellipsoid Zone (EZ), also known as the inner segment/outer segment junction, is crucial
for photoreceptor integrity. The Retinal Pigment Epithelium (RPE) helps nourish retinal
visual cells and is involved in the phagocytosis of photoreceptor outer segments, while
Bruch’s Membrane (BM) is a thin, multi-layered structure that supports the RPE and
serves as a barrier between the retina and the choroid [21]. Although more layers exist,
these were the ones that were classified as crucial by ophthalmologists. A segmentation
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Figure 1.4: Overview of all retinal layers visible on an OCT. Taken from [31].

of these layers can enable quick and easy assessment of the structural integrity of the
retina facilitating ophthalmologists’ analysis tasks.

1.5 Eye Diseases

Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are two preva-
lent eye diseases that significantly impact individuals” vision and quality of life. Both
conditions require careful management and early detection to prevent irreversible vision
loss. Their treatment, however, is still dependent on subjective evaluation of medical
experts. The surge of segmentation architectures in the Optical Coherence Tomography
(OCT) domain and corresponding automatic quantification algorithms could revolution-
ize this process as treatment can now be made dependent on quantifiable measurements.
As most clinics still use rather old software Al could be used to improve hospital systems
and further support ophthalmologists during their work. This section provides a brief
overview of DR, AMD and their prevalence.

1.5.1 Diabetic Retinopathy

Diabetic retinopathy (DR) represents a serious complication of diabetes, affecting a
substantial portion of individuals diagnosed with this metabolic disorder. Approximately
35% of diabetes patients grapple with the risks associated with DR [91]. The global scale
of this issue is exemplified by the alarming statistics from 2021, estimating that 536.6



million people between the ages of 20 and 79 were living with diabetes. Forecasts predict
that this number will surge to a staggering 783.2 million by the year 2045 [1]. This data
suggests an alarmingly large population of roughly 187.8 million DR patients worldwide.

DR is characterized by damage to the blood vessels in the retina, the light-sensitive tissue
at the back of the eye. The condition is differentiated into two main stages: Proliferative
DR (PDR) and Non-proliferative DR (NPDR). PDR is the first stage of DR, which can
cause some vision impairment but generally goes unnoticed [17]. However, this stage
is a crucial point for the patient as it is treatable and treatment avoids progression
to the second final stage. Conversely, NPDR is not treatable and yields irreversible
damages to the retina, which ultimately end in vision loss [17]. One symptom that
majorly contributes is Diabetic Macular Edema (DME). DMEs are an accumulation of
fluids inside the retina around the macula (The point of central vision), which is believed
to be caused by hyperpermeability of blood vessels with abnormal blood sugar levels
[58]. This hyperpermeability is caused by the upregulation of Vascular Endothelial
Growth Factor (VEGF), a hormone that promotes the growth of new blood vessels [58].
Through treatment one can downregulate VEGF and consequently save the patient’s
vision. Hence, treatment is essential in managing the alarming numbers of DR patients
effectively.

1.5.2 Age-related Macular Degeneration

Age-related Macular Degeneration (AMD) is a similar disease to DR. However, it is not
related to any metabolic disorder but rather a symptom of old age. Similar to DR, it
affects a large number of the population and is a leading cause for loss of central vision
among the elderly [2]. In europe alone, it is estimated to affect 67 million people with
an expected increase of 15% by 2050 [48]. Globally, we are looking at numbers of 190
million people affected by AMD [6].

AMD primarily affects individuals aged 50 and older. It involves the progressive deterio-
ration of the macula, which is responsible for sharp, central vision [2]. Like DR, early
detection and timely intervention are critical in addressing AMD. AMD is divided into
three stages: Early, intermediate and late stage. Additionally, one differentiates dry and
wet AMD by the symptoms of AMD. Dry AMD is characterized by the development of
drusen (Small accumulations of extracellular material), whereas wet AMD is caused by
the growth of new blood vessels that can leak blood and fluids into the retina [2, 3]. Wet
AMD leads to the loss of central vision, which causes a severe drop in life quality for
patients [2]. Dry AMD is not treatable. However, similar to DR the growth of new blood
vessels in wet AMD can be treated. The large population affected by this disease shows
the importance of treatment of wet AMD to ensure the patients’ vision.

1.5.3 Treatment & Guidelines

As mentioned before, both DR in its early stage and wet AMD are treatable [28, 29]. This
treatment involves using a VEGF inhibitor like Aflibercept [67] or Brolucizumab [59].
These drugs are injected directly into the eye in a procedure called IVOM'" and inhibit
the growth of new blood vessels. In most cases, they cannot restore vision but prolong
the further deterioration [2]. Currently, there exist two guidelines or schemes on when to
upload IVOMs: Treat-and-Extend (TAE) [32] and Pro Re Nata!! (PRN).

10From the german name for the procedure: "IntraVitreale Operative Medikamentenapplikation"
HTranslation from latin: As things stand



TAE starts with a series of three IVOMs for AMD treatment and six IVOMS for DME
treatment with four week intervals inbetween. After each series there is a control
examination usually involving an OCT Scan. If the findings do not show a worsening
condition, also called stable or inactive findings, the interval between each IVOM will
be increased by 2 weeks. Now both AMD and DME will be uploaded in series of three
IVOMs until the next control examination. Intervals can increase to a total of 12 weeks
between two IVOMs. If at any control examination, the findings got worse, called active
or instable findings, then the intervals will be decreased by 2 weeks to a minimum of
4 weeks for the next series. If the series with maximum intervals has been uploaded,
there will be a series of control examinations with 12 week intervals without IVOMs.
Afterwards there will be one year of control examinations every 8 weeks to ensure that
the OCT stays inactive.

The PRN treatment is much simpler. If the initial treatment conditions are met, there will
be a series of three IVOMs with 4 week intervals inbetween. Afterwards there will only
be control examinations with 4 weeks inbetween until the findings are active again. If
the findings stay inactive, the patient just visits every 4 weeks to ensure no worsening of
the condition. Otherwise there will be another series of three IVOMs.

1.5.4 Indication & Biomarkers

Early diagnosis of AMD and DR in general is outside of the scope of this thesis. However,
it is important how to find indicators or biomarkers for treatment, which are retinal fluids.
In general, any type of fluid can be caused by either Diabetic Macular Edema (DME) or
Choroidal Neovascularization (CNV) and in all cases an eye with retinal fluids should be
treated [28, 29, 67, 59]. Figure 1.5 shows a variety of retinal lesions on OCT images taken
from Fu et al. [26]. Lesions that indicate treatment are sub-retinal and intra-retinal fluids
(SRF and IRF; seen as blue and red stars). Other lesions such as drusen(seen as black
arrows), pigment epithelial detachment (PED; seen as yellow arrows) and scarring (seen
as a green triangle) are also symptomes of AMD or DR. However, they are not relevant to
the treatment indication. SRF and IRF can be seen as black holes inside the retinal layers.

Other biomarkers are visual acuity and retinal thickness. Visual acuity refers to the
clarity or sharpness of vision, commonly measured using the decimal and Logarithm
of the Minimum Angle of Resolution (LogMAR) scales. The decimal scale expresses
acuity as a simple ratio, such as 1.0 for normal vision, 0.5 for half-normal vision, and
2.0 for double-normal vision. The LogMAR scale quantifies visual acuity based on the
logarithmic scale of the angle of resolution. A LogMAR value of 0 corresponds to normal
vision, with positive values indicating worse vision and negative values indicating
better-than-normal vision [34]. In this work, decimal scale was used, because that was
the most common measurement in the OphthalmoAI data. However, usually LogMAR
is preferred in research. A conversion exists, but it is not reliable [51]. Hence, in the
following visual acuity always refers to the decimal scale. Retinal thickness reduces with
progressing AMD and is an early biomarker for the disease [93].

1.6 Research Goals

In the scope of this thesis, I endeavor to develop and evaluate a Clinical Decision Support
System (CDSS) in the form of a dashboard tailored for ophthalmologists specializing
in the domains of Diabetic Retinopathy (DR) and Age-related Macular Degeneration



Figure 1.5: Examples of lesions shown on OCTs from different forms of AMD. A =
Dry AMD; B = Non-active wet AMD; C-F = Active AMD. Dark and yellow arrows
indicate drusen and pigment epithelial detachment (PED), respectively. Blue and red
dots indicate sub-retinal fluids (SRF) and intra-retinal fluids (IRF). The green triangle
indicates scarring. Image taken from Fu et al. [26]

(AMD), both of which are prevalent eye diseases. The objective of this work is to improve
ophthalmologists’ efficiency, informedness, and overall user experience by improving
the therapy process. Efficiency, herein, refers to the reduction of medical professionals’
workloads in the diagnosis and treatment of these diseases, consequently affording
them more time to allocate to other aspects of patient care. Informedness pertains to
the enhancement of an ophthalmologist’s capacity to make well-informed treatment
decisions. This involves the presentation of important data features crucial to decision-
making and the provision of treatment recommendations given by established treatment
guidelines. In pursuit of this goal, I aim to incorporate two Al methods: A segmentation
model and a forecast model. An implementation of the segmentation model from
the OphthalmoAlI project will be used, while the forecast model will be developed and
evaluated in this work. As these models may lack interpretability, it’s essential to consider
whether doctors comprehend and have confidence in the system. Consequently, this
aspect of trust will also be examined. Moreover, the model’s predictions will be evaluated
using Explainable Al (XAI) methods to ensure its clinical relevance. Additionally, an
investigation towards user experience will be done. Since suboptimal user experiences
not only increases frustration but also the workload, it ultimately leads to reduced patient
care. The goal of this thesis is twofold: First, create and evaluate a time series forecast
model for ophthalmologic health metrics. Second, develop an holistic, Al supported
Clinical Decision Support System in ophthalmology and assess its effects on efficiency,
informedness, user experience and trust.



Chapter 2
Related Work

2.1 Explainable Artificial Intelligence

In an era marked by the proliferation of Al systems and their increasing involvement in
critical decision-making processes such as medical diagnostics, the demand for trans-
parency and comprehensibility in Al algorithms has never been greater. Explainable Al
(XAl) is an interdisciplinary field that aims to address this by providing a clear, intel-
ligible, and interpretable framework for understanding the decisions and predictions
made by artificial intelligence systems [56]. While some Al systems are inherently un-
derstandable like the coefficients of linear regression or the if-else-trees of decision trees,
others such as Deep Learning (DL) approaches do not offer direct insights into their
internal workings in an understandable way [11]. XAI encompasses many approaches
to delivering explanations for such Al models: global and local, model-specific and
model-agnostic, interactive and static, and data-centric and model-centric explanations
[56]. Global XAI methods try to explain the general behaviour of models, while local
methods explain the prediction for a certain input. Model-specific explanations are
tailored towards a certain type of ML algorithm, while model-agnostic XAl is applicable
to a wide range of Al models. Interactive XAl includes some sort of interaction between
the model and the user. Literature suggests that this type increases understandability
of model decisions more than static explanations [18, 12, 10]. The XAINES project even
implies that XAl models should have interactive and incremental narratives, such that
the user can have a conversation with the model in case of uncertainty [35]. XAI's inter-
pretable and comprehensible explanations allow to compare an Al’s decision making
to clinical guidelines. Hence, XAI methods can be used to clinically validate a model’s
reasoning [5].

2.1.1 Model-centric Explanations

Model-centric explanations delve into the internal workings of the Al model. They reveal
the model’s architecture, its decision-making processes, and the importance assigned to
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different features during inference [56]. LIME trains an inherently interpretable model
such as linear regression or decision trees to explain the original models predictions. RISE
computes importance maps for visual input by manipulating said input and inferring
each pixels importance towards the classification [62]. Grad-CAM looks at the gradients
inside the model and infers an importance map [69]. In general, literature suggests that
using model-centric explanations increases understanding of non-expert users [18, 12, 56].
However, Cheng et al. have found that the explanations do not necessarily increase trust
in the system [18].

Shapley Additive Explanations

Shapley Additive exPlanation (SHAP) values are an adaptation of the Shapley values, in-
troduced by Lloyd Shapley in 1953 [71, 50]. Shapley values, originating from cooperative
game theory, are used to fairly distribute both gains and costs among players based on
their contributions. They assign each player an amount reflecting their contribution to
the overall success of the coalition, ensuring fairness. Similarly, SHAP values measure the
contribution of a feature to a model’s prediction, rather than the contribution of players
to a game. Features, hereby, describe measurable characteristics such as blood pressure,
which are fed as input to the model. However, SHAP is also applicable to image data,
where the importance of a pixel is measured. The calculation of a SHAP value involves
considering all possible subsets of features and determining each feature’s marginal
contribution to these subsets. Specifically, for a feature in a subset, the SHAP value is
the average of the marginal contributions of that feature across all possible subsets of
the other features. Formula 2.1 shows how the SHAP value ¢; for feature i is computed,
where N is the set of all features, S is a subset of N that does not include feature i, |S| is
the number of features in subset S, and v(S) is the prediction for the subset S:

o= ¥ FHEZEER s - us) e
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SHAP values have several desirable properties. They provide both local interpretabil-
ity, allowing analysis of each feature’s impact on individual predictions, and global
interpretability, enabling the assessment of the total impact of a feature by averaging its
SHAP values over many predictions. Additionally, SHAP values are model-agnostic,
meaning they can be applied to any machine learning model. Despite the computational
challenges inherent in calculating exact SHAP values due to the need to evaluate all
possible feature subsets, approximation methods and efficient algorithms, such as those
implemented in the SHAP library'?, make their practical use feasible.

DeepSHAP

DeepSHAP is an extension of SHAP specifically designed for interpreting deep learning
models, which was also introduced in the original paper [50]. Combining the principles
of SHAP values with the DeepLIFT (Deep Learning Important FeaTures) algorithm,
DeepSHAP provides a robust and efficient method for understanding the contributions
of each feature in deep neural networks. DeepLIFT decomposes the output of a neural
network by comparing the activation of each neuron to a reference activation, attribut-
ing contributions based on differences from this reference [73]. DeepSHAP uses this

12h’r’tps: / / github.com/shap/shap
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decomposition to approximate SHAP values, making the computation feasible for large
and complex neural networks. By combining these techniques, DeepSHAP retains the
desirable properties of SHAP values, such as local accuracy and consistency, while being
computationally efficient. This approach allows for insightful interpretations of deep
learning models, enabling a deeper understanding of how features influence model
predictions.

2.1.2 Data-centric Explanations

Another way of explaining a model’s decision is to look at the data it was trained
on. Data-centric explanations focus on illustrating the relationships between the input
data and the model’s output, the distribution of input data and potential biases [4].
Explanations can answer multiple questions like how was the data collected, how do the
demographics behind the data look like, what is the recommended usage or are there
any known issues with the dataset [4]. Data-centric methods have been found to increase
trust in the model’s decisions, as the user gets a better understanding of which and how
much data has been used to create the model [4].

