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Abstract. We present a method to generate a virtual character whose
physical attributes reflect public opinion of a given personality profile.
An initial reverse correlation experiment trains a model which explains
the perception of personality traits from physical attributes. The reverse
model, solved using linear programming, allows for the real-time gener-
ation of virtual characters from an input personality. The method has
been applied on three personality traits (dominance, trustworthiness, and
agreeableness) and 14 physical attributes and verified through both an
analytic test and a subjective study.

1 Introduction

In narrative contexts, such as motion pictures, as well as in interactive contexts,
such as video games or conversational agents, a virtual character feels authentic
when it fulfills the audience’s expectations: the character’s appearance should
match her/his personality as well as her/his behavior [7]. It has been shown that
the better a character looks the part, the more believable and effective she/he
will be in the narrative [9,3].

This paper presents a traits-to-attributes mapping methodology to generate
a virtual character whose physical attributes comply with most people’s ex-
pectations regarding its assumed personality. The method relies on the use of
attributes-based character generation software such as MakeHuman5 (Figure 1,
right), Adobe/Mixamo Fuse6, Daz3D7, and Poser8. These editors account for the
customization of a default character through a set of sliders. Each slider controls
the deformation of a physical attribute, such as gender, age, height, torso width,
finger length, distance between eyes, and the like.

A personality model is a list of traits (dimensions), and the personality pro-
file of an individual is expressed as the quantification, in a closed range, of each
trait. The generation method that we propose has been applied to three per-
sonality traits: dominance, trustworthiness, and agreeableness. The dominance

5 http://www.makehuman.org/ – 10 July 2017
6 http://www.adobe.com/products/fuse.html – 10 July 2017
7 http://www.daz3d.com/ – 10 July 2017
8 http://my.smithmicro.com/poser-3d-animation-software.html – 10 July 2017

http://www.makehuman.org/
http://www.adobe.com/products/fuse.html
http://www.daz3d.com/
http://my.smithmicro.com/poser-3d-animation-software.html


Personality 
Traits 

Physical 
Attributes 

Fig. 1. Our character generation tool (left) allows a designer to provide a personality
profile as input. It automatically modulates (some of the) physical attributes of a char-
acter editor (MakeHuman, right) so that the resulting character’s appearance matches
the personality profile given as input.

and trustworthiness traits were selected because of their wide acceptance as
orthogonal components in the judgment space for first encounters with zero ac-
quaintance [12,4]. Additionally, since there is evidence that people formulate a
judgment in less than a second [16], these two traits are suitable candidates for
experiments which need to crowd-source many votes in a limited amount of time.
We extended the original setup of Oosterhof and Todorov [12] by exposing users
to full-body pictures and by adding an additional trait taken from the well estab-
lished OCEAN model [11] (namely: openness to experience, conscientiousness,
extraversion, agreeableness, and neuroticism). We selected agreeableness because
there is evidence that people often rely on this trait to guess at the supposed
personality of newcomers they meet [1]. This last choice gave us the possibility
to investigate how the system behaves with non-orthogonal trait combinations.

Since both the description of a character and a personality profile can be
mathematically expressed as points in a closed multi-dimensional space, the
traits-to-attributes generation consists of mapping a point into a target space
with different dimensions. The traits-to-attributes generation method accounts
for two phases: off-line training and real-time generation. The training phase
(Section 3) aims at extracting people’s convictions about the association of
personality to physical appearance. This knowledge gathering is performed via
reverse correlation experiments. The generation phase (Section 4) uses linear
programming to generate a virtual character from a personality profile. In the
remainder of the paper, Section 2 provides an overview of the related work using
reverse correlation to support character generation from personality descriptors.
Section 5 presents a selection of examples demonstrating the versatility of our
approach and the results of a subjective evaluation. Finally, Section 6 concludes
the paper.



