
Supplementary Material for
Contextual Classification Using Self-Supervised

Autogenous Learning

July 15, 2020

Contents
A Clustering 1

B Networks 2
B.1 Tiny Imagenet . 2
B.2 CIFAR100 . 3
B.3 Imagenet . 5

C Auxiliary Architectures 5
C.1 Tiny Imagenet . 6
C.2 CIFAR100 . 6
C.3 Imagenet . 8

D CAM Visualizations 10

E Additional Experiments 11
E.1 Alternative Joint Predictions . 11
E.2 Training with different Grouping Criteria 11
E.3 Adversarial Attacks . 12

A Clustering
Given a distance matrix Dc for a set of labels Yc, a split into k disjoint subsets are
computed with the following clustering algorithm, based on the main principles of
spectral clustering:

The clustering is split into two phases. The initialization phase populates all k
clusters with at least one label first. In this phase, the next label is picked from Yc with
the largest distance to all already populated clusters according to Dc. That label then
differs from all other labels distributed so far, and it will populate a new cluster. When
all clusters are populated with at least one label, the clustering phase begins, changing

1

the preference for the next label. The next label is chosen from the remaining labels as
the one with the smallest average distance to any of the clusters. The label is assigned
to that cluster of minimal average distance, if the cluster has not reached the predefined
maximum size. Otherwise, the label is assigned to the next best cluster that is not full.
If the label has the same distance to multiple clusters, it is assigned to a random one of
those.
By limiting the size of the clusters, an even split of Yc into subsets can be assured,
which is not the case for spectral clustering.

B Networks

B.1 Tiny Imagenet

layer name output size Resnet18
Conv1 32×32 7×7, 64, stride 2

Conv2 16×16
3×3 maxpool, stride 2[

3×3, 64
]
×2

3×3, 64

Conv3 8×8
[

3×3, 128
]
×2

3×3, 128

Conv4 4×4
[

3×3, 256
]
×2

3×3, 256

Conv5 2×2
[

3×3, 512
]
×2

3×3, 512
GAP 1×1 Global average pool
Output 1×1 FC-200, softmax

Table 1: Architecture for Tiny ImageNet. Downsampling is performed in the first layer
of Conv3, Conv4 and Conv5. The residual blocks make use of the full pre-activation
order (BN-ReLU-Conv), as proposed in [1].

2

B.2 CIFAR100

layer name output size Resnet50
Conv1 32×32 5×5, 64

Conv2 32×32

1×1, 64
×33×3, 64

1×1, 256

Conv3 16×16

1×1, 128
×43×3, 128

1×1, 512

Conv4 8×8

1×1, 256
×63×3, 256

1×1, 1024

Conv5 8×8

1×1, 512
×33×3, 512

1×1, 2048
GAP 1×1 Global average pool
Output 1×1 FC-100, softmax

Table 2: Resnet architecture for CIFAR100. Downsampling is performed in the first
layer of Conv3 and Conv4. Residual blocks make use of the full pre-activation order
(BN-ReLU-Conv), as proposed in [1].

layer name output size SE-WRN 16-8 WRN 28-10
Conv1 32×32 3×3, 16

Conv2 32×32
[

3×3, 128
]
×2

3×3, 128

[
3×3, 160

]
×4

3×3, 160

Conv3 16×16
[

3×3, 256
]
×2

3×3, 256

[
3×3, 320

]
×4

3×3, 320

Conv4 8×8
[

3×3, 512
]
×2

3×3, 512

[
3×3, 640

]
×4

3×3, 640
GAP 1×1 Global average pool
Output 1×1 FC-100, softmax

Table 3: Wide Residual Network architectures for CIFAR100. Downsampling is per-
formed in the first layer of Conv3 and Conv4. Convolutional layers are succeeded by
BatchNorm and a ReLU (conv-BN-ReLU). The Squeeze-and-Excitation version uti-
lizes an SE block at the end of each residual block, before the shortcut is added (see
[2])).

3

layer name output size DenseNet-BC 100-12 DenseNet-BC 190-40
Conv 32×32 3×3, 24 3×3, 80

Dense Block 1 32×32
[

1×1 conv
]
×16

3×3 conv

[
1×1 conv

]
×31

3×3 conv

Transition Block 1 16×16
1x1

2x2 average pool

Dense Block 2 16×16
[

1×1 conv
]
×16

3×3 conv

[
1×1 conv

]
×31

3×3 conv

Transition Block 2 8×8
1x1

2x2 average pool

Dense Block 3 8×8
[

1×1 conv
]
×16

3×3 conv

[
1×1 conv

]
×31

3×3 conv
GAP 1×1 Global average pool
Output 1×1 FC-100, softmax

Table 4: DenseNet architectures for CIFAR100. Convolutional layers are preceeded
by BatchNorm and ReLU (BN-ReLU-conv). The number of filters increases with each
conv block by k = 12 or 40, respectively. Each conv block within a dense block
receives as input the concatenated output of all previous conv blocks of that same dense
block. Compression of 0.5 is used. Therefore, each transition block halves the number
of filters.