2.2 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) are software systems that support medical
experts in several tasks such as diagnostics, visualisation, data collection and decision-
making [9]. Hence, CDSS can range from simple data viewer or data base programs
to very complex Al applications. In today’s medical field, as big data becomes more
common, this latter type of CDSS is becoming more important. This comes to no surprise
as Al especially DL works best on large amounts of data. Al can even outperform
traditional systems or medical experts. Barnett et al. developed a system that detects
Multiple Sclerosis lesions with a much higher sensitivity than traditional radiology
reports [8]. Furthermore, researchers at Google created Med-PaLM and Med-PaLM 2
[74, 75], a large language model that can answer medical questions. It has been found
that Med-PaLM'’s answers were preferred by study participants over physicians” answers.
Moreover, DL architectures have been shown to have wrist fracture detection sensitivity
of 81 to 92 %, which was significantly better than that of radiologists [49]. Topol identified
a variety of Al models in medicine that can exceed humans through the analysis of big
data in his review from 2019 [83]. He also warns of the limitations of Al They need to be
properly validated such that errors cannot happen, as they directly impact patient safety.

While the adoption of CDSS has been substantial in several medical domains [61], the
application of such systems in the field of ophthalmology, particularly concerning Dia-
betic Retinopathy (DR) and Age-Related Macular Degeneration (AMD), has remained
relatively underexplored [22]. Models that outperform human experts in this domain
exist [45, 46, 53, 47, 82]. However, they usually stand as a sole demonstration of the
model’s performance versus the experts’ performance without being implemented into a
usable CDSS. Hence, the effects of the usage of such systems by experts is unknown. A
review from 2011 screened 91 studies related to CDSS and found that approximately 57
% of them showed a significant improvement in practitioners’ performance [41]. While
these results are already promising, they were acquired before DL became popular. A
recent review from Susanto et al. on ML based CDSS found that especially in image
recognition ML methods can outperform medical experts and lead to improved patient
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care [79]. Moreover, they showed that CDSS can reduce the time needed per diagnosis.

In general, the CDSS’ functions are designed to be beneficial for medical experts. How-
ever, in 2020 Sutton et al. [80] identified many risks associated with some functions of
CDSS’ that one should keep in mind in the creation process. A decision support should
improve patient safety through alerts or treatment recommendation. But, if the system
sends too many of these, the expert might grow numb to it and dismiss it regardless
of the importance. This issue should be addressed by evaluating the CDSS thoroughly
and asserting that treatment recommendations or alerts are given only when absolutely
necessary [80]. Low importance alerts should be labelled as such. The system should also
support diagnostics such that the expert can make use of the available data. However,
this affords the expert to trust the system, which is seldom the case [61]. To leverage this
problem, one should always reference expert knowledge such as guidelines or make the
model explainable [80].

2.2.1 Usability Guidelines

When creating CDSS one needs to consider a few requirements, that the system must
fulfill in order to be of use for the target group. Like any piece of software CDSS have
to be usable. Usability includes many factors. According to the Usability Guidelines
for Use Case Applications of the THESEUS Programme [77], a usable product is easy
to learn, efficient to use, can quickly resolve errors, has easily memorizable control,
provides enjoyment while usage and is pleasant to look at. These usability guidelines
provide a variety of usability engineering methods. For this work specifically interesting
are: User and task observations, interviews and questionnaires, benchmarking, and
usability testing. User and task observations can be used to identify common tasks
and problems for ophthalmologists in the DR and AMD domain. This is especially
useful in the preliminary studies. Interviews and questionnaires can be used to evaluate
a prototype. Benchmarking provides a way to assess the efficiency of the prototype.
Additionally, usability testing provides a holistic analysis of the CDSS’ usability in real
scenarios. Moreover, according to the Clinical Data Intelligence (KDI) project [84] the
integrated decision support must answer two questions: How can we get from medical
guidelines like PRN or TAE to a decision support and how can we show the reason for
that decision. While the first question is rather a technical question on how we get from
our data to a treatment decision, the second question refers to XAI methods. The KDI
project, therefore, also suggests that these decisions must be understandable. A review
by He et al. from 2023 also suggests explanations to decisions made by the CDSS among
25 guidelines on how and what to design [90]. Additionally, they suggest that one should
provide multiple options and alternatives for the treatment decision together with values
indicating the certainty or uncertainty of these options. Moreover, one should include a
tutorial to provide instructions on how to use the dashboard. The review found that the
design in general should be simplified as much as possible to reduce the workload of the
experts.

2.2.2 Examples

The Skincare Project

The Skincare Project by Sonntag et al. [76] is an example of a CDSS with a DL segmen-
tation component. It features the analysis of pictures of moles, birthmarks and other
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potentially carcinogenic skin conditions. The analysis follows a two step approach: First
the image will be segmented using a DL architecture, then the classification is done using
computer vision approaches and a diagnosis guideline called the ABCD rule. Similarly,
one could design an approach for our use case: First segment the OCT, second compute
relevant bio-markers such as the existence of retinal fluids and then decide according
to the TAE or PRN guidelines, how to proceed. The CDSS also features an "Explain”
button with several different callable methods such as RISE [62] and Grad-CAM [69]
highlighting the need for XAl in the medical domain and showcasing the relevancy of
the given classification.

Monitoring Diabetes Onset

Bhattacharya et al. (2023) [10] have designed a CDSS for monitoring diabetes onset.
They created their dashboard in a two stage process. First they developed a low fidelity
(LoFi) click-through prototype. After evaluation with health care experts, they created
a high-fidelity prototype with actual functionality and evaluated again including both
experts and non-experts. Their dashboard involved an ML algorithm, which predicted
the risk score of getting diabetes from certain health metrics and how this score would
change, when the patient lost weight or was physically more active. A key question they
strived to answer was how to explain the models decision making to the users. The study
found that data-centric approaches were most used by the study participants in order to
explain the models decisions. Model-centric explanations were less understandable to
users and, hence, were not consulted much. They also claim that the interactivity with
the model’s predicted risk score when selecting different actions helped alleviate trust of
the users in the system.

2.3 OCT Segmentation

Machine Learning methods have become a useful tool for the analysis of medical images
[81, 30]. Especially, DL architectures such as Convolutional Neural Networks (CNNs)
for classification or UNet architectures [65, 94, 38] for segmentation have been very
successful. OCT segmentation, along with medical segmentation more broadly, involves
the classification of each pixel in a medical image into its corresponding biological
functional unit or abnormality. In the OCT domain, pixels will be assigned either to retinal
layers or to lesions such as fluids or PED. UNet architectures feature a downsampling
and upsampling branch, which each consist of CNN blocks forming the name giving "U"
structure. Each block of one branch has a skip connection to a corresponding block in
the other branch, which allows for pixel wise segmentations. Based on this architecture
Farshad et al. created the YNet architecture [24]. YNet expands the UNet architecture by
adding another encoder branch, which uses fast Fourier transform blocks to analyze the
spectral domain instead of CNN blocks, which represent the spatial domain. Through
this expansion the network improved upon the UNet architecture in segmenting fluids
on the OCT dataset DUKE [19, 24].

EdgeAL introduced by Kadir et al. [43] is another expansion that builds on the YNet
architecture. This version makes use of Active Learning (AL) methods to reduce the
annotation cost of OCT datasets. AL methods incorporate human experts into the train-
ing process by querying the user to label uncertain inputs [70]. Through including edge
entropy and edge divergence information into the training EdgeAL can outperform other
models on very few data, while still being equally performant on large amounts of data.
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EdgeAL will be trained on the same dataset as the one that is being used for this work as
both are part of the OphthalmoAlI project. An AL model in the ophthalmology domain
can be used to query medical experts to annotate uncertain OCT segmentations. Conse-
quently, the model can continuously learn and improve, while doctors can supervise the
model.

2.4 Time Series Forecasting in Healthcare

As Bhattacharya et al. [10] demonstrated, an interactive prognosis tool helps users
trust and understand the decision support system. Moreover, several studies show that
treatment response can be predicted using ML methods. Jin et al. have developed a
DL model that predicts the treatment response of chemoradiotherapy for rectal cancer
patients from magnetic resonance imaging scans and blood-based biomarkers with an
AUC of 0.95 [42]. Furthermore, many studies use ML methods to predict drug response
of depression patients [87, 78, 88]. Additionally, as the aforementioned guidelines suggest
one should implement different options and treatment alternatives together with values
indicating their certainty or uncertainty [90]. The health development prognosis can
be seen as such a value. Therefore, in this thesis I will implement a ML model, that
predicts the development of certain health metrics such as fluid quantifications and
visual acuity depending on treatment factors. I expect this model to help the experts
see why the model made a decision as they can see how the model expects the patients
health to change. Moreover, I want to include the option for the expert to select any other
treatment decision and see the expected changes, as literature suggests that interaction
with the model improves trust [18, 12, 10, 35]. However, one needs a precise model for
this health metric prediction, because bad performance negatively impacts trust [63].

A meta analysis of time series prediction models in healthcare by Morid, Sheng and
Dubar from 2022 has shown that this field is growing rapidly [57]. The most commonly
used DL architectures were Recurrent Neural Network (RNNs) architectures. Among
them base RNNs, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks.

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed to
process sequential data by maintaining a hidden state that captures information about
previous elements in the sequence [52]. Unlike traditional feedforward neural networks,
RNNSs have connections that form directed cycles, enabling them to retain information
across time steps. This makes RNNs particularly well-suited for tasks where the order
and context of data points are crucial, such as time series forecasting. In practice, RNNs
are trained using backpropagation through time (BPTT), which adjusts the network’s
weights based on the error gradients calculated over multiple time steps. However,
standard RNNs often face challenges with long-term dependencies due to issues like
vanishing and exploding gradients, which can hinder learning [60].

2.4.2 Bidirectional LSTMs

Long Short-Term Memory (LSTM) networks are designed to effectively capture long-
term dependencies in sequential data. Introduced by Hochreiter and Schmidhuber in
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1997, LSTMs address the limitations of traditional RNNs [36]. The LSTM architecture
includes special units called memory cells, each containing three gates: the input gate,
the forget gate, and the output gate. These gates regulate the flow of information,
allowing the network to maintain and update the cell state over time selectively. By
doing so, LSTMs can remember important information for extended periods and are
particularly well-suited for tasks involving time series data, natural language processing,
and speech recognition. Their ability to handle long-range dependencies makes LSTMs
a powerful tool for modeling complex temporal dynamics and sequential patterns in
various applications.

Bidirectional Long Short-Term Memory (BiLSTM) networks introduced by Graves and
Schmidhuber extend the capabilities of standard LSTM networks by processing data in
both forward and backward directions, thereby capturing information from past and
future contexts simultaneously [33]. In a typical LSTM, information flows in a single
direction (from past to future), which can limit the network’s ability to understand
dependencies that rely on future context. BILSTMs address this limitation by combining
two LSTM layers: one that processes the input sequence from the start to the end (forward
LSTM) and another that processes it from the end to the start (backward LSTM).

The outputs of these two LSTM layers are then concatenated at each time step, providing
the network with a richer representation of the input data. This bidirectional approach
allows BiLSTMs to leverage context from both directions, making them particularly
effective for tasks where the meaning of a given element in the sequence depends on
both preceding and succeeding elements, such as in natural language processing (e.g.,
part-of-speech tagging, named entity recognition, and machine translation) and speech
recognition. By considering the entire sequence context, BILSTMs enhance the network’s
ability to model complex dependencies and improve performance. The aforementioned
study found that bidirectional LSTMs and GRUs outperformed their undirectional
counterparts and the basic RNN architecture in the medical domain [57]. Therefore, in
this work a BILSTM network will be developed and evaluated for the time series forecast
of several ophthalmologic metrics.

2.4.3 Predicting Visual Acuity

A study by Rohm et al. from 2018 [64] deployed several traditional ML algorithms
in order to predict visual acuity in AMD patients for three and twelve month time
frames. They report a LogMAR Mean Absolute Error (MAE) of 0.11 and 0.16 for their
best three and twelve month prediction model, which was a linear model trained with
L1 regularization (Lasso). However, in this study the input to the model consisted of
features from the current visit combined with aggregated values from past visits. Hence,
it fails to capture more meaningful sequential relations from past visits. The authors
also reported that missing data was a problem in the creation of the dataset. To mitigate
this problem they used different aggregation techniques such as mean, min and max
operations to cluster the data from multiple visits together.

Another study from Shi et al. published in Scientific Reports in 2023 [72] investigates
accuracy of several traditional ML regression models to predict the short term efficacy
after Anti-VEGF treatment. The models were trained on real-world data and predicted
several clinical indicators including LogMAR visual acuity. The best performing model
was a regression tree, which achieved 0.03 MAE for the LogMAR visual acuity and a
determination coefficient (R?) of one implying an extremely good model. However, their
data set contains the data of 280 patients only, because of strict inclusion and exclusion
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criteria. Therefore, variation among the patients might be low. Moreover, the input data
only considers two visits, while in a real life setting much more data would be available.

A recent study from 2024 by Schlosser et al. [68] have applied several ML methods
including RNNs and LSTMs to classify patients into a Winner, Stabilizer and Loser
scheme (WSL). Winners are visits, where the LogMAR visual acuity increased by at least
0.1, while losers are visits where it decreased by the same amount. Stabilizers lie within
this range. The models were trained on the data of several window sizes from four
up to ten included visits. A Multi-Layer Perceptron (MLP) performed best and even
outperformed ophthalmologists with an F1-Score of 69%. However, while the model can
show a tendency, the range of its classes leaves some uncertainty restricting its usefulness
in a clinical setting.

2.5 User Study Evaluation

User studies are an important tool to evaluate the usability of systems. In this thesis, a
qualitative user study with experts will be conducted, hence, qualitative analysis tools
are needed. Moreover, the usability of the system must be quantified in a comprehensible
manner.

2.5.1 System Usability Scale

The System Usability Scale (SUS) is a widely used tool for evaluating the usability of
a system, product, or service developed by John Brooke in 1986 [16]. SUS consists of a
ten-item questionnaire that participants respond to using a five-point Likert scale ranging
from "Strongly Disagree" to "Strongly Agree." The items alternate between positive and
negative statements to reduce bias. The final score, ranging from 0 to 100, provides
a quantitative measure of the system’s overall usability, with higher scores indicating
better usability. Formula 2.2 shows how the SUS score is calculated, where PQ and NQ
represent positive and negative questions, respectively. SUS delivers a numerical value
on the usability of a software system, and, hence, gives a comparable metric.

