
J Multimodal User Interfaces
DOI 10.1007/s12193-011-0077-1

O R I G I NA L PA P E R

Visual SceneMaker—a tool for authoring interactive virtual
characters

Patrick Gebhard · Gregor Mehlmann · Michael Kipp

Received: 3 December 2010 / Accepted: 5 November 2011
© OpenInterface Association 2011

Abstract Creating interactive applications with multiple
virtual characters comes along with many challenges that
are related to different areas of expertise. The definition of
context-sensitive interactive behavior requires expert pro-
grammers and often results in hard-to-maintain code. To
tackle these challenges, we suggest a visual authoring ap-
proach for virtual character applications and present a re-
vised version of our SceneMaker tool. In SceneMaker a
separation of content and logic is enforced. In the revised
version, the Visual SceneMaker, we introduce concurrency
and specific history structures as key concepts to facili-
tate (1) clearly structured interactive behavior definition,
(2) multiple character modeling, and (3) extensions to ex-
isting applications. The new integrated developer environ-
ment allows sceneflow visualization and runtime modifica-
tions to support the development of interactive character ap-
plications in a rapid prototyping style. Finally, we present
the result of a user study, which evaluates usability and the
key concepts of the authoring tool.

Keywords Embodied conversational agents · Authoring
tools · Modelling of interactive behavior

1 Introduction

The creation of believable interactive virtual characters in-
volves expertise in many disciplines. It is a creative act
which starts with application specific goals that are real-
ized by the choice of appropriate models, techniques and
content, put together in order to create an overall consistent

P. Gebhard (!) · G. Mehlmann · M. Kipp
DFKI GmbH, Saarbrücken, Germany
e-mail: patrick.gebhard@dfki.de

application. Virtual characters can enrich the interaction ex-
perience by showing engaging and consistent behavior. This
comes along with a whole range of challenges, such as in-
teraction design, emotion modeling, figure animation, and
speech synthesis [9]. Research is carried out in a range of
disciplines, including believable facial expressions, gesture
animations and body movements of virtual characters [14],
modeling of personality and emotion [10] and expressive
speech synthesis [21]. However, to what extent virtual char-
acters actually contribute to measurable benefits such as in-
creased motivation or even performance is still hotly debated
(cf. [12, 18]). This makes it even more important that virtual
character applications are carefully designed, in close inter-
action with users, artists, and programmers.

Over the past years, several approaches for modeling the
content and the interactive behavior of virtual character have
emerged. First, plan- and rule-based systems were in the
focus of interest. Then, authoring systems were developed
to exploit related expert knowledge in the areas of film or
theater screenplay (e.g. dramatic acting and presentation).
These systems are created to facilitate the authoring process
and should enable non-computer experts to model believ-
able natural behavior. One of the first authoring systems for
interactive character applications is Improv [19]. Its behav-
ior engine allows authors to create sophisticated rules defin-
ing how characters communicate, change their behavior, and
make decisions. The system uses an “English-style” script-
ing language to define individual scripts. SCREAM [20]
is a scripting tool to model story aspects as well as high-
level interaction and comprises modules for emotion gen-
eration, regulation, and expression. Compared to our initial
SceneMaker approach [8] which uses an author-centric ap-
proach with the primary focus of scripting at the story/plot
level, the related projects use a character-centric approach
in which the author defines a character’s goals, beliefs, and

mailto:patrick.gebhard@dfki.de

J Multimodal User Interfaces

Fig. 1 The English example
scene Welcome with a variable,
gesture and system commands

