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A Definitions

For convenience this section gives an overview of important definitions used in
the paper.

• Classifiers are referenced by their first letter where applicable:
L := LeNet-5, A := AlexNet, V := VGG 16 BN, I := Inception v3, and
R := ResNet-50.

• Ai ◦ j indicates that the classifier j is using input samples from an AE
that has been fine-tuned with gradients provided by classifier i.

• AS refers to the SegNet AE pre-trained on YFCC100m and, Ai(x) refers
to a reconstruction of input sample x using Ai.

• C = {L,A, V, I, R} the set of all evaluated classifiers.
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(a) Original (b) Reconstruction by AL

(c) Original (d) Reconstruction by AL

Figure 1: Two examples of images reconstructed by AL. (a) and (b) show an
image where the border regions are not relevant to the classification, while they
are for images (c) and (d).

B LeNet-5 Details

Compared to the other classifiers used through this work LeNet-5 [1] is a much
earlier incarnation of DCNNs. It is originally only intended for use with the
MNIST dataset for digit recognition. We adapt the original architecture defi-
nition to work with ImageNet at the same input size of 224 pixels used by the
other networks.

Our version uses three convolutional layers with kernel size 5 with 6, 16, and
120 output filters respectively. The 2nd and 3rd layer use a stride of 2. Each
is followed by ReLU and 2 × 2 max pooling. The final activation map after
the convolutional part of the network has a spatial resolution of 5 × 5 pixels,
same as the original. The architecture is finalized by two fully connected layers
with 1000 neurons each to accommodate the much larger number of classes of
ImageNet compared to MNIST.

We train our modified LeNet-5 for 60 epochs on ImageNet using the same
set of data augmentation measures as mentioned in paper Section 3.1, an initial
learning rate of η = 0.01 and a polynomial schedule η′ = η ·(1− i

n )p with p = 0.9,
i the current, and n the total number of training iterations. Final accuracies
are 32.30% top-1 and 54.63% top-5.
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Note that, as defined above, the final 2×2 max-pooling operation works on an
activation map of 11×11 pixels. Pytorch does not perform any implicit padding,
so the final output is 5× 5 pixels in size. The lowest row and rightmost column
are discarded, which means these regions are underrepresented in computed
gradients. We see this as artifacts in the reconstructed images of AL as seen in
Figure 1. Note that, as seen in Figure 1d compared to Figure 1b, these artifacts
are not constant and instead appear to be highly dependent on the relevance of
the content. E.g., in Figure 1d parts of the tractor are clearly visible compared
to the sky behind them.
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Table 1: Accuracy when different parts of the combined autoencoder and clas-
sifier are trained while others remain fixed. Included is a run where only the
decoder is trained starting from a random initialization.

Train
Encoder Decoder Classifier top-1

Y N N 16.36
Y Y N 71.04
N Y N 74.92

N Y (random) N 74.41
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Figure 2: Validation accuracy over epochs for different training methods.

C Autoencoder Training

Issues may arise when we attempt to train combined autoencoder-classifier net-
works. SegNet on its own has a depth of 32 layers without residual connections
to propagate stronger gradients to earlier layers. A classifier potentially adds
several dozen more. Depending on the combined architecture vanishing gradi-
ents may become an issue. To find a stable training method we study behavior
when parameters of different subnetworks are modified and others are fixed.

C.1 Training with Fixed Subnetworks

SegNet combined with ResNet-50 is trained for 20 epochs on ImageNet in the
same fashion as previously described in paper Section 3.3. We test the following
combinations: Train encoder and decoder, train encoder only, train decoder
only.

The classifier remains fixed to make the fine-tuned version a drop-in add-on
for existing models. This should encourage some level of interchangeability of
fine-tuned autoencoders, since all our classifiers expect image-like inputs. We
investigated swapping fine-tuned autoencoders to different classifiers in paper
Section 3.4.
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(a) Original (b) Pre-Trained (c) Random

Figure 3: Example of reconstruction result produced after fine-tuning from a
(b) pre-trained or (c) randomly initialized decoder compared to (a) the original
image.

Table 1 shows the validation accuracy of these fine-tuning runs. Training
only the decoder proved to be most effective as it improves over standalone
accuracy of ResNet-50 after 4 epochs at 74.14% and settles at 74.92% after 20.
Training the whole SegNet showed unstable progress with the highest accuracy
at epoch 5 of 71.04%, which actually decreases to 69.33% after 20. Encoder-
only training proved not to be viable with very slow progress towards a final
accuracy of 16.38%. Performance is slightly worse at 74.41% when the decoder
is initialized with random weights. We observe that this decoder trained from
scratch converges towards recreating outputs that are visually highly similar to
the original image as seen in Figure 3. This is noteworthy since there are no
hard constraints to force this behavior and previous work has shown that it
is possible to create images that are visually unrelated to their class yet elicit
strong responses from the classifier [2].