SUS = 2.5 [ 20 + Z PQ, — f:NQj (2.2)
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2.5.2 Thematic Analysis

Thematic analysis is a qualitative research method employed to identify, analyze, and
report patterns or themes within data. It was introduced by Clarke and Braun in 2006,
who continually refined and improved their method [13, 14, 15]. This approach is
particularly effective for interpreting complex textual data, such as interview transcripts,
survey responses, or field notes, by systematically categorizing and organizing the data
to uncover recurring themes that address the research questions. The process involves
several steps: familiarization with the data, generating initial codes, searching for themes
among these codes, reviewing and refining the themes, and producing the final report.
Thematic analysis is valued for its flexibility, as it can be adapted to various theoretical
frameworks and research objectives. This method’s capacity to provide deep, nuanced
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insights makes it a vital tool in qualitative research. For time reasons and lack of study
participants, this approach will be used to analyze the underlying themes emerging from
the usage of the dashboard instead of a quantitative approach.

2.5.3 Cohens Kappa

Since the thematic analysis is inherently subjective, a measurement is needed that ensures
the validity and reliability of the reported themes and codes. Cohen’s Kappa () is a
statistical measure used to evaluate the level of agreement between two raters who each
classify items into mutually exclusive categories [20]. Unlike simple percent agreement,
Cohen’s Kappa accounts for the agreement occurring by chance, thus providing a more
accurate assessment of interrater reliability. The value of Cohen’s Kappa ranges from -1
to 1, where 1 indicates perfect agreement, 0 indicates no agreement better than chance,
and negative values indicate disagreement not by chance. The calculation of Cohen’s
Kappa involves constructing a contingency table that shows the frequency of each
rater’s classifications and then applying formula 2.3, where p, is the observed agreement
(the proportion of times the raters agree) and p. is the expected agreement by chance,
calculated from the marginal totals of the table. By adjusting for chance agreement,
Cohen’s Kappa provides a more robust measure of the consistency between raters than a
simple agreement percentage.
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Chapter 3
Implementation

In this chapter I will go over the implementation details of the high fidelity dashboard
prototype, that was used to answer the research goals. First, general information about
the technology stack and the selected design approach will be given. Then, I will explain
several backend aspects such as the data and used algorithms. Finally, i will describe
the visual components of the high fidelity prototype. The general structure of this
prototype was developed from a low fidelity prototype, which was evaluated by one
ophthalmologist (for more information see section 4.1.2). Figure 1.1 shows an overview
of the high fidelity prototype. The dashboard consists of a sidebar and a main page. The
sidebar can be collapsed and mainly holds functionality for patient selection. The main
page features an info bar on top, a medical image visualization tool on the left and other
data visualization methods on the left. Not all features can be seen on this figure. Please
refer to section 3.9 for complete and detailed descriptions of them. The high-fidelity
CDSS prototype was a web application hosted by the DFKI.

3.1 Technology Stack

The front- and backend of the dashboard is built using Python. Python offers a simple
syntax as well as many libraries for data analysis, ML and visualizations. You can find
all used programming languages and libraries in table 3.1 along with their version,
usage and URL to their respective homepage. For the storage and retrieval of the data,
SQLite was used. For the creation of the dashboard, Streamlit was utilized because of
its simplicity and its free and easy-to-use addons from the community. Streamlit is a
python package that translates python code into javascript in order to create interactive,
fast and good looking websites. Its builtin features for data visualizations made it
especially useful. For tasks related to computer vision, OpenCV’s python version was
used. PyTorch and SciPy helped with machine learning and deep learning tasks, while
Pandas and NumPy were used for data processing. To understand model explanations,
I used the SHAP Python package. Finally, for creating visualizations, I turned to the
user-friendly Plotly package.

18
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Name Version | Use URL

Python 3.11.1 Core language https://www.python.
org/

SQLite 3.46 Database https://www.sglite.
org/

Streamlit 1.31.0 Frontend https://streamlit.
io/

OpenCV Python | 4.8.1.78 | Computer Vision https://opencv.
org/

PyTorch 2.1.0 Deep Learning https://pytorch.
org/

SciPy 1.11.3 Machine learning https://scipy.org/

Scikit-Learn 1.3.2 Data processing https://
scikit-learn.org/
stable

Pandas 2.2.1 Data analysis https://pandas.
pydata.org/

NumPy 1.24.3 Numerical computations | https://numpy.org/

SHAP 0.44.1 SHAP computations https://github.com/
shap/shap

Plotly Python 5.15.0 Plotting https://plotly.com/
python/

YNet model - Segmentation Model https://github.com/

azadef/ynet

Table 3.1: Main programming language and libraries used for this thesis. This list might

not be complete.


https://www.python.org/
https://www.python.org/
https://www.sqlite.org/
https://www.sqlite.org/
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3.2 User Centered Design

This dashboard was developed following a User Centered Design (UCD) process. User-
Centered Design (UCD) is an iterative design process that prioritizes the needs, wants,
and limitations of the end-users at every stage of the design process. This approach
ensures that the final product is highly usable and provides a positive user experience.
Key stages in UCD include user research, ideation, prototyping, and usability testing.
In a first iteration, a low-fidelity prototype was developed following a preliminary
workflow assessment interview. This prototype was evaluated by one medical expert.
The feedback was used to create the high-fidelity prototype described in this chapter.
Section 4.3 reports the feedback to this prototype.

3.3 Data

The data used in this thesis was collected in the course of the OphthalmoAlI project [25]. It
originates from two different eye clinics in Sulzbach and Miinster, which are specialised
in the treatment of DR and AMD. The clinics provide OCT and electronic historical
records (EHR) to a data warehouse called Xpl0it [27]. The EHR was anonymized and text
annotations were created from Systematized Nomenclature of Medicine (SNOMED) data
from XplOit using Natural Language Processing (NLP) techniques by LangTec. OCT and
EHR data was then saved in a data warehouse. Through an annotation tool developed by
the DFKI, which is based on the Hierarchical Universal Modular ANnotator (HUMAN)
[89], medical experts from the clinics could provide pixel-level segmentation masks to
the OCTs.

A data base was constructed, which contained six tables, that can be seen in figure 3.1:
visits, patients, patient_labels, oct_files, xploit_parameters and fluids. The first five tables
could be extracted from the data warehouse Xpl0Oit, while the last table was computed
using a quantification algorithm (see section 3.6). The visits table contained an identifier
key, a visit date and a patient identifier connecting it to the patients table. The patients
table contained a patient’s identifier key, pseudonymized birthday “(birthday are replaced
by some random offset without changing the age significantly), gender, diagnosis (AMD
or DR) and, from which eye clinic the data comes. The xploit_parameters table contains
a parameter identification key, a germand and english description of the parameter, its
python and xploit type and a unit. The patient_labels table combines the latter two
tables containing identifiers for the patient and a parameter. Moreover, it contains the
parameter’s value, which eye side this parameter was annotated for, an OCT UR]I, if
one is associated, and a date for, when this parameter was annotated. In total, 3,192
different parameter types were presented in the database with 1,656,611 total annotations.
The oct_files table contained a file URI, which function both as a key and a file location.
Moreover, it contained some information about the OCT like number of slices, resolution
parameters, patient and visit identifiers, eye side and a preparation date, which indicates
when this OCT was added to the database. The fluids table was saved quantification
data, which will be explained in section 3.6. This table used the file URI as a key identifier,
as it contained the quantification results of that associated OCT. It contained information
about the volume and number of fluids, drusen and PEDs. Moreover, it contained the
mean thickness values of all seven annotated layers as well as the total retinal thickness.
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Figure 3.1: Entity Relationship Diagram of the used data base.
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3.4 Alignment

During development, a significant problem emerged, complicating visual comparisons:
OCT slices and IRSLO images were rarely correctly aligned with data from previous
visits. Despite follow-ups being intended for alignment, this consistency was lost during
transmission to the data warehouse. Consequently, an algorithm was needed to rectify
this misalignment. The algorithm for aligning two images can be seen in listing 3.1.
Alignment is very important to identify local changes in scans. An example of two
misaligned OCTs and the computed alignment can be seen in figure 3.2.

def align(imagel, image2):
keypointsl, descriptorsl
keypoints2 , descriptors2

ORB(imagel)
ORB(image2)

matches = bruteforceMatch (descriptorsl, descriptors2)
matches = sortByDistanceAscending (matches)
best_matches = matches[:100]

pointsl
points2

= getKeypoints (keypointsl, best_matches)

= getKeypoints (keypoints2 , best_matches)
transformation_matrix = computeAffineMapping (pointsl, points2)
return warp(imagel, transformation_matrix)

Listing 3.1: Pseudocode of the alignment algorithm

First, the Oriented FAST and Rotated BRIEF (ORB) algorithm was used. The ORB al-
gorithm is an efficient and robust method for image alignment that combines keypoint
detection and descriptor computation [66]. Initially, ORB uses the Features from Ac-
celerated Segment Test (FAST) algorithm to quickly detect keypoints in an image by
examining the intensity of a circular neighborhood around each pixel. To ensure the
selected keypoints are stable and well-distributed, it refines them using the Harris corner
measure. To achieve rotation invariance, ORB orients the keypoints based on the direc-
tion of the intensity centroid within the local neighborhood. For descriptor computation,
ORB employs the BRIEF (Binary Robust Independent Elementary Features) descriptor,
which is a binary string representing the local image patch. ORB modifies BRIEF to be
rotationally invariant by aligning the patch orientation with the keypoint’s orientation.

First, the descriptors are matched using a bruteforce method, which compares each
descriptor from the first image with each descriptor from the second image. Hence, giving
the most accurate matches possible. Next, these matches are sorted by their distance.
From these the best 100 matches are being selected for keypoint extractions. A set of
100 points from each image will be taken and an affine mapping between these points,
the transformation matrix, will be computed. An affine mapping includes translation,
rotation, shearing and scaling. Finally, the transformation matrix is applied to the first
image. Now both images should be aligned. The quality of the alignment depends on
how good the descriptors could be matched. Sometimes, the alignment lead to bad results.
An algebraic way of assessing alignment quality was looking at the transformation
coefficients!®>. Formula 3.1 shows a possible two dimensional transformation matrix,
where ¢; are the rotation, shearing and scaling influencing coefficients and ¢, and ¢, are
the translation coefficients in x and y direction. If the sum of ¢; becomes large, one can
assume that alignment is incorrect, as usually slices must only be rescaled, sheared and
rotated a little bit. Similarly, large translations can be assumed to be incorrect. Therefore,

13For more information see https://en.wikipedia.org/wiki/Transformation_matrix
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Slice 1 Slice 2 Slice 1 realigned

Figure 3.2: Example of a slice from an older OCT (Slice 1; left) and a newer OCT (Slice
2; middle). One can see that the two images are positioned differently. Aligning slice 1
(right) gets rid of those differences and the images can be easily compared.

the dashboard shows a warning (see section 3.9.2), when the sum of ¢; exceeded 2.5. This
threshold was selected by examining bad alignments and their corresponding sum of c;.

C1 1 (6] 1 ¢ T
Transformation Matrix = | ¢12 2 ¢, (3.1)
0 0 1

3.5 Segmentation model

DFKI researchers trained a segmentation model on the acquired OCTs and annotations.
Its architecture was a YNet architecture trained specifically on the OCT data annotated
in the OphthalmoAl project. The code was taken from the github repository'* of the
original YNet paper [24]. The training data included 1233 OCTs which were labelled
with eleven classes, which can be seen in table 3.2. The average mean dice score was
0.762. The model was trained on the sum of the dice loss and a cross entropy loss for
100 epochs with a batch size of 32. The cross entropy loss was used to classify pixels
into whether they are correctly classified or not. This is especially useful for lesions as
the number of samples for these classes is rather low. The dice loss is used to evaluate
how good a predicted segmentation is. It is similar to the Intersection-over-Union (IoU)
score. However, instead of dividing the intersection by the union, it divides two times
the intersection by the sum of the areas of the prediction and the groundtruth [95]. This
model was trained as part of the OphthalmoAlI project and not as part of this work. The
weights were shared for the creation of the OphthalmoDashboard [25].

The model takes as input one OCT slice and computes a semantic segmentation mask.
Semantic segmentation means that every pixel will be classified into one of the eleven
classes. Figure 3.3 shows an example of a segmented OCT slice.

3.6 3D Reconstruction and Quantification of fluids

To be able to quantify fluids and other lesions, it was necessary to first reconstruct the
OCT in a three-dimensional space. Usually, assessing the presence and severity of lesions

Mnttps://github.com/azadef/ynet
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Class Number of samples | Annotation Type | Class dependent dice score
ILM 1233 | Layer 0.98
IPL 1218 | Layer 0.91
OPL 1210 | Layer 0.8
ELM 1190 | Layer 0.58
EZ 1190 | Layer 0.46
RPE 1214 | Layer 0.59
BM 1219 | Layer 0.52
Choroidea 1211 | Layer 0.85
Drusen 937 | Lesion 0.79
PED 523 | Lesion 0.9
Fluids 577 | Lesion 0.88

Table 3.2: Classes, their number of samples in the dataset, what they annotate and their
class dependent test dice scores.

IPL B orL ELM B ez RPE
BM Choroidea Drusen B reD B Fluid

Figure 3.3: Example of a segmentation mask.
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depends on a subjective measurement of the doctors. The reconstruction followed a
scanning approach, whereas the slices were scanned from top to bottom and lesion
objects were being tracked. The 3D reconstruction was only done on lesions and not on
layers, as the algorithm is quite performance heavy and the lesions are clinically more
relevant.

3.6.1 Algorithm

The 3D reconstruction works by iterating over the segmented masks produced by the
segmentation model and creating reconstruction objects. Figure 3.4 shows an overview
on how the algorithm works visually. More detailed information on the reconstruction
algorithm can be found in appendix A.

3.6.2 Quantification

The quantification of these reconstructions can easily be done by computing the convex
hull of all points in the reconstruction. In my research, I utilized subpackage "spatial”
of the SciPy Python package [85]. This subpackage makes use of the Qhull library to
compute the convex hull of a point cloud [7]. The convex hull of a set of 3D points is
the smallest convex polyhedron that encloses all the points within its volume. Figure
3.5 shows a random set of points generated in a circle and their convex hull. Moreover,
convex means that you cannot draw any line between any two points, which would not
also lie within the hull. This means that the hull does not have any dents or indentations.
This might lead to inaccurate reconstructions, where the volume is larger than it should
be. However, convex hulls can be efficiently computed. At its core, Qhull employs the
QuickHull algorithm, a robust and fast method for computing convex hulls in multidi-
mensional spaces. This algorithm iteratively constructs the convex hull by partitioning
the point set into subsets and recursively identifying the facets of the convex hull. Other
algorithms such as Delaunay Tesselation [86], which offer more accurate objects, are
more performance heavy. Since the efficiency inside the dashboard was critical and
the differences between these reconstruction methods was marginal, I decided to stick
with the convex hull reconstruction. From the convex hull one could easily compute the
volume of a reconstructed object.