attitudes. These mental states determine the behavioral re-
sponses to the annotated communicative acts it receives.
SCREAM is intended as a plug-in to task specific agent sys-
tems such as interactive tutoring or entertainment systems
for which it can decide on the kind of emotion expression
and its intensity. There is no explicit support for scripting
the behavior of multiple agents in a simple and intuitive
way. Other author-centric approaches are the CSLU toolkit
[17], SceneJo [22], DEAL [5], and CREACTOR [13]. The
CSLU toolkit relies on a finite state approach for dialogue
control while Scenejo relies on the A.L.I.C.E. chatbot tech-
nology [1] for the control of verbal dialogues which offers
accessibility to non-experts in interactive dialogue program-
ming. This technology offers AIML structures, which can
be used to define textual dialogue contributions. A graphi-
cal user interface is provided for the modeling of structured
conversations. DEAL is created as a research platform for
exploring the challenges and potential benefits of combining
elements from computer games, dialogue systems and lan-
guage learning. A central concept is the dialogue manager,
which controls the dialogues of game characters. The dia-
logue manager employs Harel statecharts [11] to describe
an application’s dialogue structure and to model different
aspects of dialogue behavior (e.g. conversational gestures
and emotional expressions). CREACTOR is an authoring
framework for virtual characters that enables authors to de-
fine various aspects of an interactive performance through
an assisted authoring procedure. The project focuses on the
modeling of consistent narration and character behavior us-
ing a graph representation. None of the mentioned author-
ing systems support concepts for action history and con-
currency on the authoring level. However, DEAL provides
these concepts, but only at the level of statecharts. With the
Visual SceneMaker, new authoring concepts are introduced:
concurrency, variable scoping, multiple interaction policies,
a run-time history, and a new graphical integrated develop-
ment environment (IDE). Before we lay the focus on these,
we give a brief overview on the existing concepts.

2 SceneMaker authoring concepts

SceneMaker’s central authoring paradigm is the separation
of content (e.g. dialogue) and logic (e.g. conditional branch-
ing). The content is organized as a collection of scenes
which are specified in a multi-modal scenescript resembling

a movie script with dialogue utterances and stage directions
for controlling gestures, postures, and facial expressions.
The logic of an interactive performance and the interaction
with virtual characters is controlled by a sceneflow.

Scenescript A scene definition (see Fig. 1) starts with
the keyword Scene, followed by a language key (e.g.
en for English), a scene identifier (e.g. Welcome), and a
number of variables (e.g. $name). Variables can be used
to produce variations or to create personalized versions.
The scene body holds a number of turns and utterances,
which have to start with a character’s name (e.g. Sam
and Max). Utterances may hold variables, system actions
(e.g. [camera upperbody]) and gesture commands
(e.g.[point_to_user]).

A scenescript may provide a number of variations for
each scene that are subsumed in a scenegroup. Different pre-
defined and user-defined blacklisting strategies can be used
to choose one scene of a scenegroup for execution. This se-
lection mechanism increases dialogue variety and helps to
avoid repetitive behavior of virtual characters.

Sceneflow A sceneflow is a hierarchical statechart variant
specifying the logic and temporal order in which individ-
ual scenes are played, commands are executed and user in-
teractions are processed. It consists of different types of
nodes and edges. A scenenode (see Fig. 2 1©) has a name
and an unique identifier. It holds scenegroup playback com-
mands or statements specified in a simple scripting language
format. These are type definitions and variable definitions,
variable assignments, and function calls to predefined func-
tions of the underlying implementation language (e.g. Java™

functions). A supernode (see Fig. 2 2©) extends the func-
tionality of scenenodes by creating a hierarchical structure.
A supernode may contain scenenodes and supernodes that
constitute its subautomaton (marked graphically with the
shaded area)1 with one defined startnode (see Fig. 2 3©).
The supernode hierarchy can be used for a scoping of types
and variables. Type definitions and variable definitions are
inherited to all subnodes of a supernode.

Nodes can be seen as little code pieces that structure
the content of an interactive presentation while edges spec-
ify how this content is linked together. Different branching

1Within the IDE, the content of a supernode can be edited by selecting
a supernode.

J Multimodal User Interfaces

Fig. 2 Basic node types and
edge types of sceneflows and the
color code of nodes and edges

strategies within the sceneflow, e.g. logical and temporal
conditions or randomization, as well as different interaction
policies, can be modelled by connecting nodes with differ-
ent types of edges [8]. The IDE supports the usages of edges.
The first edge connected to a node defines the allowed types
of edges and the color of that node. This color code helps
authors structuring a sceneflow and helps keeping it well-
defined.