2 Related work

Reverse Correlation (RC) is an experimental method aiming at highlighting
which features of a large set of stimuli better predict judgments. In the field
of social perception, it was introduced by Mangini et al. [8] to find out which
elements of the human face influence the perception of gender, and discriminate
among expressions (happy, sad). An RC perception experiment usually consists
of presenting a set of pictures, each one showing a person or an avatar, to a
number of subjects and asking them to rank the pictures using Likert scales,
along one or more traits. When the synthetic images are parameterized using
a set of morphological descriptors, it is possible to highlight the relationship
between the perception of an abstract trait (e.g., dominance) and the underlying
morphological parameters describing the test images.

The work presented above delivers models able to predict the judgment of
an image from the descriptors of the image. Conversely, for authorial purposes,
prediction models should be reverted and allow for the creation of a reliable
stimulus for an expected judgment. This approach has recently been a subject
of few, but promising, investigations. For example, Durupinar et al. [5] developed
a system to alter the style of an animation of a virtual character based on the
input of an OCEAN personality profile.

As for the creation of the characters’ mesh, Vernon et al. [15] developed
a system capable of generating new face illustrations from three personality
traits: dominance, approachability, and youthful-attractiveness. Similarly to our
approach, they gather votes to bootstrap a set of linear models predicting the
traits which maximize the perception of the three traits. They later reverse the
model using a multi-layered perceptron so they can generate plausible faces from
a set of desired traits. However, since the training is based on the location of
facial landmarks, rather than high-level morphological parameters, the resulting
faces (cartoon-style representation of the key areas that influence the perception
of the traits) are usable for illustrative purpose but not for practical authoring.

Recently, Streuber et al. [13] proposed a system for the generation of virtual
characters from a set of more than 30 words describing the body shape. Their
system is again based on an initial training phase and generation via reverse
modeling. It generates bodies belonging to a vector space defined by height
principal components obtained from a large collection of scanned human meshes.
In contrast, our method focuses on supporting a high degree of uncorrelated
physical attributes, leading to a significant difference in the ratio between the
cardinalities of the input and the output (e.g., in our work, 3 traits to determine
14 body/face descriptors).

All the works which we surveyed so far conduct RC experiments using Likert
ratings. However, Likert scales present several limitations, such as the reluctance
of subjects to vote at the extremes of a scale, the subjective variation of votes
across sessions, and the need to re-scale previous votes when new absolute ref-
erences are met [10]. For these reasons, our RC experiments are based on the
paired comparison (PC) voting system [2].



Table 1. The attributes modulating the shape of the virtual characters.

MakeHuman ID Short Name Description min max

chin/chin-bones-in—out Chin bones Chin lateral bones extension 0.5 1
chin/chin-height-min—max Chin height Distance between chin and lips 0.2 0.8
eyebrows/eyebrows-angle-up—down Eyebrow angle Eyebrow inclination 0.2 0.8
eyes/r-eye-size-small—big Eye size Size of both eyes 0.1 0.9
head/head-oval Head ovality Hard/soft forehead corners 0 0.8
macrodetails-height/Height Height From ca. 149cm to 201cm 0.25 0.75
macrodetails-universal/Muscle Muscularity Muscular tone of the body 0.2 0.8
macrodetails-universal/Weight Weight Overall mass of the body 0.2 0.8
mouth/mouth-scale-horiz-incr—decr Mouth hscale Mouth and lip width 0.1 0.9
mouth/mouth-scale-vert-incr—decr Mouth vscale Mouth and lip height 0.1 0.9
neck/neck-scale-horiz-less—more Neck hscale Neck width 0 1
nose/nose-scale-horiz-incr—decr Nose hscale Nose width 0.1 0.9
stomach/stomach-tone-decr—incr Stomach tone Belly in/out 0.2 1
torso/torso-vshape-less—more Torso V-shape Affects shoulder width 0 0.8

3 Training the model

The training phase aims at building a linear model which, given the physical
aspect of a virtual character, predicts how observers would grade its personality
traits. The training consists of:

– Data collection. Given a set of randomly generated virtual characters, and
a number of traits to judge, a pool of human subjects is called to judge on
the perception of each trait on each character. Each virtual character is then
associated to a numerical quantification of the perception of each trait;

– Building a prediction model. A linear regression is run to build a model for
the prediction of a trait value from the physical appearance of the character;

– Simplifying the model. The full linear models are simplified in order to discard
the physical attributes which do not significantly contribute in the perception
of a trait. The simplification is performed using two strategies: the first
(p-minimization) minimizes the number of attributes, while the second (R-
maximization) maximizes the prediction power for a trait.