3.7 Prognosis model

In order to be able to identify and quantify patterns in the patient data and make them
available for a treatment recommendation, a prognosis model was developed and trained.
The prognosis model was trained to predict certain health metrics such as visual acuity
and number and total volume of fluids. Visual acuity is a measurement that describes
a patient’s vision. Different scales exist for acuity, most notably the decimal scale and
the Logarithm of the Minimum Angle of Resolution (LogMAR) scale. In the following,
visual acuity will always refer to the decimal scale. Through this forecast I made sure
to include most of the patient’s history data and make an informed decision about the
effectiveness of the treatment. Hence, the recommendation of my system is not only
based on the presence of fluids as the guidelines would suggest, but it also includes other
features like patient age, smoking behaviour, BMI and other risk factors, which a medical
expert would use in their decision.
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e
e
e

Figure 3.4: Visualization of the 3D reconstruction algorithm through steps A to F. Pigment
epithelial detachments (PEDs) are reconstructed in this example. In step A the algorithm
starts with iterating through the masks. In step B the algorithm finds the first annotation
of PED. In the next step, step C, the algorithm cannot find another annotation. Hence, in
the following step D it marks this as one PED object, which is completely reconstructed.
Step E shows a multitude of completely reconstructed PEDs shown as volumes as well
as two large WIP reconstructions shown as lines through their contours. Step F is the
finalized reconstruction of PEDs.
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Random Points in a Circle with Convex Hull

Figure 3.5: Convex hull of a random set of points in a circle.

3.7.1 Data set

In this section, the process of the creation of the data set will be discussed. Firstly the
feature selection process will be highlighted. Second, the preprocessing steps will be
discussed. Then, I will explain the data split and, finally, the data point generation
process will be explained.

Feature Selection

The dataset was generated from the data of the OphthalmoAl project (see section 3.3 and
the analysis of the OCT files. Eight features were directly accessible from the data anno-
tations: age, gender, diagnosis (AMD or DR), eye side, Body Mass Index (BMI), visual
acuity, IOP, treatment type and smoking behaviour. Additionally, some features were
computed from the visit dates and the treatment type such as the number of days since
first/ last visit/ treatment or the total number of given IVOMs. Note that for the features
BMI and smoking behaviour data was not always available. Hence, statistics from the
year 2021 of several body measurements including BMI of the german population was
consulted to supplement a value for the BMI [23]. If no smoking behaviour was specified,
the patient was treated as a non smoker.

Other features had to be generated from multiple annotations, since using all annotations
would lead to very sparse and unnecessarily large input data. Table 3.3 shows the new
features and the number of annotations that were used in the generation of them. All
new features are binary features that show whether or not the feature is present currently.
These features are generated by searching for certain keywords in the annotations and
merging them together. For example the "Bleeding" feature was generated by searching
for all annotations that contained either the word "bleeding" or "hemorrhage". Whenever
a bleeding or hemorrhage was present and annotated, then the new feature "Bleeding"
will also be true. If none was annotated or the absence of such was annotated, then that
feature will be set to false. In total, I could reduce the number of features from 2202
annotations to 17 binary input features.

Moreover, the analysis of the OCT was used to add more features. Through the 3D
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New feature Number annotations used for generation
Edema 130
Bleeding 501
Aneurysm 62
Inflammation 15
Scars 351
Ischemia 3
Degeneration 56
Neovascularization 269
Exsudate 77
Cysts 35
Tumors 8
Glaucoma 5
Hypertrophy 20
Atrophy 203
Detachments 69
Drusen 244
Hyaline Bodies 156

Table 3.3: Features that are generated from multiple annotations and the number of
annotations they are generated from. For example the new feature "Bleeding" was
generated by merging all features that contained "bleeding" or "hemorrhage" in their
name, which accounts for a total of 501 features.

reconstruction (see section 3.6) the quantification in number and volume of lesions such
as Fluids, PED and Drusen could be added. These values were computed once via a
script and then added to the data set. Additionally, the average thickness of each layer
could have been added. However, I decided to only add the total thickness of the retina
as it was clinically more relevant and it was a much more robust measurement than the
thickness of the individual layers.

Preprocessing

Since not all annotations are always given and not every patient visit included an OCT,
which could be analyzed, the data was left with several gaps for several features, which
had to be addressed. In order to have data points for every feature for every patient
visit, the data was interpolated using different techniques. Qualitative features such
as smoking behaviour or diagnosis were interpolated using a forward and a backward
fill. The merged features were not interpolated as they were already given for each
visit. Numerical features such as visual acuity, volumes, IOP or BMI were interpolated
using smoothed linear interpolation. Smoothed linear interpolation was computed by
taking a weighted mean of a window of 90 days, whereas the computed point is in the
middle of the window and the middle has the highest weight with the weights shrinking
towards the edges of the window. Figure 3.6 shows the actual data points for a patient’s
visual acuity versus the interpolated visual acuity. By using this type of interpolation
one can mitigate noisy data. As one can see in figure 3.6 part A the visual acuity data
can have large amplitudes in a very short time frame. The smoothed interpolation takes
the mean between multiple values and returns a value that is more coherent with the
rest of the curve. Visual acuity usually does not change much in short time frames,
which is why this method helps remove potential measurement mistakes. However, this
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type of interpolation also damps extrema in the curve and, hence, artificially reduces
the amplitude of the curve, which might introduce some errors. The interpolation was
computed using pandas rolling window average.

Additionally, each feature was standardized to have zero mean and unit standard vari-
ance. No other preprocessing was applied to the data.

Windowing

The datapoints were created by sliding a window that covers twelve visits over the
patient’s history. This selection of twelve visits was arbitrary and an evaluation of other
window lengths could be conducted, but was not possible in the given time. One data
point does not cover a fixed timeframe but a fixed number of visits, which can have
varying time intervals inbetween them. However, to account for that the time since the
last visit/ treatment is also a feature. Getting the target variable at exactly one, three, six,
nine and twelve months was rarely possible, because visit dates might differ. Therefore,
the interpolated values were sampled at those time points and used as the target variable,
although there might not be an actual measurement. However, only values that are
inbetween actual recorded values were used as targets. Data windows whose target
would be outside of any real visit would require extrapolation from the given data which
would in turn add bias to the data, which is why these windows were not added to the
data set. This led to different data set sizes depending on how far in the future the target
was. Naturally, this means that the data sets for targets farther in the future are smaller
than those who are only a few months in the future. Table 3.4 shows the amount of data
windows for each target time frame.

Data split

The data was split into 80% training data and 20% test data, where the split was done on
a patient scale and not on a data point scale. Consequently, data sets and splits vary in
number of data points depending on the split and the targeted time. Furthermore, it also
means that the test set does not include any data from a training patient and the model
needs to generalize to unseen patterns. Altogether, the data set included the data of 1653
patients. Therefore, we have the data of 1322 patients in the training set and that of 331
patients in the test set.

3.7.2 Bias

The data is heavily biased since all data stems from unhealthy patients. Figure 3.7 shows
the distribution of the target metrics as violin plots. One can see that for the visual acuity
we have a bias towards smaller values. However, against the intuition of observing more
unhealthy values the volume and number of fluids values are heavily biased towards
zero. This could be an artifact of the unbalanced training data of the segmentation model,
which is then propagated onto this data.

Moreover, the data is biased because of the annotations of the medical experts. The
information content of all features, specifically the binary features, depends completely
on the accuracy of the annotations of symptomes from the doctors. In this sense the model
also learns the possible mistakes of the attending physicians. To mitigate this problem,
annotators were trained to use the annotation tool and the quality of annotations was
assured using inter-rater metrics.
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Figure 3.6: Linegraph of actual datapoints (blue) of visual acuity and volumes versus the
interpolated data created by smoothed interpolation (green) versus the data predicted by
the three months forecast model of the specific metric (red). A) shows the visual acuity.
B) and C) show the volume of fluids. One can see that A) and B) accurately predict the
development. In C) we can see that the model keeps predicting the presence of fluids,
while none can actually be observed, although notably on a very small scale.
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Figure 3.7: Violin plots of visual acuity (top), volume of fluids (middle) and number of
fluids (bottom) values. Note the logarithmic scale for volumes and number of fluids. The
violins show the distribution of data along the metric’s possible values. All metrics are
lower bound by zero.
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Metric Time target [months] Number of | Number of
training samples | test samples

1 58767 16290

3 57594 15141

Number of fluids 6 55814 13327
9 53204 12220

12 51098 10778

1 61887 13170

3 57922 14813

Volume of fluids 6 56888 12253
9 51511 13913

12 48212 13664

1 60214 15654

3 58706 14801

Visual Acuity 6 56620 13275
9 52753 13401

12 50211 12363

Table 3.4: Target timeframes and their respective number of datapoints in the dataset.

Parameter Type Possible values
Learning rate Hyperparameter [0.01, 0.001]
Learning rate reduction factor | Hyperparameter [0.9,0.5]
Batch size Hyperparameter [64, 128, 256]
Number of LSTM layers Architecture [1,2,4]
Hidden size of LSTM layers Architecture [8, 16, 32]
Dropout rate inside LSTM Architecture [0.0,0.1]

Table 3.5: All tuned parameters included in the hyperparameter tuning and their respec-
tive possible values.

3.7.3 Architecture and Hyperparameter Tuning

The architecture of the prognosis model is a simple neural network consisting of a
varying number of LSTM layers depending on the metric and timeframe to predict, a
normalization layer and a fully connected layer. Table 3.5 shows the hyperparameters
for each combination of health metric and targeted timeframe.

Hyperparameter Tuning was done for the following health metrics: visual acuity, number
and total volume of fluids. Moreover, hyperparameter tuning was only done for the
timeframes of three and six months. This was unfortunately necessary in order to keep
the number of models to train in practical range. Three and six months were chosen for
hyperparameter tuning as it is clinically the most relevant timeframe. The models were
trained for 500 epochs on the Mean Absolute Error loss. Training could stop early if the
validation loss did not improve for 100 epochs. The learning rate was schedule using a
reduction factor, that was multiplied to the learning rate whenever the validation loss hit
a plateau. Patience before the optimiser found a plateau was five epochs. A total of 144
models was trained with a total training time of approximately 136 hours.



33

Metric Time in months | Mean AE | Median AE
1 0.63 0.07

3 0.48 0.03

Number of fluids 6 1.05 0.10
9 0.57 0.02

12 0.68 0.04

1 4.49E-5 5.59E-6

3 5.56E-5 1.90E-6

Volume of fluids 6 6.32E-5 1.87E-6
9 1.14E-4 4.94E-6

12 1.12E-4 3.14E-6

1 0.02 0.02

3 0.04 0.03

Visual Acuity 6 0.05 0.03
9 0.05 0.04

12 0.05 0.05

Table 3.6: Performance of prognosis models in mean and median absolute errors. Bold
numbers indicate that the model was finetuned. AE = Absolute Error

3.7.4 Results

The best parameters from hyperparameter tuning were used to do a smaller scale hyper-
parameter tuning on the remaining models. Figure 3.8 shows boxplots of the absolute
error of the different predicted metrics for their various timeframes. The mean and
median absolute errors can be found in table 3.6. For the visual acuity, one can see that
the absolute error gets worse with increased time reaching errors of up to 0.8. However,
for the shorter timeframes the error is relatively small. This increase can also be observed
in the mean and median absolute errors. However, these errors are smaller or equal to
0.05 in decimal scale, which indicates a good average prediction for visual acuity. For
the volumes, similar observations can be made. The errors’ range increases with time.
However, the mean and medians are roughly the same. In general, they seem to be
extremely low, although the errors are in milliliter scale, such that the differences might
still be significant on tissue scale. If one takes the data distribution bias as shown in
figure 3.7 into account, then the errors can be explained by the large amount of near zero
targets, which, when predicted correctly, contribute massively to a small mean error. The
same can be said for the predictions of the number of fluids. The mean and median are
very small, however, the distribution of data indicates that a large portion of target values
lies near zero. Hence, the models might be good in predicting small, near zero values
but might perform suboptimally on data, that actually contains fluids. This becomes
especially clear when looking at the large amount of outliers in both metrics, which are
even more extreme considering the logarithmic scale.

Three examples of the three months forecast models can be found on figure 3.6. On part
A) of the figure, one can observe that the model reliably predicts the overall trend in
visual acuity, although it misses the amplitudes from 2014 to 2015. The predictions of the
total volume of fluids in part B) show similar results. This has high clinical relevance,
as it would theoretically give a treatment indication before the patient suffers the first
symptomes allowing for preventive medication. Looking at C) we can see that the
predictions are not always as fitting. The patient does not have any fluids, while the
model keeps predicting a rise in fluids although in almost negligible amplitude.
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Figure 3.8: Boxplots of the absolute error of test set predictions for visual acuity (top),
total volume (middle) and number of fluids (bottom). Please note the logarithmic scale
on the volume and number of fluids plot. The dashed line represents the mean and the
continuous line the median of absolute errors. Dots above the boxplot represent outliers.
Note that the data is lower bound by 0, hence outliers will only be above the boxplot.



35

3.7.5 Explaining model predictions with SHAP values

To understand the models’ predictions, SHAP values were consulted. The SHAP values
were computed using the shap python package '°.

Computation of SHAP values

An explainer model was fit to 5000 samples from the training data of each metric and the
time target of three months, as this time range yielded the best performing models. The
explainer model was then used to compute the SHAP values of 1000 samples from the
test data. In order to cover the whole range of possible target values, target values were
sorted and features were uniformly sampled using the sorted indices for both fitting the
explainer and computing SHAP values. Traditionally, one uses the mean of the absolute
SHAP values across the features to compute the feature importance. This means that
important features on average had large absolute values across the number of points and
the sequence length. However, this measure is not perfect as features, whose impact is
only large for a certain part of the sequence, will have lower impact on the prediction
than features, whose impact on average is intermediate. Hypothetically, medication for
example might only have an impact on the prediction of fluids, if it was given in the
last three visits. In these cases its impact would be high. However, its impact on the
prediction from visits that are longer ago might be near zero. The average of its impact
might be skewed towards a lower value because of this, while another feature has a low
average impact across all points in the input sequence. This other feature will be ranked
higher, although clinically the impact of the medication is more interesting. To mitigate
this problem, the maximum across the means of absolute values for each sequence point
was taken as a measurement of the importance of a feature. Formula 3.2 shows how the
feature importance was computed, where S;;;, is the SHAP value for feature 7, sequence
point j and sample .