Epsilon edges represent unconditional transitions (see
Fig. 2 4©) and specify the order in which steps are performed
and scenes are played back.

Timeout edges represent scheduled transitions and are la-
beled with a timeout value (see Fig. 2 5©) influecing the tem-
poral flow of a sceneflow’s execution.

Probabilistic edges represent transition that are taken
with certain probabilities and are labeled with probability
values (see Fig. 2 6©). They are used to create randomness
and variability during the execution.

Conditional edges represent conditional transitions and
are labeled with conditional expressions (see Fig. 2 7©+ 8©).
They are used to create a branching structure in the scene-
flow which describes different reactions to changes of envi-
ronmental conditions, external events, or user interactions.

Interuptive edges are special conditional edges that are
restricted to supernodes (see Fig. 2 9©) and are used to inter-
rupt ongoing activities.

Discussion The focus of the original SceneMaker is to
enable authors to model typical interactive situations (e.g.
with dialogue variations and distinct character behavior).
This might be sufficient for some simple application setups,
but there are limitations with regard to a more sophisticated
modeling of dialogue, behavior of virtual characters, and in-
teraction:

1. Difficult dialogue resumption. An external dialogue
memory is needed to represent and store the current state
of the dialogue topic or interaction. Without a dialogue
memory coherent dialogue resumptions are not feasible.

2. Coupled control of virtual characters. An individual con-
trol and synchronization of multiple characters with sep-
arate sceneflows is not supported. With scene gesture
commands multiple characters could be animated at the
same time, but not independent of each other.

3. Costly extension of virtual character behavior. Adding
new behavioral aspects, e.g. a specific gaze behavior in a
multi-character application requires to add commands in
each used scene for each character.

3 The Visual SceneMaker IDE

The Visual SceneMaker IDE, shown in Fig. 3, enables au-
thors to create, maintain, debug, and execute an application
via graphical interface controls.

The IDE displays two working areas in the middle of the
window, the sceneflow editor (see Fig. 3 A©) and the scene-
script editor (see Fig. 3 B©). In order to build an application,
authors can drag building blocks from the left side and drop
them on the respective editor. Building blocks for scene-
flows (see Fig. 3 C©) are nodes, edges, scenes, and prede-
fined Java™ functions. Building blocks for scenescripts (see
Fig. 3 D©) are gestures, animations and system actions. All
properties of nodes, such as type- and variable definitions as
well as function calls, can be modified right to the sceneflow
working area (see Fig. 3 E©). All defined types and variables
are shown in a separate variable badge (see Fig. 3 1©) within
the sceneflow editor. To facilitate maintaining and testing,
the execution of an application can be visualized either by
highlighting the currently executed nodes, edges, and scenes
red at runtime (see Fig. 3 2©) or by highlighting all past ac-
tions and execution paths gray (see Fig. 3 3©).

The Visual SceneMaker is implemented in Java™ us-
ing an interpreter approach for executing sceneflows and
scenes. This allows the modification of the model and the
direct observation of the ensuing effects at runtime.

Figure 4 shows the system architecture, with the IDE in
the modeling environment (see Fig. 4 A©) as well as the en-
vironments for the interpreter (see Fig. 4 B©), plug-ins (see
Fig. 4 C©), and applications (see Fig. 4 D©). Sceneplayers
and Plug-Ins represent the input and output interfaces to
external applications and have to be implemented by pro-
grammers. The figure presented a typical application con-
figuration showing the Mary TTS2 for speech output (see

2http://mary.dfki.de

http://mary.dfki.de

J Multimodal User Interfaces

Fig. 3 The Visual SceneMaker
IDE showing different working
areas and highlighting modes

Fig. 4 The SceneMaker’s
system architecture with its
sceneplayer and plug-in
mechanism

Fig. 4 3©) and the Horde 3D3 graphics engine for charac-
ter rendering (see Fig. 4 2©) as well as the Spin [7] parser
for NLU (see Fig. 4 4©). The Horde3D Sceneplayer (see
Fig. 4 1©) is responsible for the translation of scenes to TTS
and animation commands. The Spin Request (see Fig. 4 5©)
forwards user input events to the sceneflow interpreter by
changing the value of global sceneflow variables.