Data collection. We collected information about the perception of personality
traits in relation to physical appearance with a reverse correlation user study
based on a paired comparison voting mode. The paired comparison is a preference
learning technique which aims at ranking a set of items by asking a preference
between two items at a time. Given N items, the number of possible pairs is
P = N ∗ (N − 1)/2. As output, the paired comparison associates an estimate
value to each of the items, allowing for their relative ranking.

A set of 50 randomly generated virtual characters was judged by a panel
of 50 volunteers on three personality traits: dominance, trustworthiness, and
agreeableness. The pictures of the virtual characters were generated using the
open source software MakeHuman. MakeHuman allows for the customization
of a default character using more than 200 sliders. Each slider modulates the
influence of a morph target. For the generation of the characters we selected 14
attributes (listed in Table 1) which visibly alter the appearance of the character



Fig. 2. Left: The characters generated by simultaneously fully minimizing (left) and
maximizing (right) all the 14 physical attributes. Right: An example of the voting page
shown during the data collection.

in frontal view. In addition, in order to limit biases related to gender or ethnicity
discrimination, we locked the gender slider to fully masculine and the ethnicity
to fully Caucasian. Figure 2, left, shows the extreme virtual characters that can
be generated by minimizing or maximizing all the 14 physical attributes at once.

Each of the 50 participants voted on 50 pairs of virtual characters through
an interface shown in Figure 2, right. Participants were university students from
various faculties belonging to different nationalities (30 DE, 5 IN, 3 RU, 2 MEX,
2 IT, 8 not listed); mean age 23.44 years (sd=3.86); level of education: 26 high-
school diploma, 11 bachelor’s degree, and 13 master’s degree. The experiment
was conducted in a German university. The experimenters provided instructions
in either German or English and supervised the voting session. Each voting
session lasted up to 15 minutes. Each voter was rewarded with a meal coupon
with a value of 2.85 Euros. On average, the time needed to vote on a pair was
11.38 secs (sd=6.49), and each of the 1225 possible pairs was voted 2.04 times.

The computation of the PC estimates associates each virtual character to a
triplet of values, which indicate how much an observer perceives the character
as dominant, trustworthy, and agreeable. For each trait t, the minimum and
maximum estimates (Emin

t , Emax
t ) are used to normalize the input traits in a

range [0, 1]. The estimates were computed using the prefmod [6] R module. All
the experiments were conducted on the online DeEvA platform9.

Building the prediction model. We derive three separate linear models, one for
each of the three personality traits t ∈ T , by performing a linear regression
between the character’s attributes (predictors) and the trait estimates (measured
variable). The output of each regression is: i) an intercept value it, and ii) a row
vector of coefficients Ct. Given a set of attribute values as column vector X =
{xa, a ∈ A}, where A is the set of physical attributes, the formula to estimate
the value pt of the personality trait t is:

pt = it + Ct ×X (1)
9 https://deeva.mmci.uni-saarland.de/ – 10 July 2017
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Table 2. The prediction models selected via p-minimization and R-maximization.
The Cx and the p columns report respectively the slope and the p-value of the linear
regression for each physical attribute (*=< 0.05, **=< 0.01, ***=< 0.001).