T
o or 1Sk

Featurelmportance( f;) = max
NSamples

IVj:0<j< nSequences} (3.2)

Feature importance for visual acuity prediction

Figure 3.9 shows the computed SHAP values of the visual acuity model for the three
months forecast. One can see that to predict visual acuity, the past visual acuity values
are most impactful. Specifically, the visual acuity of the second most recent visit has
high impact on the prediction, while influence becomes less large the longer ago the
visits were. Surprisingly, the most recent visit does not have the largest impact on the
model. Large visual acuity values positively influence the prediction, while low values
negatively influence it. This means that high visual acuity values also lead to high visual
acuity predictions, when looking at this feature alone. The second most impactful feature
is the number of days since first treatment. Looking at the SHAP values of the most
recent visit one can observe that the longer the first treatment is in the past, the more
it negatively affects the visual acuity prediction. This pattern can be observed for the
most recent three visits. However, then the pattern switches meaning that visits that lie
longer in the past. In figure 3.9 blue color in the medication variable is associated with

Bhttps://github.com/shap/shap
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no medication, whereas all other colors can be associated with some active ingredient.
As expected, medication has a positive SHAP value meaning, that, if there was treatment
before, the model predicts higher visual acuity values, while no medication is associated
with negative to no impact on the prediction. Again, one can observe that the absolute
influence of the second most recent visit has the highest contribution to the prediction,
while the first and latter ones have less impact. Moreover, the absolute SHAP values of
the medication feature and the other features are much smaller than those of the visual
acuity feature speaking for a smaller relevance to the prediction. Aneurysms as well as
PEDs seem to have a positive impact meaning that their existence influences the model
to make a better prediction for the visual acuity. This seems counterintuitive at first,
however, it could be correlated to extensive treatment or surgical procedure such as
photocoagulation, which in turn improve visual acuity. Atrophy generally has negative
impact when present, which naturally makes sense as a thinning of the retina comes with
a worsening of the visus.

Feature importance for fluid prediction

Figure 3.10 shows the SHAP values of the model that predicts total volumes of fluids.
Again, one can see that the metric to be predicted is also the most important input feature
and its impact on the prediction scales proportionally with its values. However, contrary
to the visual acuity prediction very low values do not majorly contribute negatively but
rather have very few influence, while very high values still have large positive impact.
The same holds for the number of fluids” and the number of PED’s impact on the model’s
prediction. Studies have found that PEDs are associated with CNV, which again is
associated with the development of fluids [92]. Hence, these SHAP values clinically
make sense. Furthermore, visual acuity has the same effect on the volume of fluids
prediction as it has on the visual acuity prediction, although notably smaller. Naturally,
this does not make sense, as high visual acuity values should not correlate with high fluid
volumes. If one takes into consideration, that patients usually only seek medical advice,
once they develop first symptoms, it becomes apparant, where this correlation is rooted.
Patients that just started treatment, generally still have relatively high visual acuity, but
are in therapy, because of early symptomes such as fluids. Additionally, towards the
later stages of AMD and DR, the retina is left with scar tissue and fluids are less present.
Therefore, longlasting patients with low visual acuity values also develop less fluids.
Finally, high age positively impacts the development of fluids, which is also in line with
clinical knowledge. This shows that the model’s forecast is clinically comprehensible
and, hence, learned to extract meaningful information for the fluid prediction.

3.8 Treatment recommendation

The CDSS aids medical professionals by providing visual analytics and presenting the
most crucial information. However, it could be further enhanced by supporting the
treatment decision process, given the clear guidelines. Specifically, if the OCT is active
(meaning fluids are present), treatment is required; if not, it is unnecessary. Additionally,
treatments should follow a series of three IVOMs at monthly intervals before a break.
Furthermore, Guidelines determine the length of breaks and when to resume treatment.
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Figure 3.9: SHAP values of the impact of the five most impactful features on the three
month prediction model of visual acuity. Each datapoint shows the SHAP value of one
single prediction. Positive SHAP values impacted the predicted value positively, while
negative values impacted it negatively. The x axis shows how many visits ago that
datapoint lies in the sequence. Red dots indicate high feature values, while blue dots
indicate low feature values. For example: High visual acuity values on the second most
recent visits indicate a positive impact on the prediction, whereas low values indicate
a negative impact. The more visits ago, the less influence they have on the prediction
except for the first visit, which has smaller impact.
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Figure 3.10: SHAP values of the impact of the five most impactful features on the three
month prediction model of total volume of fluids. Each datapoint shows the SHAP value
of one single prediction. Positive SHAP values impacted the predicted value positively,
while negative values impacted it negatively. The x axis shows how many visits ago that
datapoint lies in the sequence. Red dots indicate high feature values, while blue dots
indicate low feature values. For example: High volume values on the most recent visits
indicate a positive impact on the prediction, whereas low values indicate a negative
impact. The more visits ago, the less influence they have on the prediction.
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3.8.1 Algorithm

A treatment recommendation system was developed, which can be seen in figure 3.11.
First, abort conditions will be checked such as extreme IOP or extremely low visual acuity
values. These values indicate that treatment is too dangerous for its potential benefit.
Hence, if they are fulfilled, the medication should be aborted. Otherwise, treatment
status will be checked. If an IVOM series has already been started but not finished,
meaning we are on the second or third injection for this cycle, we move on to the decision
for which medication to use. If the patient is not in an unfinished IVOM series, then the
segmentation model is used to identify, whether the patient’s recent OCT is active. If that
is not the case, we do not start another treatment round. However, if it is still active the
prognosis model is consulted to check for the best medication for this specific patient.

This tool predicts three different metrics for a total timeframe of twelve months. For
the recommendation, I only consulted the visual acuity metric as one wants to improve
this for the patient as it directly measures their vision. The prognosis model will be fed
the data of the current visit and the last eleven visits. It will give a prediction for each
medication by switching this feature in the current visit for every possible Anti-VEGF
drug in our database. Hence, we get a prediction for the development of visual acuity for
every possible treatment on that visit date. With these predictions we can decide, whether
we want to continue treating with the same medication as before or if there might be a
more effective option. However, since the model’s accuracy deteriorates with increased
time to predict, we cannot weigh every prediction equally for comparison. Hence, the
algorithm looks at a weighted average of the prognosis of one, three, six, nine and twelve
months, whereas the weights are 20%, 35%, 15%, 10% and 5%, respectively. A switch
to new medication will only be recommended, when the new medication promises at
least 10% improvement over the old medication. Otherwise, the system recommends to
continue using the already given medication.

The treatment recommendation system follows the PRN scheme, as this was predomi-
nantly used in our database. Moreover, identifying the TAE scheme proved to be a hard
task, because series are not finished, have unregular breaks or other deviations from
the treatment plan. Hence, the system always recommends a cycle when one is needed
without analyzing previous cycles, their intervals and break durations, although this
information is contained inside the prognosis data to some extent.

3.8.2 Evaluation & Results

The recommendation system was evaluated by comparing its treatment suggestions with
historical decisions. A random subset of test samples from the preprocessed prognosis
data was used, and the recommendation model was fed these samples. For each active
ingredient, the goal was to obtain 500 sample points where the drug had been adminis-
tered. However, due to varying frequencies in the data, only Aflibercept, Ranibizumab,
and Bevacizumab met this criterion, resulting in a sample size of 2,179 visits where IVOM
medication was administered. To balance the test data, an equal number of visits without
Anti-VEGF therapy were included summing up to a total of 4,358 data points. The data
was then classified into two ways: treatment vs. no treatment and different medications
including no medication.

Figure 3.12 shows the confusion matrix for the treatment classification. The system’s
recommendations matched the historical data in only 60% of cases. It almost equally
recommended medication where historically none was given, and no medication where
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Figure 3.11: Scheme of the recommendation algorithm.
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historically IVOMs were administered. Several factors could contribute to these errors.
Firstly, the data is incomplete, lacking critical information such as patient needs or
surgical procedures. Secondly, the data is biased due to quantification algorithms and
ophthalmologists” annotations. Incomplete or outdated annotations can mislead the
system. Unlike DL and ML algorithms that can handle data outliers by learning patterns,
the recommendation system struggles with outliers and cannot identify these situations
accurately. For instance, if a doctor previously annotated neovascularization as an
indication for treatment but didn’t update this as resolved in subsequent visits, the
system would still recommend medication. Finally, the historical data itself may not
always reflect the correct indication due to deviations from guidelines, human error,
non-clinical reasons for stopping treatment, or other concurrent diseases. Thus, the
historical data is not a perfect standard for evaluating the model’s performance. In this
sense, the model does not attempt to reproduce historical data as a DL or ML model
would. Instead, it theoretically adheres to standard guidelines, which may differ from
real-world practices. Therefore, despite these discrepancies, its recommendations remain
clinically relevant to some extent.

When the system recommends therapy, it suggests the same drug as historically adminis-
tered in 85% of cases. This is likely because medication switches are rare and IVOMs are
typically given in series, making drug recommendations straightforward. Once a series
is initiated, it is usually continued until completion, and new series are often started with
the same medication, leading to a high consistency rate in drug recommendations.

3.9 Visual Components

The dashboard is separated into six visual components (VC), which can be seen in figure
3.13: The top bar, the OCT viewer, the linegraphs, the metrics, the recommendation
and the infobox. The dashboard was implemented using streamlit [40]. Streamlit is a
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Figure 3.12: Confusion matrix of the binary classification of treatment versus no treat-
ment.

python framework that facilitates the rapid development of interactive web applications.
It allows for easy integration of data visualizations and user input functionalities. It also
offers a wide range of publicly available, community created extensions for all kinds
of functionalities. Hence, it was selected for the development of a prototypical CDSS.
For visualizations Plotly was used [39]. Plotly is a python package for easy creation of
high quality, interactive graphs. The integration of plotly graphs into streamlit made it
especially useful.

3.9.1 Top bar

The top bar was designed to deliver the most crucial metadata about the patient in a
compact fashion. Hence, it displays the age, gender, weight, height, body mass index
(BMI), smoking behaviour as well as the blood pressure, if they are available in our
database. Additionally, it highlights which disease the patient is being in treatment for.

Moreover, it showcases a treatment status. This treatment status informs about whether
a patient is in a series of IVOM uploads or not and what number of IVOMs was already
administered. Additionally, the active ingredient of the current series is shown. However,
there is no information about the treatment status or the applied upload scheme inside
the database and one has to apply an algorithm to the data in order to retrieve it. The
algorithm looks at the last visits and whether or not an IVOM was given and then counts
the previous visits until one visit falls out of the pattern of one month intervals inbetween
visits. The scheme, PRN or TAE, could not be computed in the same way, which is mainly
due to lots of deviations in the actual IVOM uploads. As the actual uploads do not strictly
follow the scheme for unknown reasons and patients often do not come for extended
periods, it was impossible to reliably compute the scheme.

To mitigate this problem the IVOM timeline was added, which shows a colored bar for
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Figure 3.13: The six visual components (VC) of the dashboard: VC1 = Top bar, VC2 =
OCT viewer, VC3 = History graphs, VC4 = Metrics, VC5 = Recommendation, VC6 =
Infobox. Moreover, the sidebar can be seen, which yields functionality about patient
selection.

every visit where an IVOM was given. The color of the bar represents one of the possible
medications and is coherent with the history graphs in VC3 (see below), which also
feature colored bars for IVOMs. In the IVOM timeline the medical expert can visually
identify schemes and patterns. The timeline was implemented using plotly’s express
subpackage, which contains a timeline plot functionality.

3.9.2 OCT Viewer

The OCT viewer offers functionality to look at OCT slices, the IRSLO and the 3D recon-
struction. It features a wide range of tools, which are discussed in the following section.
In general, all features are divided into three spaces: The tool bar, an IRSLO overview
and the plot area. The tool bar offers functionality to select, segment or compare the
current OCT, while the IRSLO overview shows a small version of the IRSLO for the user
to orient on. The plot area shows the different image information: IRSLO, Slice and 3D
view. The segment and compare functions are shared across the IRSLO and Slice view.
Segment shows the segmentation, while compare overlays two images. A slider can be
used to move the overlap boundary in compare mode. An align function can be used to
align the images in the compare slider, as explained in section 3.4. If the alignment is not
good, a warning will be displayed.
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IRSLO

The IRSLO' is an "En face" representation of the OCT meaning that you see onto the
retina. The IRSLO is automatically selected at the start, as it offers a quick overview over
the retina. The IRSLO to be shown can be selected through a dropdown menu. The tools
for the IRSLO include: Compare mode, Segmentation and a Thickness Mapping.

The compare mode will overlay two IRSLO images with a slider, which can be moved.
Moving the slider means moving the boundary between the overlapping images. This
allows for easy comparison between two images. The IRSLO for comparison can also be
selected through a dropdown menu. Additionally, one can align the IRSLO images with
the alignment algorithm described in section 3.4. Moreover, the segmentation mode gives
a top down view of the lesion segmentations on top of the IRSLO. Furthermore, it shows
a yellow rectangle indicating the position of the OCT recordings. A green line inside the
rectangle highlights the currently selected slice, such that users can see, where this slice
is located in the IRSLO. Figure 3.14 shows the IRSLO view with all of the aforementioned
features selected. One can see the purple colored PED segmentations and compare them
to a previous recording using the slider.

Additionally, the IRSLO view offers a thickness mapping, where the thickness of a
selected retinal layer is overlayed over the IRSLO as a heatmap. Figure 3.14 shows this
mode with the comparison to a previous visit. If the comparison tool is turned on, the
heatmap does not show the thickness of that layer but how that layer changed from last
visit to the current one. Blue colors indicate that the layer got thinner, while red colors
indicate it got thicker. Additionally, the mean change is shown below the image. When
hovering over any pixel on the heatmap, a hoverinfo will appear and show the thickness
of that layer at that specific pixel.

OCT Slices

The user can also compare the OCT slices using compare and the slider and show the
segmentation mask of the segmentation model. Figure 3.16 shows the OCT view when
both features are enabled. The segmentation model also segments both layers and lesions
and not just the lesions unlike the IRSLO. The user can navigate through the different
OCT slices using either the buttons on top or using the slider inbetween the buttons.
When alignment is enabled but the selected OCTs are not follow ups, a warning will be
displayed highlighting that alignment is experimental with this selection of OCTs.

3D Graph

The 3D graph makes use of the 3D reconstruction explained in section 3.6. It is supposed
to give a "At a glance" overview over the whole OCT including layers and lesions, thus
rendering scrolling through slices unnecessary and speeding up analysis of the OCT.
Figure 3.17 shows the 3D graph inside the dashboard. One can see multiple transparent
and colored layers. Additionally, lesion objects are shown as 3D volumes with less
transparency. Moreover, the selected OCT slice is also displayed inside its position
in the 3D graph. This was done such that the medical expert has an opportunity to
control the reconstruction. Unfortunately, for performance reason no comparison could
be implemented, that would allow to see two 3D graphs of different OCTs beside each
other.