4 New Sceneflow elements

We extended the definition of sceneflows with concepts for a
hierarchical and parallel decomposition of sceneflows, dif-

3http://horde3d.org

ferent interruption policies and a runtime history adopting
and extending modeling concepts as they can be found in
several statechart variants [3, 11].

Hierarchical and parallel decomposition By the use of a
hierarchical and parallel model decomposition, multiple vir-
tual characters and their behavioral aspects, as well as multi-
ple control processes for event and interaction management,
can be modeled as concurrent processes in separate paral-
lel automata. Thus, individual behavioral aspect and con-
trol processes can be modeled and adapted in isolation with-
out knowing details of the other aspects while previously
modeled behavioral patterns can easily be reused and ex-
tended.

Sceneflows provide two instruments allowing an author
to create multiple concurrent processes at runtime: (1) By

http://horde3d.org

J Multimodal User Interfaces

Fig. 5 1© The hierarchical and
parallel decomposition of the
virtual world with multiple
startnodes and 2© the parallel
decomposition of behavioral
aspects with multiple fork edges

Fig. 6 1© Process
synchronization over the
variable sync and 2© over a
configuration query

Fig. 7 1© Interruptive and
ordinary conditional edges in a
supernode hierarchy as well as
2© an example of the use of a

history node and a history
condition for dialogue
resumption

defining multiple startnodes, and thus, multiple parallel sub-
automata for a supernode (see Fig. 5 1©) and (2) by using
fork edges (see Fig. 5 2©), each of which creating a new pro-
cess.

Communication and synchronization Individual behav-
ioral aspects contributing to the behavior of a virtual char-
acter and the processing of events for interaction manage-
ment are usually not completely independent. For example,
speech is usually highly synchronized with non-verbal be-
havioral modalities like gestures and body postures. When
modeling these aspects in parallel automata, the processes
that concurrently execute these automata have to be syn-
chronized by the author in order to coordinate them all with
each other.

Sceneflows provide two instruments for an asynchronous
non-blocking synchronization of concurrent processes, real-
ized by a shared memory model. They allow the synchro-
nization over (1) shared variables defined in the scope of
some common supernode (see Fig. 6 1©) and (2) a more in-
tuitive mechanism for process synchronization, a state query
(see Fig. 6 2©) which allows to test if a certain state is cur-
rently executed by another concurrent process.

Interaction handling with interruption policies User inter-
actions and environmental events can rise at any time dur-
ing the execution of a model. Some of them need to be pro-
cessed as fast as possible to assert certain real-time require-
ments, for example when interrupting a character’s utterance
in order to give the user the impression of presence. Other
events may be processed at a later point in time allowing cur-
rently executed scenes or commands to be regularly termi-
nated. These two interaction handling strategies are realized
in sceneflows with the two types of conditional edges, hav-
ing different interruption- and inheritance policies. In con-
trast to ordinary conditional edges, interruptive conditional
edges directly interrupt the execution of any processes, and
have priority over any other edges, lower in the supernode
hierarchy and, thus, are used for handling events and user
interactions requiring a prompt reaction.

Figure 7 1© shows ordinary and interruptive conditional
edges in a supernode hierarchy. When condition stop
comes true during the execution of the innermost scene play-
back command, then the outer interruptive edge to the outer
end node is taken immediately, whereas the inner ordinary
conditional edge is taken after the playback command has
been terminated and the outer ordinary conditional edge is
taken only after the inner end node has terminated.