Selection p-minimization R-maximization

Trait (t) Dominant Trustworthy Agreeable Dominant Trustworthy Agreeable

#selected attr. 6 4 4 12 7 9
adjusted R2 0.903 0.726 0.747 0.917 0.749 0.769
intercept (it) -2.156 0.129 0.316 -2.174 -0.241 -0.012

Attribute Name CD p CT p CA p CD p CT p CA p
Chin bones - - - - - - 0.223 0.196 - - - -
Chin height - - - - - - 0.344 * 0.601 * - -
Eyebrow inclination 2.100 *** -2.080 *** -2.234 *** 2.092 *** -2.258 *** -2.313 ***
Eye size - - 0.451 * 0.432 * - - 0.455 * 0.328 0.094
Head ovality - - -0.661 *** -0.782 *** -0.178 0.077 -0.740 *** -0.675 ***
Height 1.688 *** 0.829 ** 0.897 ** 1.846 *** 1.131 *** 0.970 **
Muscularity 0.335 * - - - - 0.326 * 0.314 0.165 0.324 0.166
Weight 0.605 *** - - - - 0.538 *** - - - -
Mouth/lip width - - - - - - -0.124 0.239 - - 0.284 0.130
Mouth/lip height - - - - - - -0.110 0.273 - - 0.221 0.197
Neck width 0.521 *** - - - - 0.483 *** - - - -
Nose width - - - - - - -0.212 0.065 - - 0.210 0.298
Stomach tone - - - - - - - - - - -0.287 0.089
Torso V-shape 0.524 *** - - - - 0.409 *** -0.251 0.180 - -

Simplifying the prediction model. Each of the three linear models is simplified
into two simpler models using a backward elimination. The backward elimina-
tion approach is an iterative model selection technique which reduces the number
of predictors (here, the physical attributes) explaining a variable. We apply the
backward elimination with two selection strategies: p-value minimization and
R-correlation maximization.

The model selection based on p-minimization considers the p-value asso-
ciated to each variable as a result of the regression and discards the variable
with the higher p-value above the threshold α. The algorithm iterates using the
reduced variable set until there are no variables with p-value ≥ α. In this work,
we use α = 0.05. In contrast, the model selection based on R-maximization
takes into account the correlation factor R of the initial regression. Then it
computes how the correlation varies by removing each variable, one at a time.
The algorithm removes the variable which causes the lowest increment of R and
iterates until no removal increases the correlation factor. The selection by p-
minimization leads to models with a minimal set of variables, while the selection
with R-maximization leads to models with the highest prediction power. The
former method allows us to trigger the perception of a trait using the smallest
possible number of attributes, leaving more freedom to the author for further cus-
tomization, while the latter method is more suitable to maximize the perception
of the trait. The linear regressions and the model selection were computed in the
R programming environment using the default lm function. The maximization
was based on the adjusted-R-squared correlation factor.



Table 2 shows the results for all of the six models selected using both p-
minimization and R-maximization strategies for each trait. As expected, in the p-
minimization mode there are fewer attributes compared to the R-maximization.
Since the correlation of the estimates between trustworthiness and agreeableness
is very high (r=0.965), they share the same attributes. On the other hand, the
correlation is lower for dominance vs. trustworthiness (r=-0.402) (confirming
the findings of Oosterhof et al. [12]) and for dominance vs. agreeableness (r=-
0.400). These finding match with previous research. Concerning the perception
of dominance, Toscano et al. [14] already reported on the importance of the
inclination of the eyebrows, and Windhager et al. [17] reported the relevance of
the rectangularity of the face and of the chin bones. Furthermore, both of the
aforementioned works recognized the influence of lip thickness, mouth width,
and the eyes’ aperture. This experiment, which includes full-body pictures, adds
the relevance of the height, weight, muscularity, neck and shoulder width, and
stomach tone to the perception of these three traits.