C.2 Autoencoder Fine-Tuning Behavior

Finally, we present validation accuracies on ImageNet during fine-tuning of
autoencoder-classifier combinations. Training starts from AS and only the pa-
rameters of its decoder are adapted as per the methodology outlined in Sec-
tion C.1. We observe slow but steady improvement for all tested models as seen
in Figure 4.
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Figure 4: Top-1 accuracy on ImageNet validation set during fine-tuning of com-
binations of AS and named classifiers.
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Table 2: RRC values for accuracies reported in the cross-evaluation of autoen-
coders and classifiers. Values in bold are greater than 0.8. Constructing the
formal context with values in bold as positives, yield the lattice where t = 0.8.

L A V I R

AL 1.0000 0.8830 0.1193 1.2490 1.3575
AA 0.0606 1.0000 0.0174 0.9575 0.1647
AV 0.8405 0.9553 1.0000 1.0423 1.0282
AI 0.5250 0.5387 0.6416 1.0000 0.6059
AR 0.0467 0.8857 0.0999 0.9674 1.0000

D Lattices

This section presents more lattices corresponding to the formal contexts ob-
tained by thresholding the RRC tables of the cross-evaluation between fine-
tuned autoencoders and classifiers. As mentioned in the main paper, the RRC
metric is defined as

RRC(Ai ◦ j) =
acc(Ai ◦ j)
m(i, j)

(1)

where m(i, j) = min(acc(i), acc(j)). Given all combinations of acc(Ai ◦ j),
the corresponding RRC values for each combination of autoencoder and classi-
fier can be computed (Table 2). To construct the formal concepts of autoen-
coders and classifiers, we must binarize RRC values by applying a threshold to
it. In other words, given all RRC values for any combination of autoencoder-
classifier, the binary value for each entry in the table given a threshold is:
binaryRRC(Ai ◦ j, t) = 1 if t ·acc(Ai ◦ j) ≥ min(acc(i), acc(j)). Said threshold
t can be interpreted as the minimum relative change in accuracy that is pre-
served by classifier j when using the signal of Ai. For example, we say that AI

preserves information that is used by V when t = 0.6 but not when t = 0.8. FC
lattices are a useful tool to discover new relationships in terms of these thresh-
olds as lower and upper bounds for the usefulness of signals (represented by the
different fine-tuned autoencoders) for each classifier.

Notice that other normalizations like acc(i), acc(j),max(acc(i), acc(j)), may
yield different RRC values and thus, produce additional lattices. However, these
are prone to misinterpretation since the capacity of the model plays a role on
those. We say that the characterization of a model’s signal (Ai) is useful to
a second classifier (j) if j reaches an portion (t) of the accuracy reached by
the lowest performing between i and j. There are two possible reasons for
this condition to be false. On one hand, the network may be unfit to process
the signal from another model. On the other hand it may be just because the
capacity of the model is lower altogether. For example, LeNet cannot reach more
than 66% of the performance of AlexNet with original input signals. Hence, it
is interesting to look at lower bound cases, where variations in accuracy are
measured with respect to the lowest performing model of the pair i, j in Ai ◦ j.
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D.1 Lattices Normalized by Minimum
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E Reconstruction Examples

This section contains more examples of images reconstructed by fine-tuned au-
toencoders. Compared to the version of this plot in paper Section 3.3.1 these
figures are extended with difference images of reconstructions minus original for
individual channels in LAB color space, marked as ∆L, ∆A, and ∆B. Positive
values mean increased intensity in that channel compared to the original and
vice-versa. Leftmost is the difference of original image to itself, i.e., zero for
reference.

One interesting property revealed by pixel-wise differences is that the con-
tours of foreground objects present in the image are easily recognizable in the
luminance values of AR and AI , and to lesser extent with AA. AV shows very
subtle differences if any and remains very neutral overall, which lines up with
our previous observation that AV can serve as input for all classifiers.

At this point we would like to stress that the presented examples are simply
the first 25 images in our random shuffle of the ImageNet validation set. There
was no cherry-picking.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 5: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 6: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 7: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 8: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 9: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 10: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 11: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 12: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 13: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 14: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 15: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 16: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 17: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 18: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 19: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 20: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 21: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 22: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 23: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 24: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 25: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 26: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 27: An example of images reconstructed by fine-tined autoencoders.
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Original SegNet AlexNet VGG16 BN ResNet-50 Inception v3
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Figure 28: An example of images reconstructed by fine-tined autoencoders.
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