J Multimodal User Interfaces

Table 1 Feature comparison
between the SceneMaker and
the new Visual SceneMaker

Dialogue resumption with runtime history During a scene-
flow’s execution, the interpreter maintains a runtime history
to record the runtimes of nodes, the values of local variables,
executed system commands, and scenes that were played
back as well as nodes that were lastly executed. The auto-
matic maintenance of this history memory releases the au-
thor of the manual collection of data, thus reducing the mod-
eling effort while increasing the clarity of the model and
providing the author with rich information about previous
interactions and states of execution. This facilitates the mod-
eling of reopening strategies and recapitulation phases for
dialogues. The history concept is realized graphically as a
special history node which is a fixed child node of each su-
pernode. When re-executing a supernode, the history node
is executed instead of its default startnodes. Thus, the his-
tory node serves as a starting point for authors to model
reopening strategies or recapitulation phases. The scripting
language of sceneflows provides a variety of expressions and
conditions to request the information from the history mem-
ory or to delete it. Figure 7 2© shows the use of the history
node of supernode S1 and the history condition HCS(S1,
S3) used to find out if node S3 was the last executed subn-
ode of S1. If the supernode S1 is interrupted and afterwards
re-executed, then it starts at its history node N1. If it had
been interrupted during the explanation phase in nodes S3
and S5, then the explanation phase is reopened, otherwise
the welcome phase in nodes S2 and S4 is restarted.

Feature comparison The introduced new sceneflow ele-
ments support a more flexible creation of interactive appli-
cations with multiple virtual characters. Table 1 compares
the original and the new version of the authoring tool.

With the new features authors are now able to model
multiple virtual characters individually with separate scene-
flows, which allow a fine-grained synchronization. More-
over, the use of parallel sceneflow elements allow mod-
eling behavioral aspects with theses structures. While the
old SceneMaker version supports an animation of charac-
ters through scene gesture commands (which probably have
to be used in each scene, e.g. gaze behavior), the new ver-
sion could process these commands in an additional paral-
lel sceneflow. In addition, this enables an effortless general
extension to existing SceneMaker applications. The task ex-
tending an application, by e.g. camera movements that focus

on the current speaker, could easily fulfilled by modeling a
new parallel sceneflow that executes the respective camera
commands. Overall, this helps reducing modeling costs in
several situations. The new history node structure liberates
authors from the use of external dialogue- and context mem-
ories, which often come with their own interface language.
By providing a simple integrated dialogue history memory,
a fine-grained handling of dialogue resumption and dialogue
interruption is feasible with “on-board” equipment. Finally,
we belief that using the mentioned concepts in a visual pro-
gramming paradigm together with an IDE that supports the
manipulation and the execution of SceneMaker applications
results in a powerful, easy to handle approach for the cre-
ation of interactive multiple virtual character applications.

5 Evaluation

At first, SceneMaker has been informally evaluated in two
field tests (at the Nano-Camp 2009 and the Girls’ Day 2010
[6]) with 21 secondary and high school students at the age
of 12 to 16. Overall, the students describe SceneMaker as an
easy and an intuitive tool, which supports a rapid creation of
applications with interactive virtual characters.

We evaluated the Visual SceneMaker with a user study
with 19 subjects aged 23 to 41 (average age is 30.89). The
subject group consisted of 14 males and 5 females, 9 of the
subjects were university students and 10 of them were re-
searchers from multimedia and computer science. The sub-
jects had to model an interactive sales conversation between
a user and two embodied conversational agents. The par-
ticipants were shortly introduced to the software and were
given a textual description of the expected dialogue struc-
ture. Parts of the dialogue were pre-modeled and served as
an orientation point for the participants to model the remain-
ing dialogue without assistance. The dialogue specification
required the employment of the new modeling concepts,
such as different interruption policies, the history concept
as well as hierarchical refinement and parallel decomposi-
tion. The modeling sessions lasted from 24 to 67 minutes
with an average of 40.05 minutes. Afterwards the partici-
pants filled out a questionnaire on their previous knowledge
and several five-point Likert scale questionnaires addressing
Visual SceneMaker’s modeling concepts and system usabil-
ity. We used questionnaires (see Fig. 8) Q1 and Q2 for the