16Infra-Red Scanning Laser Ophthalmoscopy
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Figure 3.14: Example of VC2’s IRSLO view with comparison and segmentation tool
turned on. The slider on the image can be moved to make the right IRSLO overlap
more or less over the left IRSLO. A segmentation mask is overlayed on top of the IRSLO.
It shows only the segmentations of drusen, PEDs and fluids. Its transparency can be
controlled by the transparency slider in the bottom right. Segmentation, the comparison
slider and the alignment can be turned on and off. The left side IRSLO can be selected
via the dropdown at the top and the right side IRSLO can be selected via the dropdown

at the middle of the toolbar.
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Figure 3.15: Example of VC2’s IRSLO view with comparison and thickness map tool
turned on. The heatmap shows the differences in thickness of the ELM layer between
the two OCTs. Turning off compare will only show the thickness map of that layer from
the main OCT. The "Align" button aligns the heatmaps according to the alignment of the
underlying IRSLO images. The layer to be displayed can be selected through a dropdown
menu at the bottom of the toolbar. Additionally, one can change the transparency of the
heatmap through a slider. The mean thickness change of the selected layer will also be
shown in a color coded info box below the plot. Green colors indicate thickening, while
red colors indicate thinning of retinal layers.
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Figure 3.16: Example of VC2’s Slice view with comparison and segmentation tool turned
on. The slider on the image can be moved to make the right OCT overlap more or less
over the left OCT. A segmentation mask is overlayed on top of the OCT. Its transparency
can be controlled by the transparency slider in the bottom right.
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Figure 3.17: Example of VC2’s 3D graph feature. The graph shows the top side of the
segmented retinal layers as transparent layers colored by the same color scheme as the
segmentation. Fluids, drusen and PEDs are shown as volume objects colored in the same
scheme. Through the slider on top, one can move the OCT slice inside the 3D graph. The
3D graph can be rotated and zoomed using the mouse.
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Figure 3.18: Example of VC3. The visual acuity history graph of the right eye for
a randomly selected AMD patient. The orange markers are the recordings of visual
acuities connected by the orange line. They are not interpolated in this graph. The green
vertical lines indicate treatment with the medication ranibizumab shown in the legend.
Moreover, this patient has been treated with bevacizumab according to the legend. These
treatments are out of scope and can not be seen. By panning the user can make these
treatments visible. The green dashed line shows the expected change when continuing
treatment with this medicament. The transparent lines in the legend can be clicked to
turn their prognosis visible in the graph.

3.9.3 History graphs

Traditionally, the medical experts have to search for metrics such as the visual acuity
and IOP in a patient’s electronic records manually. More specifically, they have to scroll
through the records and find these values and keep them in mind, when making a
treatment decision. An intuitive way of summarizing these values was plotting them
in a line graph, which can be seen in figure 3.18. This line graph plots the recordings of
visual acuity as markers and connects them via a line. Visits that involved the injection
of a Anti-VEGF are marked as vertical lines colored in a specific scheme. The legend
shows which medication has been given to the patient as dots. Moreover, the dashed line
shows the prognosis of the recommended treatment. Other prognosis can additionally
be shown through clicking the respective transparent name in the legend. This allows for
easy comparison between prognosis. Moreover, the graph can be panned and zoomed
out in order to see the whole development of this value. By selecting one of the tabs
on top the user can switch between the graphs for visual acuity, fluids and intraocular
pressure.

3.9.4 Metrics

The metrics are supposed to give an "at a glance" development view from last to current
visit. They show the development of visual acuity, number and volume of fluids and
the IOP in percent. Figure 3.19 shows an example of the metrics for a randomly selected
AMD patient. The development is computed by dividing the current value by the last
value and subtracting 100%. For cases, where the last value was zero and a Division-
ByZero exception would be thrown or the last value was nearing zero and would cause
the percentage to become extremely large, the current value was simply taken as the
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Figure 3.19: Example of VC4. The metrics show the difference between current and last
visit in percent.

percentage. In general, this was only a problem for the volume of fluids, as its values
fluctuate greatly. The metrics were color coded in green to highlight good or healthy
changes and in red to highlight bad or unhealthy changes. They were displayed in grey,
if there was no change.

3.9.5 Recommendation

VC5 shows the result of the recommendation algorithm described in section 3.8. It was
color coded to highlight the importance of the recommendation. Figure 3.20 shows
four examples of possible recommendations. A) shows a recommendation to abort
treatment as the visual acuity values are too low and treatment bears unnecessary risks
without possibility for much improvement. B) shows a recommendation to treat with an
already used medication. However, it also recommends to switch to a different drug, as it
promises better results. C) shows a simple recommendation to continue an IVOM series
with the same medication. D) recommends to not treat, as there are no fluids detected
on the OCT. The colors of the recommendation are similar to that of a traffic light. Red
symbolizes that one needs to stop treatment, while green symbolizes to continue or start
treatment. Since the absence of fluids does not necessarily mean that treatment must be
stopped, it is colored in blue.

3.9.6 Infobox

The infobox (VC6) features three tabs, each providing additional, non-critical information.
Although this data is not essential for treatment decisions, it is included for completeness
without occupying major screen space.

Reasoning

The reasoning tab shows a data-centric explanation for the recommendation. More
specifically, it highlights, how critical metrics have changed from the last to the current
visit. Additionally, it shows, how the system expects these values to change given a
specific treatment. This treatment can be select via a dropdown menu. Figure 3.21 shows
an example of the reasoning. Again, color coding was used to highlight healthy and
unhealthy changes.

Visit Diff

The "Visit diff" tab shows additional differences between the last and the current visit in
the form of a table. More specifically, it shows the preprocessed feature values discussed
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Figure 3.20: Four examples of VC5. A: Recommendation to abort is highlighted in red. B:
Recommendation to switch medication. C: Recommendation to continue started series.
D: Recommendation to not treat as no fluids are present.
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Figure 3.21: Example of VC6” "Reasoning" feature. The reasoning tab shows, how critical
metrics changed from the last to the current visit and how the system expects these
values to change in the future. Through the "Select treatment” dropdown menu the user
can select, for which treatment they want to see the expected values.



51

Mean Thickness (um)

Yes unchanged
bleeding Yes new unchanged Yes new
inflammation emerged Yes

scar Yes | Macula increased Yes | Macula | Optic disc

atrophy Retina increased Macula | Retina

drusen Yes unchanged Yes

Figure 3.22: Example of VC6’ "Visit Diff" feature. The "Visit Diff" tab shows the difference
in annotations of the last and current visit and how they changed. The differences are
highlighted through color coding and phrasing.

in section 3.7.1, that are not already displayed on the dashboard. However, it only shows
those annotations that are present. Additionally, it highlights healthy and unhealthy
changes through color coding and phrasing. Figure 3.22 shows an example of this tab.
One can see that emerged drusen are highlighted in red, while the decrease in volume of
PED is highlighted in green. Unchanged annotations are not highlighted.

Mean Thickness Table

The last tab of the infobox shows a table of the mean thicknesses of the segmented
retinal layers, their total thickness and how these changed. Again, color coding was used
to highlight healthy and unhealthy changes, where retinal layer thinning is generally
considered unhealthy and thickening healthy. The mean thickness tab can be seen in
figure 3.23.
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Visit Diff

0.2

49.8 0.7

42.5 0.6

5 -0.2

37,1 -0.2

10.5 -0.3

99.2 6.1 105.3

346.933492 7.088953 354.022445

Figure 3.23: Example of VC6” Mean Thickness feature. The Mean Thickness feature
shows a table of the development of retinal layers from the last to the current visit as
well as by how much they increased or decreased.



Chapter 4
User Study

In this chapter, the details and results of the conducted qualitative user study will be dis-
cussed. At first, the preliminary workflow assessment user study will be presented and
evaluated. Finally, the main study will be explained and its results will be demonstrated.

4.1 Preliminary Workflow Study

The first step in the development of the dashboard was a preliminary workflow study
involving one assistant doctor and a manager. The work place was investigated and the
doctor showed their usual workflow. This study was a one hour long interview session
conducted at the eye clinic in Sulzbach. It took place in one of the examination rooms,
which is where the medical experts analyze patient data and decide on new treatment
before welcoming the patient for their visit. Since this was merely one interview, the
following part summarizes the findings.

4.1.1 Findings

The work station consists of a large desk, a computer and two 27 inch monitors indicating
a lot of screen space. The workflow comprises two phases: The preparation phase and
the patient visit. However, it’s during the preparation phase that medical experts heavily
rely on their systems. Consequently, this phase is most important for identifying and
improving weaknesses of the standard system. The preparation phase covers three main
tasks.

In the first Task (T1), the medical expert analyzes metadata like age, gender, BMI and
other risk factors from the patient records. Additionally, they check, which diseases the
patient is being treated for: AMD or DR. As a next step the patient’s history will be
analyzed: How have metrics like visual acuity changed over time? How many and which
IVOMs have already been administered? How did medication influence visual acuity?
Recovering this information from the patient’s history was labelled as tedious. The expert
criticed that having to scroll through a medical file and finding the values manually
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requires an intensive mental effort. Furthermore, it bears the risk of the ophthalmologist
forgetting or overlooking crucial information consequently leading to a less informed
treatment decision.

The second phase (T2) was valued as the most important for the treatment decision
and consists of analyzing the most recent OCT and comparing it to older ones. With
known patients, the expert does not look thoroughly through the history of OCTs but just
quickly scrolls through the most recent one. If they detect fluids, they order a new cycle
of IVOMs. However, with unknown patients it is necessary to get a holistic view over
the development of fluids. This can only be done by viewing and comparing multiple
OCTs. Whereas follow ups can be compared in a specifically designed program, other
OCTs must be compared by opening two windows. While the first variant was seen as
advantageous, the second was again labelled as tedious. Moreover, there was no mention
of other programs or features for segmentation, 3D reconstruction, thickness maps or
quantifications.

For the third and last task (T3) the ophthalmologist needs to decide on the treatment by
combining guidelines and the extracted information from the first two tasks. There was
no direct complaint about this task. However, it was said that the whole process could
be made more efficient.

The second phase, when the patient is actually in the room, only consists of the conduc-
tion of one optional test and the explanation of the diagnosis and treatment decision.
In this phase, the computer system is of very little use to the doctor. However, they
sometimes do use it to show the patient their OCTs and highlight the importance of
treatment.

Patient Data
Name, Age
Current Status of Treatment Plan

Visus - Green Lines indicate IVOM Upload VC3

OCT Slice

Continue Treatment as planned with last IVOM
upload of 50 mg of Drug X, then control again in
4 weeks.

OCT Slice OCT Slice Reasons:

= |0P and Visus improved.
®  Still mild amounts of fluid detected on OCT.

Figure 4.1: Low fidelity prototype developed for this thesis and its visual components
(VC): VC1 = Infobox, VC2 = OCT viewer, VC3 = History graphs, VC4 = Metrics, VC5 =
Recommendation
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4.1.2 Low Fidelity Prototype

After the interview a low fidelity prototype was developed and afterwards evaluated by
the same ophthalmologist. Figure 4.1 shows this prototype. Its visual components are an
infobox (VC1), a viewer for OCTs (VC2), history graphs (VC3), changes from the most
important metrics (VC4) and the recommendation (VC5). The ophthalmologist agreed
that the low fidelity prototype would be useful and only criticized the reasoning for the
recommendation.

4.2 Study Protocol

To evaluate whether the dashboard could improve efficiency, informedness and user ex-
perience, a series of semi-structured interviews followed by a questionaire was conducted
at the eye clinic in Sulzbach. The study design followed an approach from Bhattacharya
et al. [10], who created several tasks, which participants had to solve. This makes the
participants actively use the system and encourages interaction. The tasks were devel-
oped from the preliminary workflow study. The interviews were audio recorded and the
recordings were automatically transcribed using Google’s Live Transcribe application!”.
The dashboard as a web application was opened inside a browser on a standard work
station. The protocol for the study was as follows:

1. Recording Agreement: Participants were first asked to sign a consent form agreeing
to the recording of their voice.

2. Preparation: Participants were given a disclaimer, that the dashboard is a proto-
type and certain loading times are expected. However, loading times should be
disregarded for the evaluation.

3. Tutorial: One interviewer gave a short introduction on the usage of the dashboard
showing each feature quickly. Participants were then given ten minutes to explore
the dashboard themselves thinking aloud and asking questions about the usage.

4. Tasks: The participants were presented with three tasks (T1-3). For each task the
dashboard was set to unseen data of a new patient. However, each participant
was presented the same patient data for the same tasks. Participants were asked to
think aloud during completion of the task. After completion they were asked a set
of fixed questions (Q1-3) as well as questions that fit the situation. It was always
asked whether this task could been solved more efficiently, more informed or with
better user experience than with their usual software.

¢ T1: Find out the age, gender, BMI, smoking behaviour, disease (AMD or DR)
and how often, with what medication and how effective a patient has been
treated. Analyze visual acuity and IOP history. Find any other differences
since the last visit.

* Q1I: Is the data visualized and presented in an intuitive and understandable
way?

* T2: Analyze and compare the current OCT with other OCTs from the past.
Describe the evolution of biomarkers.

Yhttps://support .google.com/accessibility/android/answer/9158064?hl=en


https://support.google.com/accessibility/android/answer/9158064?hl=en

56

* Q2: Would you prefer the 3D reconstruction over the slices under ideal cir-
cumstances (Fast loading times, perfect segmentation)?

¢ T3: Decide the next step in the treatment of a patient.

¢ Q1: Do you trust the recommendation? After explanation of the recommen-
dation and prognosis model: Does the explanation increase your trust in the
system?

5. Questionnaire: Participants were asked to complete a questionnaire that included
demographic information, opinions and experience in Al and questions from the
Systems Usability Scale (SUS). You can find the german questionnaire in appendix
B

4.3 Results

4.3.1 Demographics

Eleven ophthalmologists (three female, 27%; eight male, 73%) participated in the study
on three different days. Their experience ranges from less than one year to 21 years,
whereas nine were assistant doctors, one was a specialised ophthalmologist (also just
called ophthalmologist in the following) and one was a senior ophthalmologist. To avoid
confusion, these groups will be called assistant, specialist and senior. One assistant
claimed to have 10 years of experience. However, they answered that they are an
assistant doctor, which leads to the suspicion that the stated experience in years is wrong.
Furthermore, another assistant missed filling in the questionnaire, which is why we only
have the demographic data but no sentiment on AI or SUS ratings for that person. The
participants were asked to rate their opinion on Al and ML from completely against it (0)
to completely pro Al (5). Four people said that they were completely pro Al (5), while six
people said they were somewhat pro Al (4). Their experience with Al was also rated on a
scale from no experience (0) to expert experience(5) and, while they were all pro Al, their
experience with it was rated intermediate (3) by seven out of ten people. One person said
they only had some experience (2), while another said they had advanced experience
(4). The senior physician claimed to be an expert in Al (5). Additionally, their general
experience with software and computers was rated in the same manner. However, here
the senior physician only rated themselves as advanced (4). Three assistant doctors, who
had some to intermediate experience with Al, said that their general knowledge with
software was advanced (4). Two even said that they were experts (5) in that field, while
they were only intermediates with Al The remaining three rated themselves again as
intermediates (3).