4 Character generation model

The generation of the character takes as input a set of traits and a quantification
of their desired level of perception for an observer. The output consists of the
values of the physical attributes needed to build an avatar whose appearance
triggers the perception of the input personality. In the rest of this section:

– Problem statement describes how the generation problem is posed as a linear
programming problem;

– Filter by solvability rate addresses the issue of unsolvability of a linear prob-
lem for some trait combination. It shows how to estimate the solvability
chances through simulation;

– The objective function illustrates why we need to define several objective
functions and how to find, for each trait combination, the function which
minimizes prediction errors;

– Coerce attribute progression illustrates an additional pair of constraints which
improve the smoothness of the solution space; and

– Evaluating the coercion presents a quantitative measurement of the improve-
ments introduced by the coercion mechanism.

Problem statement. The linear models derived in the previous section can be
combined into a single linear system which can be reverted to calculate the
expected physical attributes from a set of personality trait values. Given a per-
sonality profile P =

{
pt, t ∈ T,Emin

t ≤ pt ≤ Emax
t

}
, the values of X (physical

attributes) that lead to the perception of P can be calculated by solving the
linear problem:

arg min
X

{G ∗X} = arg min
X

{gaxa, a ∈ A} (2)

subject to:
P − I = C ∗X (3)



Table 3. For each trait combination, the table shows a solvability rate, i.e., the chance
of being able to generate a character from a given personality profile.

Selection p R
Traits #Attrs #Coeffs Solve Rate #Attrs #Coeffs Solve Rate

D 6 6 100.0% 12 12 100.0%
T 4 4 100.0% 7 7 100.0%
A 4 4 100.0% 9 9 100.0%
D,T 8 10 91.1% 13 19 99.7%
D,A 8 10 90.0% 14 21 97.2%
T,A 4 8 3.3% 11 16 62.7%
D,T,A 8 14 4.1% 14 28 55.8%

amin ≤ xa ≤ amax, a ∈ A (4)

where G = {gt, t ∈ T} is the row vector of coefficients of the objective func-
tion, and I = {it, t ∈ T} is the vector of intercepts. The matrix C = (ct,a)
contains on each line the coefficients Ct of the linear model of a trait (see Ta-
ble 2): each column is associated to an attribute, and ct,a = 0 if the attribute has
been eliminated from the trait during the model selection. Finally, each xa ∈ X
is bound to its min/max values, as documented in Table 1. As for the dimen-
sions: |P | = |I| = |T |, the number of traits; |X| = |A|, the number of attributes;
and the matrix C has |T | rows and |A| columns.

For convenience, the input is provided as normalized personality profile vector
P̂ = {p̂t ∈ [0, 1], t ∈ T}. The non-normalized vector P of estimates is calculated
as: P = {Emin

t + (Emax
t − Emin

t ) ∗ p̂t, t ∈ T}, where Emin and Emax are the
vectors of minimum and maximum estimates for each trait. In this work, we
solve linear problems using the simplex method as implemented in the linprog

function exposed by the scipy.optimize10 python module.

Filter by solvability rate. A linear problem might be impossible to solve. In order
to provide feedback to the user about the feasibility of a request, we precompute
a solvability rate for each trait combination for both p and R selection. As can be
seen in Table 3, the percentage of solvability drops when the model combination
contains highly correlated traits (trustworthiness and agreeableness). The DTA
combination in R-maximization rises to 55.8% thanks to the fact that the (higher
number of) attributes distribute differently between the T and A traits. Further
analysis will consider only trait combinations where the success rate is above
90%, plus the combination of all the three traits (DTA) in R-maximization
selection, because it provides the most interesting study case.

The objective function. In linear programming, each coefficient ga ∈ G of the
objective function (Equation 2) is ideally associated to a cost. Among an infinite
number of possible solutions, the solver will choose a vector X which minimizes
the overall cost.

However, in our case there is not an obvious cost associated to a physical
attribute. Hence we conceived and tested six different strategies to assign, for

10 https://www.scipy.org/ – 10 July 2017
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Table 4. Top: The average MSE for each objective function in different selection/trait
combinations. The bold text highlights the minimum value(s) for each condition.