J Multimodal User Interfaces

Fig. 8 The questionnaires of
the evaluation sheet and the
results of the user study

Fig. 9 The subject group
comparisons with respect to
their previous knowledge

assessement of SceneMaker’s modeling concepts as well as
Q3 and Q4 for measuring the system usability scale (SUS)
from [4], to get a view of subjective assessement of gen-
eral system usability. The SUS covers a variety of aspects of
system usability, such as the need for support, training, and
complexity and has been proven a very effective means to
measure usability in a huge number of usability test. For ex-
ample, Bangor and colleagues [2] applied it to a large range
of user interfaces in nearly 3500 surveys with 273 usabil-
ity studies. The SUS helps us to interpret the results of our
experiment by comparing the scores of our study with the
scores reported in those studies.

The results of the descriptive analysis of the question-
naire are shown in Fig. 8. To show that the mean rating
value was significantly above the neutral value, we applied
t-tests for one sample. These showed, that the participants
got along very well with dialogue modeling and interaction

(t (18) = 21.02, p < 0.0005), multimodal dialogue creation
(t (18) = 11.56, p < 0.0005), testing and visualization fea-
tures (t (18) = 13.91, p < 0.0005) and overall system us-
ability (t (18) = 44.04, p < 0.0005). Furthermore, we com-
pared different subject and experience groups. Rating com-
parisons of male subjects to female subjects and students to
researchers as well as comparisons of different experience
groups with respect to modeling time and age revealed no
significant differences.

The results of the experience group comparisons, shown
in Fig. 9, revealed that subjects with high experience in
model oriented programming (N : 15, MQ3: 4.73, SDQ3:
0.29, MQ4: 84.17, SDQ4: 6.99) gave slightly better scores
for Q3 and Q4 than those with low experience (N : 4,
MQ3: 4.00, SDQ3: 0.72, MQ4: 74.38, SDQ4: 6.25; tQ3(17) =
3.26, pQ3 = 0.005, tQ4(17) = 2.54,pQ4 = 0.021). This was
also observed for Q4 in the comparison of subjects with

J Multimodal User Interfaces

high overall experience (N : 7, M : 87.50, SD: 5.95) to
subjects with low overall experience (N : 12, M : 78.95,
SD: 7.19; t (17) = 2.65, p = 0.017). Another compari-
son showed, that subjects with SUS score below average
(N : 7, M : 49.43 min, SD: 12.15 min) needed more time
to finish the task than subjects with a high SUS score
(N : 12, M : 34.58 min, SD: 7.14 min; t (17) = −3.38,
p = 0.004).

Although, subjects with less programming experience
needed more time and gave slightly worse system usabil-
ity scores, the overall results show that the users gener-
ally felt very confident with the tool. Generally, the SUS
score obtained was very promising. Regarding the average
results of around 70 on the SUS scale from 0 to 100 that
Bangor and colleagues [2] obtained for a large variety of
user interfaces they evaluated, Visual SceneMaker’s perfor-
mance (Min: 67.60, Max: 97.50, M : 82.11, SD: 7.62) is well
above the reported average values and may be interpreted
according to their usability classification as nearly excel-
lent.

6 Summary and future work

In this paper, we have presented Visual SceneMaker, an
authoring tool for the creation of interactive applications
with multiple virtual characters. It extents the initial version
providing creative, non-programming experts with a simple
scripting language for the creation of rich and compelling
content. The separation of dialogue content and narrative
structure based on scenes and sceneflows allows an inde-
pendent modification of both.

