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- IBM

1.2 Involved Countries

-  France
- lsrael
- Finland

1.3 Keywords

Clinical decision support

Predict patient response to breast cancer treatments
Predict treatment effectiveness

Precision medicine

1.4 Task Description

The pilot is a retrospective study that analyses mammograms, ultrasound and MRI images along with
structured clinical data and information extracted from pathology reports to automatically predict patient
response to breast cancer treatments, specifically neoadjuvant treatments. The data includes patients
that obtained neoadjuvant chemotherapy (NAC) since 2012. The data is made available offline to the
processing collaborators in IBM and VTT, through a VPN to access a local server at CUR. In summary,
given images and clinical information, the models predict the probability of various outcomes for each
patient who received neoadjuvant treatment. These models allow for evaluating the ability to make
personalized treatment decisions rather than following global population guidelines and allow for
assessing the economic effect of such protocols.

The overall methodology and pilot architecture are depicted in Figures 8a and 8b. To comply with
regulations as GDPR, we use a model-to-data paradigm where all the data remains at Institut Curie
infrastructure. All computations are applied on a strong GPU enabled server that resides in Curie, and
various docker containers and pipelines of analytics models are transferred to the server and executed
there. The overall flow is as follows: the anonymized imaging and clinical data are transferred from Curie
clinical repositories to the pilot server hosted within the institute infrastructure. Training and inference
pipelines utilize the data on the pilot server and produce analytics results. The analytics results are stored
in a repository and an application is used to visualize those analytics results.

The pilot includes multiple pipelines. For example, one of the pipelines published in SPIE Medical Imaging
2020 predicts pathologic complete response using clinical and mammography (MG) imaging data.

Another pipeline, published in PRIME-MICCAI 2020 predicts relapse using clinical and multiparametric
Magnetic Resonance Imaging (MRI) data.



2. Building Blocks

2.1 Architecture

2.1.1 System Architecture

The amount of medical imaging is constantly growing in the number of images, in the size of
each image and in the amount of information expressed in each image. At the same time, the
field of computer vision is rapidly progressing incorporating new advanced technologies from
image processing, machine learning, deep neural networks and general artificial intelligence
techniques. Our aim is to create a scalable and generic architecture that can support all this
growing data and new methodologies. We will utilize this architecture to research algorithms that
automatically predict patient response to neoadjuvant breast cancer treatments.
The research and development cycle of Deep Learning (DL) and other new medical imaging
algorithms includes several steps that our architecture needs to support. The research typically
occurs in phases where we first use smaller dataset and later on scale to larger datasets. The
cycle steps are (see Figure 8a below):
- Data preparation in the healthcare premise
- Define the cohort according to the requested task and anonymize it
- Annotate cohort to establish the ground truth
- Data retrieval to research platform
- Retrieve annotated anonymized data and make it accessible for research
- Create data splits for training, testing and hold-out.
- Deep learning model creation (iteratively)
- Test models, utilize relevant quantitative measures and tune hyperparameters. Then
select the most accurate model or ensemble of models
- Model deployment
- Create model as a service and evaluate its accuracy on hold-out data split
- Deploy in a scalable platform and run service on real-world data and new scenarios

Data
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Fig 8a: Deep Learning Methodology



To support the above steps performed by the various pilot partners, our architecture needs to
enable the integration of polyglot algorithms that may be written in different programming
languages (Python, Java, C) and use different deep learning or other frameworks. Moreover, the
DL algorithms are compute intensive and have special requirements that need to be considered
and optimized such as GPUs, large memory usage, and large disk capacity.

The overall pilot architecture is depicted in the figure below. A strong server with GPUs located
in Curie data center will be used to run docker containers with various diverse polyglot analytics
modules. The models may be also ensembled to intelligently combine algorithms and improve
overall performance. IBM will use a generic Biomedical Framework that creates configurable
reusable pipelines and exposes them as REST microservices. The framework also enables
transparent run of pipelines on a SPARK cluster where workers run in parallel on the same
server and each worker runs on a separate GPU. It is doing that by automatic translation from a
descriptive pipeline flow to efficient SPARK application that can perform multi-modal analytics
and utilize analytics modules written in various programming languages.