Minimization Strategy
Selection Traits zero one minus one sign count sum coeff sum coeff over p Solve Rate

p

D 0.289 0.290 0.301 0.301 0.289 0.286 100%
T 0.244 0.244 0.261 0.233 0.244 0.251 100%
A 0.239 0.239 0.259 0.236 0.239 0.245 100%
D,T 0.252 0.252 0.263 0.262 0.252 0.248 100%
D,A 0.251 0.251 0.255 0.256 0.251 0.245 98%

R

D 0.311 0.310 0.332 0.319 0.311 0.318 100%
T 0.287 0.287 0.311 0.300 0.287 0.290 100%
A 0.291 0.291 0.324 0.310 0.291 0.300 100%
D,T 0.287 0.291 0.307 0.289 0.287 0.299 100%
D,A 0.285 0.284 0.306 0.284 0.285 0.294 100%
D,T,A 0.266 0.264 0.289 0.275 0.266 0.278 100%

each attribute a ∈ A, the corresponding coefficient ga ∈ G:
zero: ga = 0. The solver is subject only to the equality (Equation 3) and to the
variable boundaries (Equation 4).
one: ga = 1. The solver will push all variables to their minimum value.
minus one: ga = −1. The solver will push all variables to their maximum value.
pos neg usage count: ga =

∑
t∈T −sgn(ct,a). The solver will maximize vari-

ables with a high number of positive coefficients (vice versa for negative ones).
sum coeff : ga =

∑
t∈T −ct,a. The higher the overall coefficients sum, the more

the variable will be favored in the maximization. The aim is to give a higher
priority to maximization of variables with stronger positive correlations (vice
versa for negative correlations).
sum coeff over p: ga =

∑
t∈T (−ct,a/pt,a). As the sum coef strategy, plus each

coefficient will be divided by its p-value resulting from the linear regression.
The smaller the p-value, the higher the absolute value of the cost. This strategy
increases the influence for variables with higher significance.

In order to assess the efficacy of each minimization strategy, we solved the
traits-to-attributes problem using the same data used for training. In practice,
we took the personality triplet associated to each of the 50 virtual characters and
back-calculated their physical attributes. Then, we measured the mean squared
error (MSE) for each attribute and averaged all of them together. The MSEs
are normalized on each attribute min/max range. Table 4 shows the MSE of
each minimization strategy for each condition. More elaborate strategies, tak-
ing into account the coefficient and the significance of an attribute, helped in
reducing the error only for the p-minimization mode (fewer attributes). Given
a trait combination, the traits-to-attributes model will use this table during the
generation phase to select the minimization strategy which leads to the smallest
error.

The average error among all conditions, in percentage (
√
MSE∗100), is 51.9%

(min 48.3%, max 55.6%, sd 2.5%). The next paragraph explains the reason for
such high error and presents a strategy to reduce it.



Fig. 3. Variation of the attribute values (y) as a function of the level of dominance (x).
Left: unbounded; Center: capped with no relaxation; Right: capped with relax, at 0.1.

Coerce attribute progression. As defined so far, the traits-to-attributes model
provides solutions with an uneven increment of the attribute values over the
input range. For example, as can be seen in Figure 3 (left), as the level of
dominance increases, the solver maximizes the attribute values one by one, and
some of the attributes are locked at their maximum/minimum value. Overall, this
increments the error rate of the solver. Also, for authorial purposes a smoother
and more evenly distributed increment of all attributes over the trait range would
be preferred.