4

B.3 Imagenet

layer name output size Resnet50
Conv1 112×112 7×7, 64, stride 2

Conv2 56×56

3×3 maxpool, stride 21×1, 64
×33×3, 64

1×1, 256

Conv3 28×28

1×1, 128
×43×3, 128

1×1, 512

Conv4 14×14

1×1, 256
×63×3, 256

1×1,1024

Conv5 7×7

1×1, 512
×33×3, 512

1×1, 2048
GAP 1×1 Global average pool
Output 1×1 FC-1000, softmax

Table 5: Resnet-architecture for Imagenet. Downsampling is performed in the first
layer of Conv3, Conv4 and Conv5. Convolutional layers use the original conv-BN-
ReLU order.

C Auxiliary Architectures
The auxiliary networks consist of different combinations of conv-BN-ReLU blocks
without any shortcut connections, Inception blocks, and one or more fully connected
layers.

5

C.1 Tiny Imagenet

layer name AuxNet1 AuxNet2
AuxConv1

[
3×3, 128

]
×2 -

AuxConv2
[

3×3, 256
]
×2

GAP Global average pool
FC1 FC-256, ReLU
Output FC-200, softmax

Table 6: Architecture of auxiliary networks for Tiny ImageNet. When attaching an
auxiliary classifier to positions g1 or g2 of the main architecture, the AuxNet1 layout is
used (Figure 4 in the main paper). The number of output units depends on the number
of groups used in the SSAL objective.

C.2 CIFAR100

layer name AuxNet1 AuxNet2 AuxNet3
AuxConv1

[
5×5, 128, stride 2

] [
5×5, 128

] [
3×3, 128

]
AuxConv2

[
3×3, 128

]
AuxConv3 AuxInceptionE
GAP Global average pool
Output FC-100, softmax

Table 7: Architecture of auxiliary networks on Resnet50 for CIFAR100. The number
of output units for the last layer depends on the number of groups used in the SSAL
objective. For our main result, AuxNet1 is attached on position g2 (see Figure 4 on the
paper), AuxNet2 on position g3 and AuxNet3 on position g4 of the main network. The
layout of the AuxInceptionE block is shown in Figure 1c

.

6

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1
[

5×5, 128, stride 2
]

3×3, 128

[
5×5, 128

]
3×3, 128

[
3×3, 128

]
3×3, 128

AuxConv2 AuxInceptionE - AuxInceptionE
GAP Global average pool
FC1 - FC-768, ReLU -
Output FC-100, softmax

Table 8: Architecture of auxiliary networks on WRN 16-8 for CIFAR100. The number
of output units for the last layer depends on the number of groups used in the SSAL
objective. The layout of the AuxInceptionE block is shown in Figure 1c

.

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1
[

5×5, 128, stride 2
]

3×3, 128

[
5×5, 128

]
3×3, 128

[
3×3, 128

]
3×3, 128

AuxConv2
[

3×3, 256
]
×2 -

AuxConv3
[

AuxInceptionE
]
×2 -

[
AuxInceptionE

]
×2

GAP Global average pool
FC1 - FC-768, ReLU -
Output FC-100, softmax

Table 9: Architecture of auxiliary networks on WRN 28-10 and DenseNet models for
CIFAR100. The number of output units for the last layer depends on the number of
groups used in the SSAL objective. For our main result, AuxNet1 is attached on posi-
tion g2 (see Figure 4 on the paper), AuxNet2 on position g5 and AuxNet3 on position
g6 of the original network. The layout of the AuxInceptionE block is shown in Figure
1c

.

7

C.3 Imagenet

layer name AuxNet1 AuxNet2 AuxNet3
AuxConv1

[
3×3, 256, stride 2

]
- -

AuxConv2 AuxInceptionC

AuxConv3
[

AuxInceptionD
]

AuxInceptionE
-

AuxConv4
[

AuxInceptionD
]

AuxInceptionE*
GAP Global average pool
Output FC-100, softmax

Table 10: Architecture of auxiliary networks on Resnet50 for Imagenet. The layout of
the AuxInception blocks is shown in Figure 1. For our main result, AuxNet1 is attached
on position g2 (see Figure 4 of the paper), AuxNet2 on position g3 and AuxNet3 on
position g4 of the original network.
*The final AuxInceptionE block has twice as many channels as the first AuxInceptionE
found in AuxConv3.