The anonymized imaging and clinical data are exported from Curie ConSoRe repository to the
pilot server and to enrich our data, we also add open data of similar characteristics. Training and
inference pipelines utilize that data and produce analytics results that may be evaluated against
the ground truth. The analytics results are stored in a repository and a demo app is used to
visualize those analytics results.

The proposed architecture is scalable and can easily grow from one node to as much as
needed without changing the algorithm code. The architecture enables scale in all axis: x-axis
(containers), y-axis (function partition), z-axis (data partition). By using the Apache SPARK open
source, we get a fault-tolerant, distributed backend for robustly analyzing large datasets in a
scale-out cluster.
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Fig 8b: Pilot Architecture



2.1.2 Data Flow & Interoperability of services

The Breast Cancer pilot analyses mammograms, ultrasound and MRI images along with
structured clinical data to automatically predict patient outcomes in neoadjuvant treatments. We
develop models to predict for each patient the probability of various possible outcomes
including pathologic complete response, relapse, five-year recurrence. These models, pending
clinical trial validation, will allow evaluating the ability to make personalized treatment decisions
rather than following global population guidelines and will allow assessing the economic effect of
such protocols.

Institute Curie’s clinical data pipeline extracts data from several sources and anonymizes it,
creating several csv files with relevant clinical data as depicted in Figure 8c. These files are then
stored in two servers at the Institut Curie, which can be accessed by VTT and IBM. Similarly,
three kinds of images are available; mammography, Magnetic Resonance Images (MRIs) and
UltraSound (US) images. All the available images have been anonymized and made available in
the pilot servers, together with the clinical data.

Patient data

Clinical data . ) o Imaging

Treatment Other

Response to treatment i
— Cancer progression

Fig 8c: Data collection and flow

Various models and pipelines were developed on top of the collected data. IBM pipelines used
the clinical data, the MG data, and the DCE-MRI subtraction data to create individual models.
Afterwards, we created an ensemble model on top of all the individual models.

IBM pipelines for MRI use annotated DCE-MRI subtraction volumes. A DCE-MRI scan of a
patient with breast cancer includes multiple volumes. The volumes are taken before a contrast
agent is injected, and at several intervals after the injection. For our analysis, a digital



subtraction of the volume acquired after injection of the contrast agent and the baseline volume
acquired before the injection. We chose to use the subtraction volumes because this type of
imaging is used by radiologists for medical diagnosis and was likely to contain the information
relevant for our analysis. The MRI subtraction slices are used as input to a deep neural network
(DNN). The slices are first preprocessed, then each slice is transformed via 2D CNN, and then
the collected features from all slices are transformed via a 3D CNN.

VTT image processing pipeline creates first 3D or 4D volumes from the DICOM slices of the
MRI images. 3D volumes are created from static imaging and 4D volumes from MRI time-series.
After creating the volumes, VTT pipeline generates binary breast masks using Dixon MRI series
water-only and fat-only volumes and additionally apparent diffusion coefficient (ADC) volume
generated from diffusion-weighted MRI data. The generated MRI binary mask is cut to half and
the lesion breast mask is again segmented into lesions and other breast tissue. The lesion
segmentation is then used to calculate explainable features for IBM DNN network.

2.1.3 Necessary Hardware

We have two servers in Curie for the pilot. Each server has the following configuration:
CPU Cores - 12 cores
RAM - 128 GB of RAM
Storage - 8 TB HDD

In addition, one of the servers has 2 GPUs of type Nvidia Tesla V100.

2.1.4 Software Components

IBM components include various models developed with open source frameworks for deep
learning including Tensorflow, Keras, PyTorch. The models are wrapped with IBM Biomedical
Framework, a platform to create configurable reusable pipelines and expose them as
micro-services on-premise or in-the-cloud. One important feature of the Biomedical Framework
is the enablement of running pipelines of Al models on distributed environments such as SPARK
cluster and doing that transparently to the algorithm developer. Given a description of the
pipeline with the algorithms dependency graph, the Biomedical Framework automatically
translates the pipeline descriptor to an efficient SPARK application. The resulting application is
efficient in the sense that it minimizes the time from the beginning of the first algorithm until the
completion of the final algorithm in the pipeline.