Hence, we introduced a capping mechanism to drive the attributes towards
a smoother increment. The capping mechanism is based on the sign of the co-
efficients of the objective function: if a coefficient ga is negative (i.e., the solver
tends to maximize the variable) we impose as upper bound to the variable xa the
same value of the input trait. Vice versa, the bound is on the lower value when ga
is positive. In the case of multiple input traits, the upper and minimum bounds
are set to the maximum and minimum value among all traits. Figure 3 (center)
shows the result of this strategy: the behavior of the attributes has improved,
but the bounding restriction leads more easily to unsolvable problems. Hence,
we introduce a relaxation factor R ∈ [0, 1] which softens the capping constraints.
The resulting capping strategy is formally expressed as:{

xa ≤ amax − (amax − amin) ∗max{p ∈ P̂} ∗ (1−R) ga < 0

xa ≥ amin + (amax − amin) ∗min{p ∈ P̂} ∗ (1−R) ga > 0

If the coefficient ga is 0, the variable bounds are in any case constrained to
amin ≤ xa ≤ amax, as defined in the basic model. With R = 0 the bounds are
strict and the linear problem is harder to solve, while with R = 1 there is no more
effect of the capping and the “one-by-one increment” behavior arises. Figure 3
(right) shows the behavior with R = 0.1. To verify that the capping mechanism
improves the precision, we recomputed the MSEs table with the capping enabled
and a relaxation set at 0.25. Although the solve rate decreased from 99.8% to
84.3%, the average error decreased from 51.9% to 31.7% (sd 5.1%).

Evaluating the coercion. We evaluated the behavior of the coercion mechanism
for all of the three traits in both p and R selection modes. For each trait (D, T,
or A), we solved the traits-to-attributes problem with and without the capping



Table 5. Correlation gain between noCap and Cap conditions.

p R
noCap Cap noCap Cap

trait mean (sd) mean (sd) gain Fisher’s p mean (sd) mean (sd) gain Fisher’s p

D 0.619 (0.345) 0.992 (0.005) 60.29% <0.001 0.276 (0.386) 0.964 (0.067) 249.23% <0.001
T 0.776 (0.179) 0.820 (0.339) 5.68% 0.395 0.497 (0.385) 0.940 (0.085) 88.95% <0.001
A 0.781 (0.176) 0.895 (0.186) 14.60% <0.01 0.536 (0.356) 0.907 (0.181) 69.29% <0.001

mechanism (Cap, noCap) by providing an input from 0.0 to 1.0 in 101 equidistant
steps. In the Cap condition, the relaxation factor is automatically determined
by trying to progressively solve the problem with relaxation starting from 0.0
and 0.1 step increments. When 1.0 is reached, the problem is by definition solved
as in the noCap condition. In our tests, about 50% of the problems were solved
with relaxation at 0.0. The remaining problems were solved with a relaxation
value uniformly distributed between 0.1 and 1.0. We computed the correlations
between the input trait value and every output attribute. Table 5 reports the
average of the correlations among all attributes. The correlations systematically
incremented in the Cap condition. The last column reports the significance of
the difference between the two correlations using a Fisher r-to-z transformation.
With the exception of trustworthiness in p mode, all the correlations increased
significantly.

5 Examples and validation study

A prototype GUI (see Figure 1, left) allows artists an interactive exploration of
the personality space through a set of sliders. The user can enable or disable
each trait independently and can decide to minimize the number of attributes
or maximize the perception of the traits. The system automatically selects the
objective function which minimizes the error. Also, it tries to solve the prob-
lem with an initial relaxation factor of 0.0 and increments of 0.1. A text area
previews the script that will be executed by MakeHuman. For the execution,
we implemented a MakeHuman plugin which allows for the remote execution
of scripts via TCP connections. Figure 4 shows several examples of generation
using one to three attributes at the same time.

We ran three experiments to assess the quality of the generation model. In
Experiment 1, following the same procedure described in Section 3, 36 partici-
pants (27 male, 9 female) of different nationalities (16 DE, 4 IN, 3 CH, 13 not
listed) voted on 25 pairs randomly composed from 11 virtual characters. The
characters were created by modulating input dominance from 0.0 to 1.0 with 0.1
increment steps. Similarly to the training experiment (Section 3), subjects had
to answer “Which of the two characters looks more dominant?”. An analysis of
the paired comparison data determined a level of perceived dominance for each
character. A linear regression between the input and the perceived dominance
led to a correlation factor of 0.984.