8

CONV

1x1, 80

Avgpool

3x3, stride 1

CONV

1x7, 80

CONV

7x1, 64

CONV

7x1, 80

CONV

1x7, 80

CONV

7x1, 80

CONV

1x7, 60

CONV

1x1, 64

Base

Filter Concat

CONV

1x1, 64

CONV

1x1, 80

(a) AuxInceptionC

CONV

1x1, 96

Maxpool

3x3, stride 2

CONV

1x7, 96

CONV

7x1, 96

CONV

1x1, 64

Base

Filter Concat

CONV

1x1, 96

CONV

3x3, 108, stride 2

CONV

3x3, 84, stride 2

(b) AuxInceptionD

CONV

1x1, 128

Avgpool

3x3, stride 1

CONV

3x1, 128

CONV

1x3, 128

CONV

3x3, 128

CONV

1x3, 80

CONV

3x1, 80

CONV

1x1, 108

Base

Filter Concat

CONV

1x1, 128

CONV

1x1, 160

(c) AuxInceptionE

Figure 1: Layout of AuxInception blocks, based on Inception blocks.

9

D CAM Visualizations
We show additional visualizations of CAM heatmaps together with SSAL groupings.

Figure 2: CAM samples with and without SSAL. The left column has incorrect predic-
tions. The right column has correct predictions. The last row has mixed results.

10

E Additional Experiments

E.1 Alternative Joint Predictions
WRN 28-10 is trained on CIFAR100 with one SSAL branch, forcing a single prediction
that follows the operations done by a joint prediction. This allows the network to be
trained as a regular network (i.e., with a single classification output as opposed to
an MTL setup), while preserving all aspect of the SSAL architecture when used for
predictions. Note that in this case, the grouping objective is not modeled in the loss; it
is only indirectly expressed by the way the SSAL branch is wired to the main classifier
output. With the right amount of weight decay, this setup reaches a performance that
is on par with a similar SSAL model (trained using an MTL regime) with an explicit
pointwise multiplication for prediction.

E.2 Training with different Grouping Criteria
Resnet-50 is trained on ImageNet with 3 SSAL branches of 200, 334 and 500 groups
respectively. The ground-truth labels are divided into groups either by joining or split-
ting visually similar labels. The validation accuracy is observed throughout training
(see Figure 3). The curves are close together for the base prediction error as well as
for the joint prediction error, which indicates similar benefits from both criteria for
the prediction. However, the validation error of the auxiliary predictions differ. When
splitting similar labels into different groups, which creates subsets of diverse labels,
the error in the auxiliary classifiers is higher. This meets the expectation, as it is intu-
itively more difficult to find features to represent each group. Also, contrary to groups
of similar labels, the classes that are more often confused still need to be distinguished
by the classifier.

0 20 40 60 80
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
er

ro
r

Base pred., SSAL join similar
Joint pred., SSAL join similar

Base pred, SSAL split similar
Joint pred., SSAL split similar

(a)

0 20 40 60 80
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
er

ro
r

AUX1, SSAL 200 join similar
AUX2, SSAL 334 join similar
AUX3, SSAL 500 join similar

AUX1, SSAL 200 split similar
AUX2, SSAL 334 split similar
AUX3, SSAL 500 split similar

(b)

Figure 3: Validation error on a) base and joint prediction as well as b) the auxiliary
predictions.

The combined loss is higher for split similar than for join similar, which meets the

11

expectation as joining similar labels creates an easier problem.

0 20 40 60 80
Epochs

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
m

bi
ne

d
Lo

ss

val loss, SSAL join similar
train loss, SSAL join similar

val loss, SSAL split similar
train loss, SSAL split similar

Figure 4: Combined validation and training loss throughout training.

E.3 Adversarial Attacks
Adversarial examples are generated from the Tiny Imagenet dataset using the Fast Gra-
dient Sign Method (FGSM) [3] as well as the Basic Iterative Method (BIM) [4]. At-
tacks are aimed for the base network only, while auxiliary classifiers are not available
to the attacker. The base network is a ResNet18 model (see Table 1) trained on Tiny
Imagenet.

The effect of FGSM attacks is shown in Figure 5a. It is evaluated for different
values for ε, which limits the alteration per pixel from the original image. While the
auxiliary classifier is not affected as much by the attack against the base network as the
base network itself, the combination of both still shows poor robustness.
For BIM (see Figure 5b), the auxiliary classifier is influenced even less. This is likely
due to the multi-step creation of the adversarial samples, which makes them more ef-
fective towards the given base network, but less transferable to the auxiliary classifier.
Once more, the auxiliary classifier barely decreases the amount of errors on the valida-
tion set when looking at the combined prediction. Further improvements can be gained
by using multiple auxiliary classifiers, but overall, the use of the auxiliary classifiers
against adversarial attacks is limited.

12

0 2 4 6 8 10 12 14 16
Epsilon

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

er
ro

r

Base classifier Auxiliary classifier Combined classifier

(a) FGSM

0 2 4 6 8 10 12 14 16
Epsilon

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

er
ro

r

Base classifier Auxiliary classifier Combined classifier

(b) BIM

Figure 5: Effect of adversarial examples on the validation error. The auxiliary classifier
classifies 40 groups of joint similar labels.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” in Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 2016. 2, 3

[2] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018. 3

[3] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations, 2015. 12

[4] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world.” Technical report, arXiv 1607.02533, 2016. 12

13