The results of the pipelines are visualized in IBM Experiments Viewer that is a Web application
to explore results of analytics pipelines (specifically deep learning) and their evaluation on
various datasets.

In the VTT pipeline, the MRI volumes are constructed with dcm2niix command line software
from MRIcron application package (https://www.nitrc.org/projects/mricron ) and converted to
nhdr format (http:/teem.sourceforge.net/nrrd/format.html) with SimplelTK python package
(https://simpleitk.org/ ).The segmentation and feature calculations were developed as custom
Matlab functions and packaged as custom Python package, which was transferred to Curie
secure environment and ran with standalone Matlab Runtime
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(https://se.mathworks.com/products/compiler/matlab-runtime.html) through Python scripts.
Volumetric segmentation results were stored as compressed nhdr files. Numerical volumetric
features were exported as csv files for IBM network.

2.3 Data Processing

2.3.1 Processing of large structured / unstructured data sources

2.3.1.1 Data Sources

All our medical records at Institut Curie (IC) are entirely in an electronic format. Most of the data
has been entered in a semi-structured way, namely it's a mix of structured data and free text.
From these records, a cohort of around ~1700 patients have been identified matching the
required criterias:
e \Women with breast cancer who have received neoadjuvant chemotherapy (NAC) since
2012.
e Excluded multifocal and bilateral cases. Also excluded patients with skin invasive or
inflammatory tumours.
e Excluded patients who have relapsed from a previous tumour event.

In the generation of clinical data, a set of potentially relevant clinical metadata has been
identified by medical doctors at IC. The metadata dictionary describes the identified clinical data
and provides a better understanding of them. The set of clinical data includes:

e Patient information: age at diagnosis, weight and height.

e Tumour properties: side of the tumour (left or right breast), grade of the tumouir,
percentage of stromal tumour-infiltrating lymphocytes, hormonal receptors (estrogen,
progesterone, HER2).

e Neoadjuvant treatment: timing of chemotherapy, whether it includes targeted therapy,
properties of the surgery including response to treatment, radiotherapy events.
Evolution after treatment: relapse and metastatic events.

A binary classification (manually verified) regarding the complete response to treatment.

Clinical data was extracted from a multi-purpose SQL repository. This repository has been
developed at Curie in order to aggregate information coming from all different sources (software
used by doctors, medical records, handwritten events, etc). The idea is to have access to all
existing information in Curie for every patient that is treated with NAC since 2012 (personal
data, tumour events, treatments, response to treatments, relapses, etc). This repository has
already been used for other projects and has proven to be extremely valuable in terms of
quantity and quality of information.

For the Breast Cancer Pilot, three kinds of images are available at IC; mammography, Magnetic
Resonance Images (MRIs) and UltraSound (US) images. IC does not have every kind of image
for every patient at every stage of the cancer treatment. Images available at all stages are only

available for a handful of patients. Thus, images are very valuable not only because of the
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amount of information they contain, but also because of their limited supply. All the images are
currently being anonymized, a time-consuming process as we are validating the full
anonymization at every stage.

Making the data available to VTT and IBM was a two-step process, in which the data never left

Curie premises.

- First, a subset of several patients were identified maximizing the heterogeneity of their
health records. The clinical data belonging to these patients was manually curated and
delivered with the corresponding images all fully anonymized. The complete collection of
clinical data and images was shared with VTT and IBM.

- Second, a similar process of manual curation plus image anonymization was carried out
for the rest of the patients, and their data was shared with VTT and IBM and hosted in a
server with GPUs.