4.3.2 Systems Usability Scale

The average SUS score from ten participants was 81.75 with a standard deviation of
10.1. This indicates that the dashboard was generally found to be well usable. The
highest rating was 95 and the lowest 62.5. Two participants that rated themselves as
intermediates in software knowledge gave the lowest ratings of 62.5 and 67.5, while
those that rated themselves to have advanced or expert knowledge gave generally higher
ratings. The lowest scores also rated their need for a technical person to help them use the
dashboard higher than all others (3 and 4 on the Likert scale). They were both assistant
doctors with four and 1 years of experience. The highest ratings of 95 and two times 90
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came from two assistant doctors and the one specialist. The senior physician’s answer
summed up to a 85 SUS score.

4.3.3 Interview Questions

A fixed set of yes or no questions was asked after the completion of each task. For the first
task T1, ten out of eleven participants answered that they felt more efficient than usual,
while one person did not answer this questions. Nine of eleven participants also said
that they were more informed with the new dashboard, whereas the senior physician did
not feel more informed and one other person did not give a clear answer. Furthermore,
user experience was improved for eight doctors, while three did not give a distinguished
answer. Ten participants answered with yes to Q1, while one person did not answer
clearly.

The analysis of the OCT data from T2, however, was rated as more efficient by only six
out eleven participants, while two did not answer clearly and the remaining three said
they do not feel more efficient with the dashboard. However, eight felt more informed,
whereas two did not sufficiently answer and the senior physician again did not feel that
way. Only four people reported a better user experience. However, the rest did not
answer clearly. Only three people said they would prefer the 3D view under perfect
circumstances (Q2). Three people did not sufficiently answer and the remaining five
reported that they would not prefer the 3D view to the slices. It seemed that the more
experience doctors had, the less likely the were to prefer the 3D view.

For the last task, T3, nine of eleven medical experts said they felt more efficient, whereas
one did not feel more efficient and the senior physician failed to answer clearly. Moreover,
the senior ophthalmologist did not provide clear answers for informedness nor user
experience. From the remaining ten participants nine said that they felt more informed
and seven had a better user experience. The specialised ophthalmologist was in both
groups. One person did not feel more informed, and three did not answer sufficiently
for the user experience. Only three people initially trusted the recommendation, while
the rest did not. However, after explanation of the recommendation system five assistant
doctors trusted the system. The senior physician as well as two assistant doctors did not
trust the system before and after the explanation.

4.3.4 Qualitative Analysis

Thematic analysis was conducted on the transcripts of the interview sessions. In total 66
codes were generated with 320 annotations in the transscripts. Generation of codes was
done in a joint coding session with a Psychology Phd. student from Saarland University.
They were then categorized into 16 supercodes, which again could be divided into four
major categories: Trust, Efficiency, Informedness and User experience. Two unaffiliated
participants were asked to fill in a questionnaire for the interrater-reliability measurement.
They were asked to assign 15 codes to the respective categories and 21 textpassages to
their respective codes. The assignment of codes to categories had a very good Cohen’s s
of 0.91 and the coding of transscript snippets a good one of 0.57. This shows that raters
agree with the given categorization and coding of the transscripts.
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Trust

In the trust category, about half of the participants mentioned a low perceived trustworthi-
ness of the system (6, 54.5%). Three participants mentioned that the prognosis specifically
was less trustable, since its course is too individual to be predictable. Moreover, three
participants found the 3D view not trustworthy, while one participant mentioned not
trusting the segmentation in general. The senior physician was among both groups
calling the prognosis "reading coffee grounds", although it was initially determined in
the OphthalmoAlI project, that this is one of the main wishes of ophthalmologists. More-
over, two assistant doctors mentioned that they do not understand the recommendation
and its reasoning, hence, trusting it less (2, 18.2%). However, all participants said that
the system must be controllable in order to establish trust (11, 100%). Moreover, most
participants agreed that feedback options would increase trust in the system (8, 72.7%).
The senior physician and one assistant doctor with ten years experience claimed that a
feedback system would fail due to the lack of usage under time pressure. However, the
senior and two assistant doctors also said they would use the feedback when errors occur.
While in general the question was about a feedback button, three participants mentioned
that they would even correct segmentation lines manually. Four doctors amongst them
the specialist said knowing that the system is controlled through other doctors increases
their trust immensely. Lastly, one person mentioned that the visualizations of the system
can be used to establish better trust of the patient in the doctor’s treatment (1, 9.1%).

Efficiency

For the efficiency aspect, three people complained that having to read unnecessary,
non-critical factors decreases efficiency (3, 27.3 %). They said that specifically the IOP
should only be mentioned when it is critical to the situation. For example when it is too
high or too low and treatment has to be aborted. Almost all but one assistant doctor
mentioned that they felt more efficient using the dashboard (10, 90.9%). However, note
that the interview questions have not been coded as they were evaluated separately. Six
participants including the specialist said that the metadata analysis leads to enhanced
efficiency. Eight participants including the senior physician reported that the enhanced
overview improved their efficiency. Moreover, two assistant doctors claimed that coming
to the same treatment decision as the recommendation speeds up the decision process.
For the OCT analysis task, three assistant doctors felt neither an improvement nor a
decline in efficiency (3, 27.3%). Similarly, about half of the participants including the two
most experienced claimed that for the standard patient new features are unnecessary
and only the OCT slices and the visual acuity values would be needed (6, 54.4%). Finally,
seven doctors mentioned that loading speeds play a big role in efficiency (7, 63.6%).

Informedness

In the informedness category, all but one assistant doctor found that the dashboard
provides them more information than usual (10, 90.9%). Three participants among them
the specialised ophthalmologist said that the 3D view offered practical insights. Seven
doctors including the senior physician reported the quantifications of fluids as useful.
The senior physician called them "unavoidable" and "the future" of treatment indication.
They expect that in the future precise volume levels will be used to decide which drug will
be used. Five people including the specialist reported that segmentations were a good
feature to detect the position and morphology of lesions. Furthermore, one assistant
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doctor said that they would incorporate the prognosis into their treatment decision.
Most doctors reported that in some way that the dashboard would improve the quality
of treatment (8, 72.7%). Four assistant doctors said that having a diverging opinion
from the system’s recommendation would lead to more intensive control and, hence,
improving patient care. Moreover, six out of eleven participants including the specialist
said that the dashboard and its functionality is particularly useful in borderline cases and
unsafe decisions. Three participants including both the senior and the trained specialist
reported that the segmentation feature would be even more useful for other diseases
such as glaucoma. However, eight participants wanted even more data in the dashboard
(8, 72.7%). In this manner, one assistant doctor wanted drug prices to be included in the
recommendation process, as this is an important feature for the clinic and insurances.
Moreover, two assistants wanted the total retinal thickness as a biomarker, another
wanted the exact time since the last IVOM. Other wishes were more information about
medical history data such as surgical procedures, the reason for drug switches, the reason
for prolonged absence of the patient, more detailed information on the diagnosis (wet or
dry AMD for example) or on other concurrent diseases like diabetes. All these wishes
stem from assistant doctors. However, the specialised ophthalmologist also mentioned
that they would like to see the total number of given IVOMs. The senior physician did
not miss any data, but they also reported that they usually will get metadata presented
by their assistant doctors.

User Experience

Finally, user experience was also rated positively in almost all cases (10, 90.9%) except by
one assistant doctor. This positive rating bases itself on multiple reasons. The senior and
three assistant doctors reported that the combination of OCT viewer and patient medical
history data contributes positively on the user experience. Moreover, the senior, the
specialist and three other assistant doctors liked the comparison using a slider a lot, as it
allowed for easy comparision compared to having multiple windows open. Additionally,
they said that it was a better way to compare these images than the flickering they are
used to. Flickering is a method to compare OCT slices. The slices are layed on top of each
other and the transparency of the top slice will be turned on and off very quickly creating
the flicker effect. Only participant four did not like this way of comparing. Four other
assistant doctors rated the user experience positively, since they liked the overview of the
3D graph. One assistant doctor and the specialised ophthalmologist found the dashboard
to be very intuitive. Moreover, two assistant doctors rated the system recommendation
as positive, as it is reassuring to see that the system’s recommendation agrees with the
doctor’s. However, seven assistant doctors also experienced uncertainty with the new
system (7, 63.6%). One found the dashboard to be overwhelming, especially the 3D view.
Two doctors reported that they were unsure, which OCT is the older and which the recent
one in the compare slider. Two other doctors thought that changing the comparison
OCT also changed all the metrics to compare to that visit date. Another three doctors
were unsure, which eye side was displayed on the dashboard as there was no marker
for that. All doctors reported that they do not want to get used to new features (11,
100%). Whereas six assistants and the senior doctor directly reported this, the doctors
also mentioned this indirectly. In this manner, eight doctors including the senior and the
specialist reported that they were missing the ability to use the scroll wheel to change the
slices. One assistant doctor said that getting used to the new comparison slider takes too
much time and that they would rather use the old system. They and two more assistants
also said that they liked the tabular information of the patient’s historical data better.
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This doctor was also the only one that did not rate the user experience positively. One
other assistant doctor said that using the active ingredients instead of the medication
names was unusual. Finally two assistant doctors and the trained specialist said that
they would not use the 3D view just because they do not want to get used to it.

4.3.5 Feature specific Feedback

While the SUS Score shows that the system is very usable, the thematic analysis highlights
the potential for improvement of some features. However, due to time constraints
thematic analysis was not specifically conducted to evaluate certain features of the
dashboard and, hence, also not validated through Cohen’s . In this section, I still want to
summarize the main feedback points for some visual components. The remaining visual
components were neither specifically critiqued nor were changes or new functionalities
requested.

Top bar

The top bar (VC1) served as a starting point highlighting important metadata about the
patient as well as a "at a glance" look at the treatment status and the history of IVOMs.
Generally, this feature was positively rated. The only complaints were, that the treatment
status should show exactly, how long ago the last IVOM was instead of showing "Over
one month ago", and, that the IVOM timeline is confusing. The IVOM timeline should
show, which dates are selected as separate lines, and it should better highlight the
temporal distances between IVOMs. However, no participant could propose a way of
achieving the latter. Moreover, the timeline should show the same time range as the
history graphs, as this lead to confusion with one participant. Finally, there should be a
table summarizing the amount of given medications.

OCT Viewer

The OCT viewer (VC2) as the main tool of ophthalmologists was critiqued the most.
The most mentioned problem was that participants could not scroll through the slices.
Additionally, some missed a legend for the segmentation and the 3D objects. Moreover,
a few participants requested a comparison feature for the 3D view. In the 3D view, one
participant requested a feature to turn off certain layers. The loading times were also
almost always negatively mentioned.

Metrics

Participants wanted the metrics (VC5) to represent the comparison between the se-
lected date and the current date instead of the last date and the current one. Also the
visualization using percentage instead of actual values was confusing for some users.

Recommendation

Since most users trusted the recommendation more after learning about its internal
workings, they were confused about, why the system does not list the reasons from the
guidelines. For example, if the model aborts because of extreme IOP, this should be listed.
Moreover, the recommendation would always suggest a control or therapy, but doctors
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0.32 0.00 pl 0.13ml 15.00 mmHg

Take new OCT!

Figure 4.2: Overview of the final dashboard prototype.

often would take a new OCT, if none was available to assess the current situation. The
system should also recommend new medical imaging before deciding on treatment.

4.4 Final Improvement Iteration

After the evaluation of the user study, the dashboard was improved once more regarding
the collected feedback. The final version of the CDSS can be seen in figure 4.2. One
can observe that there are many small differences to the evaluated dashboard shown
in figure 1.1. Starting from the top bar (VC1), the treatment status now shows exactly,
how many days have passed since the last IVOM. Additionally, a table summarizing
the amount of each medication given has been added. The OCT viewer (VC2) has been
mostly left the same, although legends for the segmentations were added to each plot.
The "Report issue" button represents a feedback option. The button opens a dialog, where
the user can give feedback on the segmentation and recommendation, which is then
send to an AL backend, such that models can be adapted. However, no API exists yet.
The history graphs (VC3) have been adapted to show the current date and selected OCT
dates. Furthermore, actual measurements are now represented as scatter points and a
line shows the interpolated and smoothed data. The metrics (VC4) now show actual
values instead of percentages. The recommendation (VC5) was adapted to list reasons as
they appear in the guidelines. It also now considers that new OCTs should be taken after
some time.



Chapter 5
Conclusion

In this chapter, the key findings of this thesis will be summarized, and potential future
research will be outlined. The chapter will begin with a discussion of the prognosis
model’s results, emphasizing its advancements and shortcomings, followed by an out-
look on future developments. Next, a concise summary of the recommendation system'’s
performance and potential will be provided. Finally, the outcomes of the user study will
be examined, accompanied by suggestions for future research directions. This compre-
hensive overview will not only show the thesis’s primary contributions but also highlight
areas for further research.

5.1 Prognosis model

5.1.1 Discussion

In this thesis, an advanced time series forecasting model for ophthalmology health
metrics was developed and evaluated. The model utilizes a Bidirectional Long Short-
Term Memory (BiLSTM) network, demonstrating robust performance in predicting visual
acuity metrics. Furthermore, it exhibited exceptionally high accuracy in forecasting the
number and volume of intraocular fluids. However, it is important to note that the
latter results may be subject to bias due to the highly skewed distribution of the target
variables.

To ensure a comprehensive understanding of the model’s decision-making process, the
feature importance was assessed using SHAP values. The analysis revealed that the
BiLSTM network effectively identifies and leverages clinically relevant features in its
predictions. Notably, across all prediction tasks, the target variable emerged as the most
significant feature, underscoring the model’s reliance on historical data for accurate
forecasting.

The performance of this predictive model underscores its potential applicability in real-
world Clinical Decision Support Systems (CDSS). Such systems could be instrumental
in enabling early intervention and preventive treatment strategies for patients suffering
from Age-related Macular Degeneration (AMD) or Diabetic Retinopathy (DR).
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5.1.2 Future Work

For future research, it is recommended to explore alternative architectures, including
bidirectional GRUs, Transformers, and Autoencoders, among others. Incorporating
a broader range of features from the existing database could further enhance model
accuracy and generalizability. Additionally, feeding raw OCT data directly into the
network, as opposed to using pre-processed quantifications from another network,
could help mitigate potential biases introduced by the segmentation and quantification
algorithms. Further investigations could also explore the impact of varying sequence
lengths and target time frames on model performance. This could provide deeper insights
into the temporal dynamics of ophthalmology health metrics and improve the accuracy
of the model. By addressing these aspects, future studies can refine and extend the utility
of time series forecasting models in ophthalmological care, ultimately contributing to
better patient outcomes and more efficient clinical workflows.