Fig. 4. Examples of generation in Maximize Perception mode (12 physical attributes).
Top: progression of dominance from 0% to 100%. middle: generation with dominance
and trustworthiness. bottom: including agreeableness.

In Experiment 2, 37 participants (28 male, 9 female) of different nationalities
(16 DE, 4 IN, 3 CH, 14 not listed) voted on 25 pairs from 50 randomly generated
virtual characters. The characters were created by randomly modulating both
dominance and trustworthiness in the range 0.0 to 1.0. Subjects had to answer
which of the two characters looked more dominant and which one more trustwor-
thy. An analysis of the paired comparison data determined a level of perceived
dominance and perceived trustworthiness for each character. A linear regression
between the input and perceived dominance led to a correlation factor of 0.933,
while the correlation between input and perceived trustworthiness is 0.716.

In Experiment 3, 40 participants (28 male, 12 female) of different national-
ities (21 DE, 4 IN, 4 GR, 11 not listed) voted on 50 random pairs from 125
randomly generated virtual characters. The generation of the characters, the
voting method, and the data analysis are the same as for Experiment 2, with
the addition of agreeableness. The correlation between input and perceived trait
is 0.903 for dominance, 0.733 for trustworthiness, and 0.717 for agreeableness.

We assessed the capability of the model to scale on multiple traits using a
Fisher r-to-z transformation. The test measures the significance of the difference



Table 6. Results of the validation study. Left: The correlations between input and
perceived trait values. Right: the significance of the variation of the correlations.

correlation
Exp Traits #participants #characters D T A

1 D 36 11 0.984 - -
2 D, T 37 50 0.933 0.716 -
3 D, T, A 40 125 0.903 0.735 0.717

Trait Experiments Fisher’s p

D 1 vs. 2 0.067
D 2 vs. 3 0.259
D 1 vs. 3 0.016
T 2 vs. 3 0.810

between two correlation factors, and we applied it on four pairs of correlations. In
this case, the absence of significant difference is desirable, because it means that
the correlation between the input and the perceived values of a trait is not af-
fected by the introduction of more traits to the model. For dominance, there is no
significant difference in the correlations between Experiments 1 and 2 (p=0.067),
meaning that the insertion of trustworthiness did not degrade the perception of
dominance. As well, there is not significant difference in the correlations be-
tween Experiments 2 and 3 (p=0.259), meaning that introducing agreeableness
did not degrade the perception of dominance when dominance and trustworthi-
ness are generated together. However, there is a significant difference between
Experiments 1 and 3 (p=0.016), meaning that the capability to generate a dom-
inant character significantly decrease when trustworthiness and agreeableness
are added to the model. Yet, the significance is modest and the correlation for
dominance is still above 0.9. For trustworthiness, there is no significant difference
between experiments 2 and 3 (p=0.810), meaning that the capability of gener-
ating a trustworthy character in the dominance/trustworthiness model doesn’t
degrade when including agreeableness into the model.

Overall, the above described results (summarized in Table 6), suggest that
the method scales relatively well when adding more traits to the generation
process. Time and resource constraints prevented us from running studies with
the three remaining combinations (trustworthiness and agreeableness, alone and
paired), which is desired for future work.

6 Conclusions and future work

This paper introduced a method to draft virtual characters whose appearance
suggests to observers a given personality. The method is composed of a train-
ing phase, based on reverse correlation experiments, and a real-time generation
phase, exploiting linear programming. The method accounts for a coercion con-
straining mechanism which improves the linearity of the solutions. A subjective
user study suggests that the system scales well when generating characters us-
ing both orthogonal and quasi-co-linear traits. In future experiments we will
investigate how the method behaves with a higher number of traits, such as all
of the Big Five [11] simultaneously. Although this work focuses on personality
traits, the same method can be applied to any kind of subjective descriptor,
such as beauty, scariness, appeal, empathy, and the like, paving the way for the
generation of virtual characters based on textual input.
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