Data Source | Description Acquisition Characteristic
(Size,
Patients,
Years,
Origin/Region
)
Clinical - IC | We have a collection of databases which We extract
internal we query to extract different kinds of data; around 50
repositories about the patient, about the tumor, about features for
the treatment and about the response to about 2200
treatment and outcomes. We anonymise patients,
the data and aggregate it per patient, diagnosed
generating a list of relevant clinical between 2012
features per patient. and 2020.
Imaging - IC | Similar to the PACS, we have an internal MRI, MG, US
internal server hosting the images of our patients, for about 800
repositories which we query to extract the relevant patients
images and anonymize them.
multiple integratio | data data multi-part | secure transform
sources n to data access storedin |y environme | raw /
warehous cloud architectu | nt unstructur
e re ed data
yes yes accessvia | no no yes yes
VPN,
process
data only in
hospital
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2.3.1.2 De-ldentification and anonymisation

Each type of image has a different anonymization procedure. MRI and mammography are
DICOM images which contain both pixel data and a list of metadata tags. Some of these tags
are nominative, like name or date of birth of the patient, so we need to create a complete list of
existing tags and remove those who could be used to find the identity of the patient. A priori
there is no need to modify the pixel data of the DICOM images. Regarding US images, they
sometimes contain the name of the patient somewhere at the edge of the figure. We have a
procedure to crop the images and produce new ones where the name of the patient is not
visible.

For the clinical data, we anonymized the patient ID as well as all the dates, changing them to
relative days since the patient was born.

The same anonymized patient ID was used for the clinical data and the imaging data, so we
could correlate them.

2.3.1.3 Acquisition

Image data was provided in bulk, with some structured clinical data embedded in the DICOM
image header.

Additional clinical information was extracted from the EHR systems in CUR and restructured into
patient level flat records. This included the index date of treatment initialization, some summary
clinical and demographic features prior to diagnosis, tumour properties, NACT treatment
indications, surgery properties, and the outcome of the treatment (e.g. pathologic complete
response, relapse, five-year recurrence).

2.3.1.4 Cleansing

We will exclude from the data cases with multifocal tumours, bilateral cancer, skin invasive
cancer or inflammatory tumours. We will also exclude patients who have relapsed from a
previous disease.

Cleaning and filtering of image data included removal of images with low resolution, images with
obstructions, and images with previous surgical indications. We preprocessed the images to
include just the relevant side of the breast and relevant part of the tumour.

Clinical data was examined to identify extreme outliers, and to identify features with extreme
bias between treatment groups. Patients who were extreme outliers were excluded from further
analysis, and features that showed extreme bias were further analysed to check if the bias could



be corrected. We also handled censored patients and included them in train data but not in
validation or test.

The clinical outcomes were analysed for inconsistencies between the various data sources. The
association between features and outcomes were analysed to see the baseline predictive power

available in the data.

2.3.1.5 Data Integration

The various data sources are integrated at the patient level.

Each image file is identified by an anonymized patient id, and this ID is used to identify the rest
of the clinical and outcome features.

The analysis itself creates algorithms based on all the inputs in the relevant stratified data. The

algorithms may be polyglot, namely written in different programming languages (Python, Java,
C) and use different deep learning or other frameworks (Tensorflow, Pytorch).

2.3.1 Multi-velocity processing of heterogeneous data streams
Does not apply.

2.3.5 Complex real-time event detection

Does not apply.

2.3.5.1 Notifications

2.3.5.2 Situations of Interest
2.3.5.3 Event Processing
2.3.5.4 Event Sources

2.3.5.5 Evaluation

2.4 Al Components

2.4.1 Deep learning for multilingual NLP and image analytics

2.4.1.1 Natural Language Processing
Does not apply



2.4.1.1.1 Evaluation

2.4.1.2 Image Processing

Type How will IA support your pilot? How will IA help you to reduce costs?
Medical | Medical imaging is a non-intrusive method | By using image analytics to predict response to
imaging | to get valuable personalized information neoadjuvant chemotherapy (NAC) treatment,
about the patient's condition. Specifically, in | we can influence the right treatment for the
breast cancer, there are several modalities: | patient. This can save the costs of ineffective
magnetic resonance, mammography, and treatments as well as prolong patient's quality
ultrasound to capture the patient's of life, making them productive and
condition, and performing image analytics contributors to the EU economy for longer
on this data enables us to give periods.
personalized and more effective treatment.
Do (| Which Do you Describe your Which Which On which What is
you | Image use method in a few | training pathologi | level does | the level
req | Processi | public sentence. technique | es are classificati | of detail
uire | ng tasks | data do you covered? | on happen | of your
reg | doyou repositor use? (volume, GT-annota
ulat | address | ies? If slicelimg, tions
ory |? yes, or (volume,
app which? px-level)? | slice/img,
rov or
al? px-level)?
No Multi-mo | Yes, ISP1 | We’'ll use several | Train using | Breast On volume | Annotation
as dal and methods and convolution | cancer for MRI and | is per
we | classifica | UCSF then ensemble al neural on volume
are | tion of NACT them altogether. | networks slice/image | level
doi [ imaging datasets | The methods (CNN) for MG and
ng |and from include (1) deep us
a clinical https://wi | neural networks
retr | data ki.canceri | to analyze
osp | including | magingar | images, (2)
ecti | longitudi | chive.net | traditional feature
ve nal extraction from
stu | mammog images, (3)
dy raphy classical
(MG) machine learning
images, methods such as
ultrasoun xgboost.
d (US)
images
and
magnetic
resonanc
e (MR)
images