5.2 Recommendation System

5.2.1 Discussion

For ophthalmologists dealing with DR and AMD, the critical decision is whether to
administer Anti-VEGF medication to a patient. This decision follows clear guidelines,
making its automation highly desirable. However, developing a recommendation sys-
tem in this field has proven to be challenging. The algorithmic approach taken in this
thesis achieved only 60% accuracy when evaluated against historical data. While the
system was notably effective in recommending the same medication as actually given
—suggesting that the medication selection process is sound— its overall treatment rec-
ommendation accuracy is barely above chance. Consequently, it may not yet be suitable
for clinical application.

Despite its suboptimal performance, the system’s internal logic is clinically well-grounded,
as it strictly applies official therapy guidelines. This discrepancy suggests that the his-
torical data may not fully adhere to these guidelines, or that there may be errors in the

quantification of fluids through the segmentation network and reconstruction algorithm,
or inaccuracies in the clinical annotations.

5.2.2 Future Work

Future research should focus on examining the identified flaws and their impact on the
model’s performance to validate the recommendation logic. Additionally, a more so-
phisticated evaluation could be conducted by comparing the system’s recommendations
against a validated gold standard developed by ophthalmology experts. Enhancing the
dataset quality and ensuring it adheres closely to clinical guidelines could also improve
the system’s accuracy. Incorporating more comprehensive patient data, including surgi-
cal histories and other relevant factors, might further refine the model’s decision-making
process. Moreover, integrating advanced machine learning techniques such as RNNs
could enhance the system’s ability to handle outliers and varied clinical scenarios. One
could train the forecast model to predict the historical medication. However, it is unclear
if this target aligns with guidelines. Hence, a validated groundtruth must be established
first.
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5.3 User Study

5.3.1 Discussion

The user study found that the developed CDSS has improved efficiency, informedness
and user experience in multiple aspects. First and foremost, participants found that the
fusion of all systems into a single dashboard yielded a clear overview over all the data,
which enhances all three aspects. This overview mainly decreases the time and effort
needed for the metadata analysis. However, alignment with the recommendation was
found to speed decision processes up and increase the user experience by giving a sense
of security. Notably many participants requested more information to be displayed,
although even more reported that the dashboard already provides more information
than their usual setup. The primary reason for that being the quantification of the 3D
reconstructed fluids, which was even titled as "the future of indication" by the senior
physician. Moreover, the resulting 3D graph as well as the segmentations enhanced
informedness because of their ability to show regions of interest at a glance. Although
most said that the dashboard offers more information, some participants complained
about the display of non-critical data making them waste time. Therefore, when creating
a CDSS one needs to carefully consider, which data to display. Participants also reported
that the dashboard would increase the quality of treatment overall. Some contributed this
to more intense control of their own decision, when diverging from the treatment recom-
mendation. Others mentioned that the dashboard was particularly useful for borderline
cases or even different ophthalmological areas such as glaucoma treatment. Moreover,
the new features improved user experience, as they allowed for easier comparisons,
which also reflects on the very good SUS score of 81.75.

However, there was also critique on the dashboard. Primarily participants were hesitant
to trust the dashboard, especially its Al features. In this sense, most people did not
trust the recommendation at the start. Although, after an explanation of the internal
workings of the recommendation algorithm about half of them changed their mind and
said they would trust the recommendation more now. This low perceived trustwor-
thiness also affects the segmentation, 3D reconstruction and the prognosis. Generally,
participants said that the only way to gain their trust was by using the dashboard for
extended periods of time and controlling the accuracy of the dashboards predictions
and recommendations. This means that the CDSS must always feature the raw data
for comparison. Some participants quickly lost faith in the system after encountering
errors. However, participants reported that feedback options would reestablish trust in
the system in these cases. The collective supervision of many medical experts through
this feature would improve confidence even more, although some raised concerns about
the adoption of it because of users’ timely constraints. Hence, feedback options must
be fast and simple. However, more fine grained options should be offered as well, as
some users reported they would manually correct segmentations to get more precise
quantifications. Although in general efficiency was improved, the analysis of the OCT
data was unchanged according to some participants. This was probably due to the fact,
that trust in the system was not established yet and there was some uncertainty when
using a new system. All participants agreed that they do not like having to get used to
new features, as it costs too much time. Hence, one can conclude that a proper evaluation
of a CDSS needs its participants to use the system for an extended period of time, such
that they can establish trust and get used to the new features.
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5.3.2 Future work

This study delivers an overview on consideration when designing an Al supported
CDSS, that integrates the therapy workflow of a clinician. However, many aspects
remain unexplored and the dashboard could be improved and evaluated in a second
prototyping round and user evaluation study. Future work could include a qualitative
comparison of physicians using their usual setup and physicians using the CDSS, given
that the second group gets enough time to familiarize with the CDSS. This could bring
deeper insights into the effect of the dashboard onto efficiency, informedness and user
experience. Other possible research questions could revolve around efficient ways to
establish trust in the system. One could offer different versions of the CDSS showing
different explanations like SHAP values and compare how users evaluate the trust in
the system. By addressing these aspects, future studies can contribute to the creation of
reliable and trustable Al supported CDSS, which inadvertendly improve patient care
and healthcare as a whole.

5.4 Potential Applications

The developed CDSS has shown significant promise in enhancing ophthalmologists’
user experience, efficiency, and decision-making capabilities. With further development,
the CDSS could be fully integrated into clinical settings, particularly through the imple-
mentation of a human-in-the-loop system. In this framework, physicians would utilize
the dashboard to aid their decision-making process while providing feedback on any
incorrect predictions. The CDSS would learn from this feedback, continuously refining
and improving its predictive accuracy.

Figure 5.1 illustrates the scheme of such a system. Initially, clinics send OCT and EHR
data to the CDSS database. The database supplies this data to the models, which either
segment and quantify the data or provide forecasts, depending on the model. These
predictions, along with the raw data, are then fed to the recommendation algorithm,
which computes the treatment decision. All this information is displayed by the visual
components, where medical experts can interact.

Additionally, these experts can provide feedback through various granular options. For
instance, a button could allow users to mark a segmentation or recommendation as
incorrect. The model can then be retrained on these samples if ground truth values
are available. If not, the OCTs will be sent to an annotation tool, where doctors can
manually segment them. The annotation tool feeds these new ground truths back to the
database, triggering the feedback system to initiate retraining. Active Learning models
like EdgeAL can make use of this data, because the marking provides a direct measure of
uncertainty, although not very fine-grained. Integrating the annotation tool directly into
the CDSS would enable direct manual correction of incorrectly segmented slices. The
difference between the two masks could provide a more detailed measure of uncertainty
for an AL model.

By consistently incorporating feedback, the dashboard can iteratively improve, offering
more reliable and precise predictions. This, in turn, will enhance the clinician’s effi-
ciency, informedness, and overall user experience. Although AL models exist in the
OphthalmoAlI project, integrating them in the dashboard was out of the scope of this
thesis.
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Figure 5.1: Scheme of the fully integrated Clinical Decision Support System with Feed-
back functionality. Dashed, dotted and continuous lines indicate feedback, interaction
and data flow, respectively. The data comes from the clinic and enter the databank of
the CDSS. This data is fed to the models for training, to the recommendation system for
treatment recommendation and to the visual components for visualization. The models
provide predictions for both the recommendation algorithm and the visual components.
The recommendation is also displayed in the visual components. The user (medical ex-
pert) is interacting with the visual components, the feedback system and the annotation
tool. The feedback system captures the users feedback and can trigger a retraining of the
models, select training data or provide bad model predictions to the annotation tool. The
user can interact with the annotation tool to segment OCTs from the eye clinic or from
the feedback system to feed segmentation data into the databank.
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Appendix A
3D Reconstruction algorithm & Code

The algorithm (a simplified version of the code can be seen in listing A.1) starts by
creating two empty lists: one for work in progress (WIP) reconstructions and the other
for finished reconstructions. It then starts iterating over all segmented masks of the
OCT. The mask is turned into a binary mask, where true values stand for pixels that
were annotated as the label that should be 3D reconstructed and false values stand for
every other label. If every pixel of the binary mask is false, we can skip this mask and
move on to the next. However, if there are some true values, then the algorithm tries to
reconstruct the 3D objects. First the masks contours will be computed using the OpenCV
python library. Contours are used as we only care about outer points of the object.
It also means one needs to save less data in memory. The contours are transformed
into 3D contours using the grid position of the current mask. Initially, since the WIP
reconstructions list is empty, all contours will be added to this list and for each contour a
new ReconstructionBuilder class (which can be seen in listing A.3) is initiated. However,
if there are already WIP reconstructions, then these need to be updated.

Hence, the updateWipReconstructions function, which is shown in a simplified version in
listing A.2, is called. It first computes the smallest possible distance of each reconstruction
to each new contour, which is done in the getDistanceMatrix function. It then iterates
over all contours sorted by their smallest possible distance to any reconstruction and
checks whether this distance is smaller than the maximum allowed distance. If this is
the case, then we add the new contour to reconstruction builder. If not, then we can
create a new reconstruction builder without having to check the other reconstructions,
as the contours were already sorted by their smallest distance. The maximum allowed
distance used in the dashboard was simply the distance between the last two slices times
the square root of two, as this seemed to yield the best reconstructions. However, this
parameter is experimental and needs to be studied and finetuned. A fixed distance
would also clinically make more sense, since some resolutions of OCTs have rather large
distances between slices, which do not allow for accurate reconstruction.

Lastly, the algorithm iterates over all WIP reconstructions and checks, whether they still
have any points in the current grid position, which means that they were just updated.
If not, then the reconstruction is finished and can be build. The building process only
assures that the reconstruction is actually a three dimensional object and not just for
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example a single point and one contour that lies completely inside a plane. If the object is
only one or two dimensional, then the building function adds artificial points around the
centroid to make it three dimensional. The parameter "CENTROID_OFFSET" determines
how far off the centroid these points will be set. In y direction, so along the scan grid
of the OCT, half the slice distance was used, while for the other directions an offset
of 5 pixels was used. Again, this parameter can be adjusted. However, these lower
dimensional annotations did not appear very often.

def reconstruct_objects(oct, label):
finished_reconstructions = []
wip_reconstructions = [] # WIP = Work in Progress

for mask in oct.masks:
label_mask = mask == label

if not any label_mask:
# No annotations, can be skipped

skip

contours_2D = findContours(label_mask)
contours = transformTo3DContours(contours_2D, oct.grid_position)

if any wip_reconstructions:
updateWipReconstructions (wip_reconstructions , contours)
else:
for contour in contours:
wip_reconstructions.append(ReconstructionBuilder (contour))

for reconstruction in wip_reconstruction:
if not anyPointsInCurrentGridPosition (reconstruction,
oct.grid[slice_index]):
finished_reconstructions .append(reconstruction.build ())
wip_reconstruction.pop(reconstruction)

Listing A.1: Pseudocode of the 3D reconstruction.

def updateWipReconstructions(wip_reconstructions, contours):
distances = getDistanceMatrix (wip_reconstructions , contours)
for distance, contour in sortedBySmallestDistance (distances, contours):
reconstruction = getClosestReconstructionOfContour (contour,
distances,
wip_reconstructions)
if distance < MAXIMUM_ALLOWED DISTANCE:
# Closest reconstruction is inside the allowed distance —>
# Add contour to reconstruction
reconstruction .add(contour)
else:
# No reconstruction is inside the allowed distance —>
# Create new reconstruction
wip_reconstructions .append (ReconstructionBuilder (contour))

def getDistanceMatrix (wip_reconstructions, contours):

distances = []
for rec_builder in wip_reconstructions:
rec_distances = []

for contour in contours:
rec_distances.append(rec_builder.smallest_distance_to (contour))
distances.append(rec_distances)
return distances

Listing A.2: Pseudocode of the updateWipReconstructions and getDistanceMatrix func-
tion inside the 3D reconstruction code
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class ReconstructionBuilder:
def __init__ (contour):

self.contours = []
self . contours.append (contour)

def add(contour):
self.contours.append(contour)

def smallest_distance_to (contour):
distances = []
for point in contour:
distances.append(np.linalg .norm(self.contours — point, axis=1))
return min(distances)

def build ():
if pointsAreNot3DimensionalObject(self.contours):
addFakePointsCloseToCentroid (self .contours, CENTROID_OFFSET)
return Reconstruction(self.contours)

class Reconstruction:
def __init__ (contours):

points = toCartesianPoints (contours)
self .hull = ss.ConvexHull(points)

@property
def points:
return self.hull.points[self.hull.vertices]

def get_volume ():
return self.hull.volume

def get_top_down_view ():
2d_hull = computeConvexHullOfXandYPoints(self.points)
return transformToContours(2d_hull.points[2d_hull.vertices])

Listing A.3: Simplified Pseudocode of the ReconstructionBuilder and Reconstruction
class




Appendix B
Questionnaire

You can find the questions for the questionnaire here. The questions are in german, which
was the language that was spoken during interviews.

B.1 Demographics

Bitte geben Sie ihre Test-Personen ID an.
Bitte geben Sie ihr Alter an.
Bitte geben Sie ihr Geschlecht an.

Bitte geben Sie ihren Berufstitel an.

A

Wie lange arbeiten Sie in diesem Beruf?

B.2 Experience with AI and Software

1. Wie sind Sie generell gegentiber Kiinstlicher Intelligenz (KI) und Maschinellem
Lernen (ML) eingestellt? (Bewerte auf einer Skala von 1 bis 5; 1: Komplett dagegen,
5: Komplett dafiir)

2. Wie wiirden Sie ihre Erfahrung mit KI und ML einordnen? (Bewerte auf einer Skala
von 1 bis 5; 1: Gar keine Erfahrung, 5: Experte)

3. Wie wiirden Sie ihre generelle Erfahrung im Umgang mit Software und Computern
einordnen? (Bewerte auf einer Skala von 1 bis 5; 1: Gar keine Erfahrung, 5: Experte)

B.3 System Usability Scale

All questions were rated from one to five, where one means totally disagree and five
means totally agree.
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10.

Ich denke, dass Ich dieses Dashboard oft benutzen wiirde.
Ich fand, dass das Dashboard unnétig komplex ist.
Ich fand, dass das Dashboard einfach zu benutzen war.

Ich denke, dass Ich die Unterstiitzung eines technisch versierten Menschen brauche,
um das Dashboard zu benutzen.

Ich fand, dass die verschiedenen Funktionen gut in das Dashboard integriert waren.
Ich fand, dass es zu viel Inkonsistenz im Dashboard gab.

Ich denke, dass die meisten Menschen sehr schnell lernen wiirden das Dashboard
zu benutzen.

Ich fand das Dashboard sehr umstindlich zu benutzen.
Ich fiihlte mich beim Verwenden des Dashboards sehr zuversichtlich.

Ich musste eine Menge Dinge lernen, bevor ich mit diesem Dashboard loslegen
konnte.
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