A powerful feature for the creation of new interactive per-
formances in a rapid prototyping style is the reusability of
sceneflow parts. This is explicitly supported by the scene-
flow editor, which is part of the new Visual SceneMaker
IDE. This graphical authoring tool supports authors with
drag’n’drop facilities to draw a sceneflow by creating nodes
and edges. The editor also supports new structural exten-
sions of the sceneflow model. The improvements comprise
concurrent sceneflows and a special history node type. With
the use of concurrent sceneflows, large sceneflows can be
decomposed into logical and conceptual components, which
reduces the amount of structures but also helps to organize
the entire model of an interactive performance. In addition,
concurrent structures can be used to model reactive behav-
ioral aspects (e.g. gaze). This will reduce the effort in cre-
ating pre-scripted scenes. History nodes are introduced for
more flexible modeling of reopening strategies and recapitu-
lation phases in dialogue. This new sceneflow structure pro-
vides access to the plot history in every node. This is a valu-
able help for the creation of non-static and lively interactive
performances.

Visual SceneMaker IDE is build upon an interpreter for
the execution of sceneflows. The graphical authoring tool
allows the visualization of the execution progress of a given
SceneMaker application. In addition, it provides an immedi-
ate observation of effects caused by the modification of the
model even at runtime. This is a crucial help when debug-
ging and testing a model in early development phases and in
refinement and modification phases.

We tested the flexibility of the Visual SceneMaker ap-
proach first in field tests and second in a user study. As a
result, we found that the visual programming approach and
the provided modeling structures are easily comprehensible
and let non-experts create virtual character applications in a
rapid prototype fashion. This conclusion is especially justi-
fied by the excellent usability scores that were reached in the
user study.

For future work, we plan to integrate the Visual Scene-
Maker with other crucial components (speech synthesis,
nonverbal behavior generation, emotion simulation . . .) with
plan to integrate it into a component-based embodied agent
framework [15]. This implies the use of standard languages
for intention (FML), behavior (BML) and emotion (Emo-
tionML) to make the Visual SceneMaker compatible with
alternative components [16, 23]. We also plan to introduce a
library of reusable behavior patterns for an easy creation of
different behavioral aspects for multiple virtual characters in
other interactive performances.

Acknowledgements The presented work was supported by the Ger-
man Federal Ministry of Education and Research in the SemProM
project (grand number 01 IA 08002), the INTAKT project (grand num-
ber 01 IS 08025B) and it was supported by the European Commis-
sion within the 7th Framework Programme in the IRIS project (project
number 231824). The authors would like to thank Elisabeth André for
supporting us with their expertise.

References

1. ALICE. Homepage of the alice artificial intelligence foundation.
Online: http://www.alicebot.org

2. Bangor A, Kortum P, Miller J (2009) Determining what individual
sus scores mean: Adding an adjective rating scale. J Usability Stud
4:114–123

3. Beeck Mvd (1994) A comparison of statecharts variants. In: Pro-
ceedings of the third international symposium organized jointly
with the working group provably correct systems on formal
techniques in real-time and fault-tolerant systems, London, UK.
Springer, Berlin, pp 128–148

4. Brooke J (1996) SUS: A quick and dirty usability scale. In: Jordan
PW, Weerdmeester B, Thomas A, Mclelland IL (eds) Usability
evaluation in industry. Taylor and Francis, London

5. Brusk J, Lager T, Wik AHaP (2007) Deal dialogue management
in scxml for believable game characters. In: Proceedings of ACM
future play, New York, NY, USA. ACM, New York, pp 137–144

6. Endrass B, Wissner M, Mehlmann G, Buehling R, Haering M,
André E (2010) Teenage girls as authors for digital storytelling—
a practical experience report. In: Workshop on education in inter-
active digital storytelling on ICIDS, Edinburgh, UK

http://www.alicebot.org

J Multimodal User Interfaces

7. Engel R (2005) Robust and efficient semantic parsing of freeword
order languages in spoken dialogue systems. In: Interspeech 2005

8. Gebhard P, Kipp M, Klesen M, Rist T (2003) Authoring scenes
for adaptive, interactive performances. In: Rosenschein JS, Wool-
dridge M (eds) Proc of the second international joint conference
on autonomous agents and multi-agent systems. ACM, New York,
pp 725–732