2.4.1.2.1 Evaluation

For evaluation, we set aside a holdout cohort of 100 patients. From the rest of the patients, we
created the train cohort. We split the train cohort into 5 folds with equally distributed positive and
negative samples among folds. As the number of patients having imaging is smaller than the
number of patients that have clinical data, we have different train cohorts for imaging and for
clinical. In our split to folds, we make sure that the folds in both imaging train cohort and clinical
train cohort are correlated, namely a patient remains in the same fold.

We performed cross-validation and computed the ROC, AUC with confidence interval, specificity
at sensitivity for each fold, and the mean values across folds. We then evaluated our model on
the holdout data and computed AUC with confidence interval, and specificity at several
sensitivity operation points. We also examined the features of importance produced by our
models, and used the SHAP algorithm for explainability.

2.4.2 Prediction Algorithms

2.4.2.1 Task

Prediction of (1) outcomes (pathologic complete response, relapse, five-year recurrence) of
neoadjuvant chemotherapy (NAC) treatment and (2) prediction of cohorts for clinical trials
towards next generation therapies.

2.4.2.2 Data, Data Modelling

We used two train cohorts in our experiments because some patients had only clinical data
while other patients had clinical and imaging data. The first data subset is a large cohort of
patients for clinical data evaluation. The clinical data included demographics such as age,
weight, height, and tumor properties such as breast cancer histology, grade of the tumor, Ki67,
and molecular subtypes based on estrogen, progesterone, and HER2. The second data subset
was a smaller cohort who, in addition to the clinical data, also had imaging scans taken prior to
NAC treatment. The small cohort is a subset of the larger cohort.

We annotated the MRI data. We annotated the most important subtraction volume in which the
tumor appeared to be the brightest in terms of relative illumination. In the selected volume, we
also annotated the significant slice in which the tumor was the largest.

2.4.2.3 Features
CNN



1. MRl images

2. MG images

3. US images

4. Features from classical image processing
5. Clinical data

XGBoost
1. Features from CNN
2. Clinical data

2.4.2.4 Model

We have developed several models as described below and created pipelines to combine them
all together and produce the final output.

MRI deep learning model (IBM)

The MRI data includes a preprocessing stage before entering the convolutional neural network
(CNN). The input to the CNN is the significant slice and the two pre and post adjacent slices
(i.e., three slices in total) that are extracted from the selected MRI subtraction volume. The
selected slices undergo a cropping and resizing process. Our data consisted of axial MRI
volumes, which contain both sides of the breast. Hence, we cropped the image vertically and
continued processing only the relevant side in which the tumor was located. Then, we cropped
the image horizontally to exclude non-breast parts that appeared in the image. This process
was done automatically using a sliding window, where we searched the most enhanced organs
within the first slice in the MRI volume, and found a cut line above them that was used for our
three selected slices. Each of the vertically and horizontally cropped slices was then resized to
512 x 256 pixels to bring them all to the same size. The last two steps of the pre-processing
included rotating the slices, so the breast was facing in the same direction for all slices. We also
under sampled the slices where there was overlap between slices in the volume.

Next, we use the preprocessed slices as input to our CNN, which is a modification of ResNet as
a classifier. We specifically used ResNet18 formulation, but reduced the number of filters per
layer to speed up training and avoid over-fitting. The original Resnet18 consists of blocks of
convolutions, with residual connections between the blocks. Each convolution layer is followed
by a batch normalization layer and RelLU activation. For our network, we used 7 residual blocks
with [32, 64, 128, 128, 256, 256] filters per convolutional layer. This 2D-CNN model was applied
simultaneously to the 3 slices, i.e., the same 2D-CNN model with the same weights was applied
to each slice. Next, a 4D-tensor was used to aggregate features produced from the 3 input
slices. Finally, a 3D convolution layer was applied, followed by a 3D average global pooling
layer. The output of the pooling layer was treated as an embedding vector . On top of this
embedding layer, we added a simple sigmoid-activated linear layer as an output layer. A
detailed diagram of the CNN model is depicted in Figure 8d.
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Fig 8d: MRI CNN architecture

MRI image processing features (VTT)

VTT’s original plan was to apply their existing interpretable models that are easily applicable to
the breast MRI images although they were designed mainly for brain MRI. However, due to
missing voxel level labeling in the dataset the original plan had to be abandoned and a new
approach with unsupervised machine learning using fuzzy c-means (FCM) clustering was
adopted for the segmentation task. The obtained segmentation masks were used to generate
volumetric numerical features for IBM DL models. The VTT pipeline concept is visualized on

figure below:
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Fig 8e: Image processing features
MG model (IBM)

We use a pre-trained deep learning (DL) model to get the tumor location. The model was trained
on several thousands of MG images from IBM repository. We used that model to inference the
MG data in Curie, and then compute radiomics texture features (Gabor, LBP, GLCM, wavelets)
within tumor area and in the peritumoral area. Figure 8f below shows the network output
predictions of tumor detection. On the left, there is the MG image from the Curie dataset with a
detected contour around the tumor area. On the middle, the tumor patch is extracted from the
detected area, and on the right, the tumor margins are extracted.

Fig 8f: MG processing

Clinical model (IBM)



We created our model using the clinical pre-treatment features per patient. The features have
values in different ranges and some values are missing; thus, we preprocessed the data by
applying a scaler that scales all features to the [0,1] range. An imputation process replaced
missing values with the mean value. To select the best classifier for our task, we trained the
data with three known machine learning algorithms: Random Forest, Logistic Regression, and
XGBoost. We evaluated our model and examined the features of importance using the SHAP
explainability algorithm.

Ensemble model (IBM)

The ensemble model depicted receives six scores per patient: three scores based on clinical
data and three scores based on the imaging data. To improve generalization, we created
multiple variations of each model where each different variation started its train from a different
initialization. Thus, the three scores for clinical data are produced from three variations of the
clinical model that differ in their training initialization. Likewise, the three scores for imaging data
are produced from three variations of the imaging model that differ in their training initialization.

We examined several strategies for combining the models and evaluated the cross-validation
AUC and specificity at sensitivity for each option. We first tried the stacking classifier, in which
we trained a meta model on top of the six models’ scores using the small cohort folds. We also
tried several voting strategies. However, we found that the most effective strategy used the
average value of all available scores per patient.

2.4.2.5 Evaluation
See2.4.1.2.1

2.5 Security and privacy of data access and processing
See 2.3.1.2

2.5.1 Access Control
2.5.1.1 Authentication

2.5.1.2 Authorization

2.5.2 Data Protection

All the data is fully anonymized and doesn’t leave Curie premises. Thus, there is no need to
encrypt it.



2.5.2.1 Data at rest

2.5.2.2 Data in transit

2.5.3 Auditory and logs

All the data is fully anonymized and doesn’t leave Curie premises. Thus, there are no special
audits or logs for our pilot.