9. Gratch J, Rickel J, André E, Cassell J, Petajan E, Badler NI
(2002) Creating interactive virtual humans: some assembly re-
quired. IEEE Intell Syst 17(4):54–63

10. Gratch J, Marsella S, Wang N, Stankovic B (2009) Assessing
the validity of appraisal-based models of emotion. In: Interna-
tional conference on affective computing and intelligent interac-
tion, Amsterdam. IEEE, New York

11. Harel D (1987) Statecharts: a visual formalism for complex sys-
tems. In: Science of computer programming, vol 8. Elsevier, Am-
sterdam, pp 231–274

12. Heidig S, Clarebout G (2011) Do pedagogical agents make a
difference to student motivation and learning? Educ Res Rev
6(1):27–54. doi:10.1016/j.physletb.2003.10.071

13. Iurgel IA, da Silva RE, Ribeiro PR, Soares AB, dos Santos MF
(2009) CREACTOR—an authoring framework for virtual actors.
In: Proceedings of the 9th international conference of intelligent
virtual agents. LNAI, vol 5773. Springer, Berlin, pp 562–563

14. Kipp M, Neff M, Kipp KH, Albrecht I (2007) Toward natural ges-
ture synthesis: evaluating gesture units in a data-driven approach.
In: Proceedings of the 7th international conference on intelligent
virtual agents. LNAI, vol 4722, pp 15–28

15. Kipp M, Heloir A, Gebhard P, Schröder M (2010) Realizing mul-
timodal behavior: closing the gap between behavior planning and
embodied agent presentation. In: Proceedings of the 10th interna-

tional conference on intelligent virtual agents (IVA-10). Springer,
Berlin

16. Kopp S, Krenn B, Marsella S, Marshall AN, Pelachaud C, Pirker
H, Thórisson KR, Vilhjálmsson H (2006) Towards a common
framework for multimodal generation: the behavior markup lan-
guage. In: Proc of IVA-06

17. Mctear MF (1999) Using the cslu toolkit for practicals in spoken
dialogue technology. In: University College London, pp 1–7

18. Miksatko J, Kipp KH, Kipp M (2010) The persona zero-effect:
evaluating virtual character benefits on a learning task. In: Pro-
ceedings of the 10th international conference on intelligent virtual
agents (IVA-10). Springer, Berlin

19. Perlin K, Goldberg A (1996) Improv: a system for scripting inter-
active actors in virtual worlds. In: Computer graphics proceedings,
ACM SIGGRAPH, New York, pp 205–216

20. Prendinger H, Saeyor S, Ishizuk M (2004) Mpml and scream:
scripting the bodies and minds of life-like characters. In: Life-like
characters—tools, affective functions, and applications. Springer,
Berlin, pp 213–242

21. Schröder M (2008) Approaches to emotional expressivity in syn-
thetic speech. In: Emotions in the human voice, culture and per-
ception, vol 3. Pural, San Diego, pp 307–321

22. Spierling U, Mueller SWaW (2006) Towards accessible author-
ing tools for interactive storytelling. In: Proceedings of technolo-
gies for interactive digital storytelling and entertainment. LNCS.
Springer, Heidelberg

23. Vilhjalmsson H, Cantelmo N, Cassell J, Chafai NE, Kipp M, Kopp
S, Mancini M, Marsella S, Marshall AN, Pelachaud C, Ruttkay
Z, Thórisson KR, van Welbergen H, van der Werf RJ (2007) The
behavior markup language: recent developments and challenges.
In: Proc of IVA-07

http://dx.doi.org/10.1016/j.physletb.2003.10.071

	Visual SceneMaker-a tool for authoring interactive virtual characters
	Abstract
	Introduction
	SceneMaker authoring concepts
	Scenescript
	Sceneflow
	Discussion

	The Visual SceneMaker IDE
	New Sceneflow elements
	Hierarchical and parallel decomposition
	Communication and synchronization
	Interaction handling with interruption policies
	Dialogue resumption with runtime history
	Feature comparison

	Evaluation
	Summary and future work
	Acknowledgements
	References