2.5.3.1 System Auditory

2.5.3.2 Services Auditory

2.5.4 Privacy measurements
2.5.4.1 Data Privacy Impact Assessment (DPIA)
2.5.4.2 Legall/Ethical process

2.5.4.3 Processes for complying with the current legislation

2.6 Trustworthy Al

2.6.1 technology/user adoption and establishing trust

2.6.2 ethical principles

- respect for human authority

- prevention of harm

- fairness

- Explicability
We kept all above ethical principles and used known algorithms to support them when possible.
In particular, we tried to provide explanations to our models, e.g. via the Shapley Additive
Explanations (SHAP) algorithm for exaplanability. SHAP considers all possible combinations of
features with and without that specific feature to evaluate its contribution to the prediction. The
figure below is an example of how SHAP depicts the top 10 clinical features in descending order
that had the most influence on predicting pCR. In the summary plot of SHAP, each point
represents a single patient. The x-axis indicates the effect (either positive or negative) of the
feature on the predicted score for the patient. The point's color represents the value of the
features (red=high value, blue=low value).
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Fig 8g: Clinical features contribution to predict pCR

Moreover, the VTT MRI image processing pipeline aims to generate explainable features for the
IBM DL network. The VTT features are by volumetric nature possible to visualize over MRI
images, which makes it possible for human agents to overview and track the numerical feature
content when necessary.

2.6.3 key requirements

- Human agency and oversight

- Technical Robustness and safety

- Privacy and data governance

- Transparency

- Diversity, non-discrimination and fairness
- Societal and environmental well-being

- Accountability

We tried to consider all the above key requirements, and also all local and global regulations
including:



General data processing regulation (GDPR)

Loi “Informatique et Libertés” (modified July 2019)
Code de la santé publique

EMA and FDA

2.7 System-Interaction

2.7.1 Human-Machine Interface / GUI

We created a web application, the Experiments Viewer, that evaluates and visualizes the results
of multimodal medical analytics pipelines, especially with deep learning imaging algorithms.
More specifically, the Experiments Viewer functionality includes:

e For each patient, show the original imaging, the explanation imaging, the clinical data,
the scores of all algorithms and the ground truth if available
Search of selected patients in the experiment
Filter experiment to focus on specific sub-group and examine it
For each experiment, the evaluation per image-level and per patient-level. The
evaluation includes confusion matrices, AUC graphs, specificity and sensitivity at
different thresholds, sub-group analysis, etc.

e Visualize the data per image-level and per patient-level using Google Facets Overview
and Google Facets Dive

The figure below shows the main screen of the Experiments Viewer and some of its graphs.

Experiments Viewer - BigMedilytics Evaluation Service

MG Patient Response

Fig 8h: Experiments Viewer



2.7.2 Education

We created papers and demos to publish our results and review with the community.

3. Learnings

3.1 Challenges & Barriers

Architecture

Processing of large structured / unstructured data sources

- Multi-velocity processing of heterogeneous data streams

- Complex real-time event detection

- Natural Language Processing

- Image Processing

- Prediction Algorithms

- Security and privacy of data access and processing

- Trustworthy Al

System-Interaction

While our MRI data for predicting relapse after NAC treatment is one of the largest compared to
those reported in prior art, it is relatively small for deep learning networks. Moreover, MRI has no
standardized protocol for scan acquisition and high variance of image resolution, voxel size, and
image contrast dynamics. We selected special MRI preprocessing and neural networks to adjust
for these limitations, and the major contribution of this modality to our prediction is clear. Yet, to
get robust models that are not sensitive to fold partitions and generalize better, we need to
retrain our models on much larger datasets.

VTT faced challenges in image processing for two main reasons. The first challenge was that all
the imaging data to be used in the analysis was real world patient data collected in the past
years within clinical practice. The availability of imaging modalities and sequences, quality of the
data and even the naming and vocabulary of the studies varied a lot from patient to patient. As
there was no table of contents available but only a pool of mixed data, the first challenge at the
beginning of the project was to understand what kind of (MRI) images exist in the dataset in



sufficient amounts. We also had to investigate what are the used protocols and how many
subjects are having consistent images.

The second challenge for VTT original plans was that there were no voxel level annotations
available on any of the images or modalities and there were no resources on project to generate
these. This led VTT to a situation that we could not use our existing solutions and we had to
modify our approach to unsupervised machine learning (ML) instead of supervised ML. This
approach was still only a partial solution for the challenge as without true voxel labels we could
confirm only visually the correctness of the segmentation.

3.2 Lessons Learned

Architecture

- Processing of large structured / unstructured data sources
- Multi-velocity processing of heterogeneous data streams
- Complex real-time event detection

- Natural Language Processing

Image Processing

It is important that when medical images are used in the project, the clinical specialists for
medical imaging are available for the project. These can be radiologists or other medical
operators who are able to detect and explain the targeted phenomenon in the medical
images. Moreover, it is important that image datasets are generated in close collaboration
with clinicians who have been involved to collect the data originally.

- Prediction Algorithms

We used deep learning and image processing algorithms to analyze our mpMRI data and
classical machine learning algorithms to analyze the clinical data. Using two branches enabled
us to use the best method per modality and utilize the maximum available data for each data
type. This approach improved our results.

High sensitivity was important in our problem setting since we wanted almost all patients that
encountered recurrence to be correctly classified by our model and enable treatment options to
be reassessed in advance. It is also important to know the specificity in these high sensitivity
operation points. Adding the MRI modality enabled us to improve the specificity at high
sensitivity operation points.

- Security and privacy of data access and processing

- Trustworthy Al

Explainability should be done in collaboration with the doctors to make sure the visualized
information is valid and valuable for them.
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3.3 Main (quantifiable) achievements

Here are some of our main achievements:

Created fully anonymized cohort of 1738 patients treated with NAC; from which almost
600 patients have imaging prior to treatment start (MRI, MG, US)

Created annotations for the MRI data

Created MG, clinical and ensemble models to predict pathologic complete response
(PCR)

Created MR, clinical and ensemble models to predict relapse

Created multiparametric MR, clinical and ensemble models to predict five-year
recurrence

Built a system in Curie that runs pipelines based on the Biomedical Framework
Enhanced the Experiments Viewer to visualize our cohort and tasks

4. Output

4.1 Papers

Paper: "Radiomics for predicting response to neoadjuvant chemotherapy treatment in
breast cancer", Simona Rabinovici-Cohen, Tal Tlusty, Ami Abutbul, Kari Antila, Xosé
Fernandez, Beatriz Grandal Rejo, Efrat Hexter, Oliver Hijano-Cubelos, Abed Khateeb,
Juha Pajula, Shaked Perek, published in Proceedings of SPIE Medical Imaging, Vol.
11318, 2020,
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11318/113181B/Radio
mics-for-predicting-response-to-neoadjuvant-chemotherapy-treatment-in-breast/10.1117/
12.2551374 full

Paper: "Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant
Chemotherapy Treatment", Simona Rabinovici-Cohen, Ami Abutbul, Xosé Fernandez,
Oliver Hijano-Cubelos, Shaked Perek, Tal Tlusty, published in Proceedings of
International Workshop on PRedictive Intelligence In MEdicine (PRIME-MICCAI), Vol
12329, pages 188-199, 2020,
https://link.springer.com/chapter/10.1007/978-3-030-59354-4_18

Poster: "BigMedilytics - Breast Cancer Pilot", Juha Pajula, Kari Antila, Harri Polonen,
Simona Rabinovici-Cohen, Oliver Hijano-Cubelos and Mark van Gils, OpenTech Al 2019
Workshop,
https://developer.ibm.com/opentech/2019/03/25/helsinki-may-2019-opentech-ai-worksho

p/



https://link.springer.com/chapter/10.1007/978-3-030-59354-4_18
https://developer.ibm.com/opentech/2019/03/25/helsinki-may-2019-opentech-ai-workshop/
https://developer.ibm.com/opentech/2019/03/25/helsinki-may-2019-opentech-ai-workshop/

4.2 Open Source & Resources (refer to ELG)

e We use open source, but didn’t create open source from our own technology.
e We created the ISO/IEC 23681:2019 standard: “Self-contained Information Retention
Format (SIRF)”, https://www.iso.org/standard/76648.html

4.3 Demos

e Demo: "Experiments Viewer for Multimodal Medical Analytics", Simona
Rabinovici-Cohen, Tal Tlusty, Ami Abutbul, Efrat Hexter, Abed Khateeb, Shaked Perek,
in SPIE Medical Imaging Live Demonstrations Workshop, 2020

e Presentation: "SNIA Long Term Retention for Al Applications", in SDC EMEA 2020,
https://www.snia.org/events/sdcemea/agenda



